Our new brand is what ArcelorMittal stands for, what it intends to achieve and by what values and guiding principles we are going to operate.

Sustainability
Quality
Leadership

...Our commitment to the world around us extends beyond the bottom line, to include the people in which we invest, the communities we support and the world in which we operate. This long-term approach is central to our business philosophy.

...Because quality outcomes depend on quality people, we seek to attract and nurture the best people to deliver superior solutions to our customers.

...This entrepreneurial spirit brought us to the forefront of the steel industry. Now, we are moving beyond what the world expects of steel.

ArcelorMittal Galati
Flat Carbon Europe

Sales & Marketing
Tel: + 40 236 80 1999
Fax: + 40 236 80 2001
marketing.galati@arcelormittal.com

www.arcelormittal.com/fce

With 320,000 employees in 60 countries, ArcelorMittal spans the globe as no other steelmaker.

It is the industry leader on four continents, ranking number one in all major customer segments.
EDITOR IN CHARGE
Prof. Gheorghe V. Lepadatu Ph.d
E-mail: gheorghe.lepadatu@yahoo.com

SENIOR EDITOR
Mihail A. PUSPD Ph.D
E-mail: ripus2@yahoo.com

EDITOR
Bogdan FLOREA Ph.D
E-mails: Bogdan.Florea@yahoo.com

MANAGING DIRECTOR/EDITOR-IN-CHIEF
Gheorghe STANCIA Ph.D.
E-mail: gheorghestancian@yahoo.com

MANAGING SCIENTIFIC PUBLISHING HOUSE
P.M.R.
E-mail: gheorghe.stancian@yahoo.com

THE PRESIDENT
Prof. Gheorghe T. Lepadatu Ph.D.
Vice-Rector of Dimitrie Cantemir Christian University, Bucharest

ADVISORY BOARD

PRESIDENT: Prof. Maria NICOLAE Ph.D. - Bucharest Polytechnical University, Romania

VICE-PRESIDENTS: Prof. Ilie Blajer, University of Bucharest, Romania; Prof. Gheorghe T. Lepadatu, Vice-Rector of Dimitrie Cantemir Christian University, Bucharest, Romania;

EDITORIAL BOARD

PRESIDENT: Prof. Maria NICOLAE Ph.D. - Bucharest Polytechnical University, Romania

VICE-PRESIDENT: Prof. Ilie Blajer, University of Bucharest, Romania

EDITOR: Gheorghe STANCIA Ph.D.

MANAGING DIRECTOR: Gheorghe STANCIA Ph.D.

EDITORIAL BOARD:

Presidential Office, F.M.R.

Editorial Office and Administration:

E-mail: gheorghe.stancian@yahoo.com

Phone: (+40) 0725 237 672

Fax: (+40) 0722 376 420

Bucharest: 400018, Sector 4, Calea Moților 11

EDITORIAL OFFICE:

E-mail: gheorghe.lepadatu@yahoo.com

Phone: (+40) 0727 873 597

Fax: (+40) 021 732 16

International Scientific Journal of Metallurgical Engineering

ISSN 1582 - 2214

Copyright © 2013 Editorial Management

This journal is published by the Bucharest Polytechnical University, Romania.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the copyright holder.

PUBLISHED BY:

PRESIDENT HONORARY STAFF

ȘTEFĂNUȘC DORU Ph. D., Oksie State University Columbus, U.S.A.

Romanian Metallurgical Foundation

Scientific Publishing House

HONORARY PRESIDENT OF SCIENTIFIC PUBLISHING HOUSE F.M.R.

EDITOR IN CHARGE

Prof. Gheorghe V. Lepadatu Ph.D.

Vice-Rector of Dimitrie Cantemir Christian University, Bucharest

MATEI STANCA Ph.D.

E-mail: gheorghe.stancian@yahoo.com

MANAGING DIRECTOR/EDITOR-IN-CHIEF

Gheorghe STANCIA Ph.D.

MANAGING SCIENTIFIC PUBLISHING HOUSE

P.M.R.

