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Abstract. The morphology of two-dimensional cohesionless composite granular media 
obtained from thermoelastic stress analysis (TSA) experiments and molecular dynamics (MD) 
simulations is methodically compared by using the statistical analysis through the 
distributions of the hydrostatic stress in the particles and of the geometrical contact orientation 
between particles. Two different particles with a stiffness ratio of four between them are 
employed to prepare the numerical composite samples under study. Under a confined vertical 
compression in static conditions, experimental and numerical results are in good agreement in 
terms of the distributions of the hydrostatic stresses and of the contact directions.  

 
 
1 INTRODUCTION 

Sand, soil, and rock play a significant role in civil and geotechnical engineering to 
construct many infrastructures in our daily life, e.g. bridges, water dams, foundations, 
residential buildings, highways, etc. These are examples of granular materials, which are 
plentiful around us. In this context, a collection of solid particles, whose macroscopic 
mechanical behavior is governed by the inter-particle forces between contacts, is referred to 
as granular materials. They are composed from grains with a variety of sizes, shapes, and 
types of constitutive material. Due to a great diversity in grains, the behaviors of granular 
media are generally complex which cannot differentiate from those ordinary solids, liquids, 
and gases [1, 2]. Although this complexity remains far from well understood for researchers 
in many areas, there has been a significant effort for researchers describe and understand 
behaviors of granular materials during the past thirty years. Previous studies on granular 
mechanics mainly focus on mechanical behaviors of “non-composite” granular media, i.e. 
made of only one type of constitutive material, despite the fact that granular materials in 
engineering and industrial fields are prepared from various particles that their physical 
properties are different. That is why there is a lack of knowledge on mechanics of 
“composite” granular materials. Nonetheless, a few numerical and experimental studies 
pertaining to composite granular media can be found in the literature [3-6]. Recently, 
thermoelastic stress analysis (TSA) based on infrared (IR) thermography was experimentally 
performed to measure the hydrostatic stresses in the particles of two-dimensional composite 
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granular media [7]. This composite was prepared from two materials with different rigidity. 
Since the first pioneering work performed more than the past four decades by Cundall ans 

Strack [8], the discrete or sometimes known as distinct element method (DEM) has proven to 
be a powerful and useful approach that provides a relationship between micromechanical data 
to macromechanical data by means of statistical mechanics [9]. The DEM was widely applied 
to investigate the mechanical behavior of non-composite granular media, e.g. the effects of 
the particle size and shape [10-12], the coefficient of friction [13], the surface energy [14] on 
contact force networks. From the authors’ point of view, the DEM offers an effective way to 
investigate the mechanical behavior of composite granular materials. In this study, the 
molecular dynamics (MD) simulations which belong to the DEM are therefore applied to 
systematically model the two-dimensional non-cohesive composite granular system. 
Numerical results and experimental results obtained by thermoelastic stress analysis (TSA) 
experiments [7] are then statistically compared by using the granular texture in terms of 
distribution of the hydrostatic stress in the particles and contact orientation between particles. 
It must be noted that hydrostatic stresses provided by TSA experiments are used in this 
analysis instead of contact forces 

The paper is organized as follows. Section 2 describes the theoretical aspects of MD 
simulations in terms of model for interaction forces, the details of numerical samples, and 
derivation of stress from contact forces. Section 3 is devoted to the statistical analysis and the 
comparison with experimental results. 

2 THE MOLECULAR DYNAMICS MODELING 
The molecular dynamics (MD) method relies on an explicit algorithm, which considers all 

particles of granular medium as rigid bodies with non-conforming surfaces [15]. The motions 
of each particle with respect to time are governed by Newton’s equations of motion. These 
motion equations are numerically integrated using a predictor-corrector scheme with Gear’s 
set of corrector coefficients [16].  