E-mail: gheorghe.stancian@yahoo.com

THE PRESIDENT

Prof. Gheorghe T. Lepadatu Ph.D.
Vice-Rector of Dimitrie Cantemir Christian University, Bucharest

ADVISORY BOARD

PRESIDENT: Prof. Agustín SEVINCIGU Ph. D. - Bucharest Polytechnical University, Romania

VICE-PRESIDENTS: Prof. Ilie Blajer, University of Bucharest, Romania; Prof. Gheorghe T. Lepadatu, Vice-Rector of Dimitrie Cantemir Christian University, Bucharest, Romania;

EDITORIAL BOARD:

Presidential Office, F.M.R.

Editorial Office and Administration:

E-mail: gheorghe.stancian@yahoo.com

Phone: (+40) 0725 237 672

Fax: (+40) 0722 376 420

Bucharest: 400018, Sector 4, Calea Moților 11

EDITORIAL OFFICE:

E-mail: gheorghe.lepadatu@yahoo.com

Phone: (+40) 0727 873 597

Fax: (+40) 021 732 16

International Scientific Journal of Metallurgical Engineering

ISSN 1582 - 2214

Copyright © 2013 Editorial Management

This journal is published by the Bucharest Polytechnical University, Romania.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the copyright holder.

PUBLISHED BY:

PRESIDENT HONORARY STAFF

ȘTEFĂNUȘC DORU Ph. D., Oksie State University Columbus, U.S.A.

Romanian Metallurgical Foundation

Scientific Publishing House

HONORARY PRESIDENT OF SCIENTIFIC PUBLISHING HOUSE F.M.R.

EDITOR IN CHARGE

Prof. Gheorghe V. Lepadatu Ph.D.

Vice-Rector of Dimitrie Cantemir Christian University, Bucharest

MATEI STANCA Ph.D.

E-mail: gheorghe.stancian@yahoo.com

MANAGING DIRECTOR/EDITOR-IN-CHIEF

Gheorghe STANCIA Ph.D.

MANAGING SCIENTIFIC PUBLISHING HOUSE

P.M.R.

E-mail: gheorghe.stancian@yahoo.com

THE PRESIDENT

Prof. Gheorghe T. Lepadatu Ph.D.
Vice-Rector of Dimitrie Cantemir Christian University, Bucharest

ADVISORY BOARD

PRESIDENT: Prof. Agustín SEVINCIGU Ph. D. - Bucharest Polytechnical University, Romania

VICE-PRESIDENTS: Prof. Ilie Blajer, University of Bucharest, Romania; Prof. Gheorghe T. Lepadatu, Vice-Rector of Dimitrie Cantemir Christian University, Bucharest, Romania;

EDITORIAL BOARD:

Presidential Office, F.M.R.

Editorial Office and Administration:

E-mail: gheorghe.stancian@yahoo.com

Phone: (+40) 0725 237 672

Fax: (+40) 0722 376 420

Bucharest: 400018, Sector 4, Calea Moților 11

EDITORIAL OFFICE:
CONTENTS

MATERIALS SCIENCE

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hatim ISSA, Željko Kamberović, Milorad GAVRILOVSKI, Marija KORAC, Zoran Andić</td>
<td>5</td>
</tr>
<tr>
<td>MODELING OF METALLURGICAL PROPERTIES OF SINTER MIXTURES OF NON-STANDARD RAW IRON-BEARING MATERIALS</td>
<td></td>
</tr>
<tr>
<td>Constantin BUBULINCĂ, Mariolina ABRUDEANU, Sergiu STANCU, Adriana-Gabriela PLAIAŞU, Michel GREDIAC</td>
<td>9</td>
</tr>
<tr>
<td>THE CAPACITY OF RECOVERY OF SHAPE MEMORY AND THE MECHANICAL COMPORTAMENT OF Cu-22, 63Zn-6,44Al</td>
<td></td>
</tr>
<tr>
<td>Gruy REUMONT, Sorin CIUCA, Elena-Lacramioara TIRON, Aurel CRISAN</td>
<td>14</td>
</tr>
<tr>
<td>CONTRIBUTION OF MODELLING THE GALVANIZING INDUSTRIAL PROCESS</td>
<td></td>
</tr>
<tr>
<td>Relu-Costel CİUBOTARIU, Evelin-Roxana SECOŞAN, Viorel-Aurel SERBAN, Duša FRUNZĂVERDE</td>
<td>19</td>
</tr>
<tr>
<td>MICROSTRUCTURAL CHARACTERIZATION OF SELF-FLOWING ALLOY COATINGS BEFORE AND AFTER FLAME REMELTING</td>
<td></td>
</tr>
<tr>
<td>Sorin DIMITRIU, Victor MANOLIU, Elvira ALEXANDRESCU, Gheorghe IOSCU, Adriana STEFAN, Alexandru MIHAILESCU</td>
<td>24</td>
</tr>
<tr>
<td>ADVANCED STRUCTURAL MULTILAYER ARCHITECTURE FOR TURBO ENGINES</td>
<td></td>
</tr>
<tr>
<td>Ramona Monica DOBRA, Ion MITELEA, Marian BOBĂN</td>
<td>29</td>
</tr>
<tr>
<td>CORROSION BEHAVIOUR OF DUPLEX TREATMENT BASED ON GAS CARBURIZING AND SURFACE INDUCTION QUENCHING</td>
<td></td>
</tr>
<tr>
<td>Florina-Diana DUMITRU, Brândușa GHIBAN, Ioși Maria CARRERA-MARRERO, Oscar Fabián FIGUERA-COROS, Gheorghe GURĂU, Nicolae GHIBAN</td>
<td>33</td>
</tr>
<tr>
<td>MICROSTRUCTURAL, THERMICAL AND MECHANICAL CHARACTERISATION OF ZK60 ALLOY PROCESSED THROUGH ECAP</td>
<td></td>
</tr>
<tr>
<td>Carmela GURĂU, Gheorghe GURĂU, Petrică ALEXANDRU, Nicolae GHIBAN</td>
<td>37</td>
</tr>
<tr>
<td>ULTRAFINE MICROSTRUCTURES OF STEEL X60 INDUCED BY SEVERE PLASTIC DEFORMATION</td>
<td></td>
</tr>
<tr>
<td>Madalina-Elena MĂNZA, Brândușa GHIBAN, Nicolae GHIBAN, Hare BORDEAUSCU</td>
<td>42</td>
</tr>
<tr>
<td>ASPECTS OF CAVITATION EROSION BEHAVIOUR OF DIFFERENT STEELS</td>
<td></td>
</tr>
<tr>
<td>Robert CIUCIU, Octavian TRANTE</td>
<td>45</td>
</tr>
<tr>
<td>NUMERICAL MODELLING OF COMPOSITE LAMINATES WITH WOVEN REINFORCEMENTS</td>
<td></td>
</tr>
<tr>
<td>Viorel-Aurel SERBAN, Ionif HULKA, Dragos Uţ u, Petri VUORisto, Karl NIE MI</td>
<td>51</td>
</tr>
<tr>
<td>WEAR AND CORROSION BEHAVIOUR OF HVOF AND HVAF DEPOSITED Cr2C2-NiCr COATINGS</td>
<td></td>
</tr>
<tr>
<td>Ion PENCEA, Catalin SFAT, Victor GEANTA, Radu STEFANOFII, Ionelıa VOICULESCU</td>
<td>57</td>
</tr>
<tr>
<td>NEW MULTICONVOLUTIONAL APPROACH FOR MEASUREMENT UNCERTAINTY ESTIMATION. CASE STUDY FOR VICKERS HARDNESS TEST</td>
<td></td>
</tr>
<tr>
<td>Elena Luminito DÎN-STIRBU, Florina CONSTANTIN, Jean-Pierre MILLET, Mărioara ABRUDEANU</td>
<td>63</td>
</tr>
<tr>
<td>CORROSION BEHAVIOR OF TWO BASED ALUMINUM MATERIALS FOR AUTOMOTIVE INDUSTRY WHEN THEY ARE USED WITH AN INDUSTRIAL COOLING LIQUID</td>
<td></td>
</tr>
<tr>
<td>Tudor-Brian LANDKAMMER, Laura Teodora SOLONARIU, Nicolao CIMPOESCU, Constantin BACIU</td>
<td>69</td>
</tr>
<tr>
<td>DETERMINATION BY ANALYZING THE CHEMICAL COMPOSITION OF THE DEPOSITED SUBSTRATES SIZES AND OF DIFFUSION ZONES THROUGH THERMAL SPRAYING IN ELECTRICAL ARC</td>
<td></td>
</tr>
<tr>
<td>Tudor-Brian LANDKAMMER, Laura Teodora SOLONARIU, Ionuan CIMPOESU, Constantin BACIU</td>
<td>75</td>
</tr>
<tr>
<td>INVESTIGATIONS BY SEM TECHNIQUE ON THE DEGREE OF POROSITY OF THE THERMAL SPRAY COATINGS DEPOSITED BY ELECTRICAL ARC</td>
<td></td>
</tr>
<tr>
<td>Georgiana MELCIU, Cosmin CODREAN, Florin Marian CORREA, Dacian Ioan TOEA</td>
<td>80</td>
</tr>
<tr>
<td>THE ANALYSIS OF WHISKERS GROWTH FROM STRUCTURAL AND STATISTICAL POINT OF VIEW</td>
<td></td>
</tr>
<tr>
<td>Gheorghe Ion GHEORGHE, Liliana-Laura BADITA</td>
<td>85</td>
</tr>
<tr>
<td>TOPOGRAPHIC CHARACTERIZATION OF NANOSTRUCTURED MATERIALS SURFACES USING ADVANCED MICROTECHNOLOGY</td>
<td></td>
</tr>
<tr>
<td>Rodica-Mariana ION, Ioana Raucu BUNGHEZ, Simona Florentina POP, Radu-Claudiu FIERASCU, Mihaela-Lucia ION, Mirela LEAHU</td>
<td>89</td>
</tr>
<tr>
<td>CHEMICAL WEATHERING OF CHALK STONE MATERIALS FROM BASARABI CHURCHES</td>
<td></td>
</tr>
<tr>
<td>Ioana-Raluca BUNGHEZ, Simona Florentina POP, Rodica-Mariana ION</td>
<td>94</td>
</tr>
<tr>
<td>DNA AS BIOTEMPLATE FOR PHOTOCHEMICALY-INDUCED GENERATION OF AU AND/OR AG NANOPIERCLES</td>
<td></td>
</tr>
<tr>
<td>OLAH Arthur, Mirea Horia TIEREAN, Veron Baraş</td>
<td>97</td>
</tr>
<tr>
<td>RESEARCH ABOUT THE PROPERTIES OF METAL COATING LAYERS</td>
<td></td>
</tr>
<tr>
<td>Dan Dragoş VASILESCU, Petrică CORĂBIERU, Aniţoara CORĂBIERU</td>
<td>100</td>
</tr>
<tr>
<td>SURFACE HARDENING BY TREATMENT WITH BORON-CARBON-VANADIUM</td>
<td></td>
</tr>
</tbody>
</table>