2.1 Interaction force model 
The interaction force model for contacting particles is an important part of the MD 

simulations. The interaction force is divided into a normal force and a tangential force. A 
variety of most commonly used force models in MD simulations was mentioned by Schäfer et 
al. [17]. In fact, local deformation in continuum mechanics occurs when two solid bodies are 
in contact [18]. Due to rigid bodies considered in the MD method, this deformation is easily 
modeled by using a virtual overlap  at the contact point without change in the particle shape. 
The contact force is therefore calculated as a function of this virtual overlap (). In the case of 
circular disks, the virtual overlap between particles can be directly calculated from their 
vector position of the particle centers xi and xj and radii ri and rj: 

 i j i jr r x x      (1)

In the case of  > 0, a simple model so-called the “linear spring-dashpot” [17-20] was 
employed to calculate the normal force between two particles in contact. The normal contact 
force can be separated into two components. The first component is an elastic repulsive force, 
which plays a role to withstand the deformation due to an external compression. It is simply 
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modeled as a linear spring. The second component is energy dissipation, which is relevant to 
an intrinsic characteristic of granular materials. It is represented through a viscous force. The 
expression of the normal force amplitude Fn can be written by 

n eff n nF k v    (2)

where keff is the effective contact stiffness, n is a normal damping coefficient, and vn is the 
normal velocity (time derivative of the virtual overlap). 

Due to the fact that the Coulomb’s law of friction is a non-smooth function, we cannot 
directly apply this friction law to MD simulations. It can be additionally explained that the 
integration of Newton’s equations of motion requires a smooth (mono-valued) friction law in 
such a way that the friction force can be mathematically expressed as a linear function of the 
sliding velocity vs. As a consequence, the tangential force Ft in this study can be simply 
implemented by using a “regularized” form of the exact Coulomb’s law [11, 17, 20], which 
can be computed by the following expression: 

   min , signt s s n sF v F v    (3)

where s is the tangential viscosity coefficient and  the coefficient of friction. It must be 
noted that the rotational motion due to the tangential force is allowed to be free in this study. 

2.2 Preparation and simulation of numerical samples 
Three similar composite configurations that used in the TSA experiments [7] were selected 

to prepare the two-dimensional numerical composite sample. This composite system was 
made of two constitutive materials with different rigidities as shown in Fig. 1a: 
polyoxymethylene (POM) appearing in black is termed a “stiff” particle, and high-density 
polyethylene (HDPE) appearing in white is a “soft” particle in the following. The stiff particle 
is approximately four times stiffer than the soft particle [7]. Table 1 gives the ratio of 
diameters Dstiff/Dsoft and number of particles Nstiff/Nsoft for each of the three configurations 
tested. Sample#1 is a monodisperse medium (Dstiff/Dsoft = 1), whereas the others are 
bidisperse. It must be noted that in practice we aimed at analyzing only the effect of the 
Dstiff/Dsoft ratio. This is a reason why the Nstiff/Nsoft ratio for sample #1 and #2 are nearly close 
to 1, excluding sample #3. In addition, our analysis in the framework of 2D homogenization 
requires at least 300 particles to obtain relevant statistical values. This corresponds to the 
report in ref. [21] which mentioned that the linear scale of statistical homogeneity in a 2D 
assembly is a few tens of particle diameters. This criterion is reasonably satisfied for the three 
configurations under the study (see the last column in Table 1). 

For each sample, the locations of particles were extracted from the optical image of real 
composite granular system from experiments (Fig. 1a). Such extracted positions were then 
employed to prepare the numerical samples inside a nearly square box consisting of four rigid 
plane walls. Fig. 1b presents an example of numerical preparation for sample #1. Under quasi-
static conditions, a compressive vertical force of 60 kN was incrementally applied on the 
granular samples at the lower wall, while the other walls were still fixed during the test. The 
gravitational force was also considered during the simulations, even though it can be 
negligible compared to the magnitude of the external applied loading. It must be noted that all 
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described by using a grain-by-grain approach based on the internal moment tensor Mi of each 
particle p [25]. The symmetric second-order stress tensor ij can be related to the interaction 
forces inside a granular assembly of volume V in the following way: 

1 1p c c
ij ij i j

p V c V
M f l

V V


 

    (4)

where the contact forces f1
c
, f2

c
,…, fi

c
 act at the contact point c between the particles due to the 

external applied loading, and the vector lj
c
 is the branch vector connecting the centroids of 

two particles in contact at point c. It is worth mentioning that the first summation in Eq. (4) is 
done over all particles, whereas the second summation is performed over the whole set of 
contacts within the volume V. 