ISSN 1582 - 2214
METALURGIA INTERNATIONAL Special Issue vol. XIX no. 2 (2013) 33

MICROSTRUCTURAL, THERMICAL AND MECHANICAL CHARACTERISATION OF ZK60 ALLOY PROCESSED THROUGH ECAP

Florina-Diana DUMITRU1, Brândusa GHIBAN1, José María CARRERA-MARRERO2,3, Oscar-Fabian HIGUERA-COBOS2,4, Gheorghe GURĂU5, Nicolae GHIBAN1

1Politehnica University of Bucharest, 2University Politecnica de Catalunya, 3Fundació CTM Centre Tecnològic, 4Universidad Tecnológica de Pereira, 5Dunarea de Jos University of Galati

Key words: magnesium alloys, ECAP, mechanical properties

Abstract: In recent years, a growing volume of research has been conducted on studying the effects of equal channel angular pressing processing. Equal channel angular pressing (ECAP) is a severe plastic deformation (SPD) technique, which improves the mechanical properties of the processed materials because of the ultrafine grained structures resulted. This paper investigates the microstructural evolution after ECAP, the recrystallization temperature for 3 heating rates (10, 20 and 40°C/min) and the room temperature tensile properties of the as-received and ECAP processed ZK60 alloy.

1. INTRODUCERE

Since 1989 when Herbert Gleiter presented the concept of nanocrystalline materials (ultrafine grained materials with a grain size under 100 nm), these materials have known a rapid development because of its technological and scientific importance [1]. Ultrafine grained materials can be obtained through a variety of methods, but in recent years, severe plastic deformation (SPD) techniques have been the focus of intense research [2], because they can produce metallic materials which have grain sizes ranging from 50 to 500 nm [3] and thus enhancing material properties such as improved tensile strength, hardness, toughness, fatigue life, and the optical and electrical related properties [4]. The interest in grain-size reduction is driven by the possibility to produce ultrahigh strength metals and high strain rate superplasticity.