Next, the definition of the stress tensor at the macroscopic scale in Eq. (4) is developed at 
the particle scale to provide the stress tensor σp in an individual particle. The stress tensor at 
the particle scale is calculated by the sum of the interaction forces and the radius vector of the 
particle at the contact point c along the particle perimeter over the particle volume Vp: 

1

p

p c c
ij i j

c Vp

f r
V




   (5)

The list of normal and tangential forces obtained from the simulations is then employed to 
determine the stress tensor in each particle using Eq. (5). Under an assumption of plane stress 
satisfied in the present study, the eigenvalues of the stress tensor are used to compute the two 
in-plane principal stresses 1 and 2 of σp. The hydrostatic stress or average stress in each 
particle [24] is then determined by: 

 1 2

2hyd

 



  (6)

3 SIMULATION RESULTS AND COMPARISON WITH EXPERIMENTS 
In this section, the numerical results obtained from MD simulations in this study and the 

experimental results obtained by thermoelastic stress analysis [7] are statistically analyzed by 
using the granular texture in terms of distribution of the hydrostatic stress in the particles and 
of the contact orientation between inter-particle contacts. Note that the results obtained by 
TSA experiments are fully described and discussed in a recent published paper (see ref. [7]). 

3.1 Normalized hydrostatic stress networks 
The simulations provide the network of normal contact forces for each sample as 

illustrated in Fig. 2a. The normal forces were represented by the red lines, whose thickness is 
proportional to the magnitude of the normal force. By comparing the three configurations, it is 
interesting to note that the larger particle size in granular system transmits the stronger force. 
Although the contact stiffnesses play a role in distribution of the force magnitude, the 
influence of polydispersity (in terms of particle size) on composite granular materials is still 
similar to what is observed in granular media made of only one type of constitutive 
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2b) and experiments (Fig. 2c) are anticipated. Indeed, it is not feasible to get precisely the 
same stress pattern between the experiment and the simulation at the particle scale. This may 
due to an inherent variation of parameters in any experiment: variation in terms of diameters, 
roundness, physical material properties, etc. A technical problem in the sense of particle 
locations may be also included. As a result, a micromechanical analysis of the experimental 
and numerical results is now performed through the granular texture. 

3.2 Angular distribution of contact directions 
In this section, the angular distribution of the contact directions is deduced from the 

experimental and numerical results. This is a useful statistical quantity to characterize the 
probability of contact orientation in each direction of the space. The angular distribution of 
the contact directions is relevant to the fabric tensor [27, 28], which enables us to understand 
the geometrical orientation of the particles and reveals a development of anisotropic structure 
of the granular system. 

In the 2D representation, we characterize the angular distribution of contact directions by 
using the polar diagrams of the probability distribution P(θ) of the contact directions θ along 
the normal direction n as illustrated in Fig. 3. In this context, a definition of the function P(θ) 
is the ratio of the number of contacts in normal directions within an angular interval between 
θ - dθ/2 and θ + dθ/2 [28] to the total number of normal contacts in the system. There are 18 
angular sectors lying between the angular range [0, 180], which is plotted in the upper part of 
the diagram, while the bottom part corresponding to the range [0, -180] is physically 
equivalent to the upper part. The contact between two particles in both the simulation and the 
experiment is detected when the distance between their centroids is lower than the sum of 
their radii. Four different types of contacts were analyzed by considering: all the contacts 
(Fig. 3a), only the stiff-stiff contacts (Fig. 3b), only the soft-soft contacts (Fig. 3c) and only 
the stiff-soft contacts (Fig. 3d). It must be noted that the term “all contacts” means all types of 
contact are considered: stiff-stiff, soft-soft, and stiff-soft. From Fig. 3, several comments can 
be made as follows: 

 The contact directions in the monodisperse case (sample #1) are logically distributed 
along specific directions, i.e. 0, 60, and 120, for whatever the type of contact 
considered: see the left column of Fig. 3. The polydisperse cases in samples #2 and #3 
are taken into account. The contact directions are oriented in a quasi-homogeneous 
(isotropic) manner when the whole set of contacts are considered as shown in Fig. 3a. 
Considering the contact network between stiff-stiff particles in Fig. 3b, it can be 
clearly observed that the contacts are preferentially arranged along the axis of 
compression, i.e. the vertical axis, except for sample #3. In contrast, the other types of 
contact, i.e. soft-soft contacts in Fig. 3c and stiff-soft contacts in Fig. 3d, seem to be 
oriented along the specific directions as found in monodisperse case. These contact 
networks only play a role to maintain the granular system in equilibrium. In other 
words, the anisotropic structure of contacts between stiff-stiff particles is supported by 
such contact networks. 

 The stiff-stiff contact network for sample #3 in Fig. 3b is considered. For both the 
experiment and the simulation, it is interesting to note that the distribution of the stiff-
stiff contacts in sample #3 is inclined at about 45 from the vertical axis. This can be 
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From these several comments, it can be said that the results of the buildup of anisotropic 
structure owing to the mechanical loading obtained from the TSA experiments [7] and the 
MD simulations are good correlated from macroscopic point of view. 

3.3 Statistical analysis of the hydrostatic stress distributions 
In order to clearly characterize the distributions and correlations of the hydrostatic stresses 

in composite granular media, the probability distribution function P of the normalized 
hydrostatic stresses norm for each sample is used in this section. As performed in the analysis 
of contact forces [29], we are able to separate the hydrostatic stress networks into two 
complementary networks by considering the average hydrostatic stress: the strong network 
and the weak network. The hydrostatic stresses which is greater than the average stress over 
the whole set of considered particles (norm  ≥ 1) referred to as the “strong network”, while the 
“weak network” consists of the particles carrying the hydrostatic stresses lower than the mean 
stress. The present work intends to analyze only the “strong network”, because the high 
stresses are of great interest with regard to the breakage of granular materials in terms of 
particle crushing [30, 31]. The probability distribution functions of the normalized hydrostatic 
stresses in the strong network for each sample are plotted with normal scale (Fig. 4a) and with 
semi-logarithmic scale (Fig. 4b), respectively. Results provide three different analyses by 
considering only stiff particles, only soft particles, and then considering the whole set of the 
particles. It should be noticed that P(norm) is determined by the ratio between the number of 
particles in the strong network and the total number of particles under the considered types of 
particle (stiff, soft, or both). 

Let us now consider the whole set of the particles in Fig. 4, it is obvious that the functions 
P(norm) are distributed as an exponential decay for both experiments and simulations. This 
distribution is characterized by the coefficient β, which can be written by the following 
expression: 

 1 normP e   (7)

This property corresponds to the well-known force distribution laws [20]. It is interesting 
to note that the exponential stress distribution law is also discovered in the strong network 
when only stiff particles and only soft particles are taken into account. In other words, the 
exponential distribution is a general characteristic of granular media in the strong network for 
both distributions of the contact force and the hydrostatic stress. This distribution shape is 
independent of the material types of the particle. Considering the value P(norm = 1) for all the 
particles in Fig. 4a, it is worth mentioning that the experimental and numerical percentages of 
particles in the strong network are mostly lower than 50%, i.e. P(1) < 0.5. This value is also 
observed for most of the experimental and numerical samples when only the stiff particles and 
only the soft particles are considered with respect to the total number of their own type. From 
these results in the sense of the stress distribution, it can be seen that both the experiments and 
the simulations are in good agreement. 

Next, let us analyze the coefficient β in the semi-logarithmic plot as shown in Fig. 4b by 
means of the linear regression. This quantity can be used to compare the samples in terms of 
the probability to carry high stresses in the particles. There is high probability of a reaching 
significant hydrostatic stress in the granular media when the value of │β│ is low, while the 
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the distribution law of the hydrostatic stress in the strong network exhibits an exponential 
decay for all types of particle considered in the analysis (stiff, soft, or both), which is 
consistent with the well-known force distribution law [21]. In this network, there are less than 
50% of particle numbers transmitting the stress greater than the average value. Considering in 
terms of geometrical orientation of the particles and their contacts in space, the anisotropic 
structure with an effort to arrange itself parallel to the direction of the external applied loading 
is evidently observed for the contact network between stiff and stiff particles. On the contrary, 
the equilibrium of the granular system is sustained by the other contact networks, i.e. soft-soft 
contacts and stiff-soft contacts. 

Based on the global good agreement between experiments and simulations, it is important 
to notice that this study provides useful information obtained from the MD simulations in 
regard to composite granular materials. These numerical data are validated by the 
experimental data. In this manner, it can be said that the numerical simulations can be a 
supplementary tool to the experiments, in order to offer further information (difficult to obtain 
from the experiments) with regard to the mechanical behavior of composite granular media. 
Indeed, the optimum design of new composite granular systems could be done by using the 
simulations. Several parameters must be concerned in the design: constitutive material choice, 
proportion of particle number and size, and placement of particles in the system, for instance. 
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