Equal channel angular pressing (ECAP) is widely known as one of the techniques to impose severe plastic deformation on bulk materials to produce ultra-fine grained materials, without causing a significant change in the dimensions of the processed parts [5].

In the ECAP process, a metal billet is pressed through a die having two channels of equal cross-section intersecting at an internal angle, Φ, which is usually between 60° and 160° [6]. Another important feature of the die is the presence of an additional angle, Ψ, that defines the arc of curvature at the outer point of intersection of the two channels [7].

The billet undergoes simple shear deformation when it is pressed through the intersecting corner. With enough accumulation of plastic strain a new structure of submicrometer or even nanometer grain size replaces the former grain size [8].

Due to their high specific properties (superior specific stiffness and strength over many structural materials [9]), magnesium alloys are being viewed as the future materials for automobile, aerospace and electronics industries. However, their application potential is impeded by poor formability and limited ductility at room temperature, which is attributed to the hexagonal crystal structure and consequent non-availability of adequate numbers of independent slip systems [10].

The aim of this paper is to investigate the microstructural, thermal stability and mechanical behavior of a ZK60 magnesium alloy processed by ECAP.

2. EXPERIMENTAL PROCEDURE

The material used in this study is a ZK60 magnesium alloy, with the chemical composition (wt.%) listed in Table 1.

<table>
<thead>
<tr>
<th>Element</th>
<th>Zn</th>
<th>Zr</th>
<th>Al</th>
<th>Mn</th>
<th>Other elem.</th>
<th>Mg</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5.49</td>
<td>0.55</td>
<td>0.005</td>
<td>0.025</td>
<td>max 0.3</td>
<td>Bal.</td>
</tr>
</tbody>
</table>

The as-received magnesium alloy was machined into square specimens with dimensions of 10 mm x 10 mm x 40 mm. The ECAP process was performed using a tool steel die with the internal angle between the two channels of 90° [11], having a strain of ε = 1.07 per pass. Back-pressure was used to ensure a uniform strain-stress distribution and to avoid failure during extrusion as reported in low ductile materials [12].

The samples were first lubricated with graphite before being inserted in the die. The ECAP was carried out following a different route from the major variants (Route A, Route B_a, Route B_b and Route C) which involved 180° back-and-forward rotation of the billet, along the transverse axis, by rotating the die with 90° between each pass. According to Valiev et al. [13] this type of processing is however equivalent to route A.

Prior to each pass, the billets were preheated to the respective temperature of ECAP in the die. The exact temperature of the ECAP was monitored through a thermocouple plugged into a multimeter placed exactly near the plane of intersection of the two channels. The extrusion speed of ECAP tests was 17.30 mm/s. The ECAP process was conducted at 250 ± 5 °C for 4 passes.

Samples with and without ECAP, cut in the extrusion direction, were prepared according to polishing and etching standards in order to reveal the microstructure of the material, which was observed with an Olympus BX51 optical microscope.

The ECAP specimens were cut into the middle and three samples were collected from the center of each billet. The transformation temperatures of ZK60 magnesium alloy after the ECAP process were determined by differential scanning calorimetry (DSC) using a 2920 MDSC calorimeter. Three
heating rates (10, 20 and 40°C/min) were applied in the DSC experiments under a nitrogen atmosphere and in a temperature range from 100 to 450°C.

Each specimen was placed in an aluminum crucible (6.5 mm inner diameter and 1 mm height) and introduced into the DSC furnace, while an empty Al crucible was used as a reference. The information obtained was processed using TA Instruments software.

The tensile properties were evaluated at room temperature in the longitudinal direction, but due to the fact that the samples in the sixth and seventh pass cracked, the tensile tests were performed only on samples taken during the first five passes and the sample without ECAP processing. The mini-tensile specimens with standard dimensions of the calibrated section of 4x1x4 mm were tested to failure using a DEBEN microtensile machine with an initial head speed of 3.3x10^-7 mm/s.

The microstructural observations were performed using a JEOL JSM 6400 scanning electron microscope.

3. RESULTS AND DISCUSSION

3.1 Microstructure

The results of the microstructural evolution through ECAP process are presented in Figure 1. It can be seen that the microstructure of ZK60 without ECAP is heterogeneous, with large grains surrounded by fine grains (Figure 1).

![Figure 1: Optical microstructure of the as-received ZK60](image1)

After the first pass a large grain refinement may be noticed, caused by dynamic recrystallization of the material during deformation and static recrystallization which may occur between passes (Figure 2a).

In the second and third pass (Figures 2b and 2c), along with a greater reduction in grain size, an elongation of large grains in the extrusion direction can be seen. It should be noted that after 4 passes of ECAP (Figure 2d), some coarse grains remain still visible, which indicates that after the ECAP process the microstructure is not fully refined. A similar structure ZK60 alloy was reported by He et al. [14] after 8 passes of ECAP at 240°C.

3.2 Calorimetric analysis

The DSC curves of ZK60 magnesium alloy with 1 to 4 passes of ECAP, obtained by continuous heating at three different heating rates (10, 20 and 40°C/min) are shown in Figure 3.

![Figure 3: DSC curves of the ZK60 alloy with 1 to 4 passes of ECAP at a heating rate of 40°C/min (a) and the curves for the three heating rates for ZK60 with 4 passes (b)](image2)

The recrystallization process can be observed as the first exothermic peak (peak 1) in Figure 3. It is also believed that the second endothermic peak (peak 2) corresponds to the eutectic temperature of the alloy, according to the Mg-Zn diagram [15] and to the investigations of Yu et al. [16].

It can be noticed a slight decrease of the peak temperatures as the number of ECAP passes increases, and that the value of the maximum peak temperature for the ECAP specimen increases at larger heating rates. Similar results have been obtained by Higa et al. [17] while investigating the thermal stability of ECAP processed copper.
3.3 Mechanical properties

Figure 4 shows the true stress - true strain curves for both the as-received and the ECAP processed alloy for the first 4 passes. For the ECAP processed samples, it can be noticed that the ductility varies in these samples, showing values ranging from 0.17 to 0.26. Also there is no simple relationship between the number of passes and ductility. The mechanical properties derived from the tensile tests (yield stress, ultimate tensile strength and elongation-to-failure) are presented in Table 2.

![Figure 4: True stress – true strain curves for the ZK60 magnesium alloy with and without ECAP](image)

Table 2. Mechanical properties of ZK60

<table>
<thead>
<tr>
<th>Number of ECAP passes</th>
<th>Yield stress, MPa</th>
<th>Ultimate tensile strength, MPa</th>
<th>Elongation -to-failure, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>216.24</td>
<td>285.11</td>
<td>14.86</td>
</tr>
<tr>
<td>1</td>
<td>207.03</td>
<td>310.51</td>
<td>23.21</td>
</tr>
<tr>
<td>2</td>
<td>158.26</td>
<td>258.99</td>
<td>17.31</td>
</tr>
<tr>
<td>3</td>
<td>144.18</td>
<td>235.64</td>
<td>25.91</td>
</tr>
<tr>
<td>4</td>
<td>131.66</td>
<td>244.60</td>
<td>21.60</td>
</tr>
</tbody>
</table>

It can be noticed that, both the yield stress as the ultimate tensile strength decrease with the number of ECAP passes. After the first pass of ECAP, the material presented an increase of ultimate tensile stress, which can be explained by the large number of dislocations introduced in the first stage of deformation. The reduction of the resistance with the number of passes may be caused by dynamic recrystallization mechanisms which occur during the process and leads to the elimination of dislocations, but also to the possible static recrystallization between passes. Similar behavior was reported by Lin et al. [18], which presented a slight reduction in mechanical properties with the number of passes of a magnesium alloy ZK60 after 4 passes under cyclic extrusion compression (CEC). Furthermore, the ductility of ZK60 processed by ECAP showed slightly increased values, despite of the appearance of the recrystallization phenomena. After the third pass of ECAP elongation remains almost constant.

The fracture surfaces of the ZK60 tensile samples in as-received state and after being deformed by ECAP can be seen in Figure 5. In the sample without ECAP (Figure 5a), one can see that the fracture surface typical contains cleavage facets, which is a common fact when deformation is governed by twinning, as it occurs in magnesium alloys at low temperatures [19].

After the first ECAP pass (Fig. 5b), the fracture surface consists of some cleavage planes and a large population of cavities of different sizes and shapes, which indicate the nucleation, growth and coalescence of cavities during fracture [20]. The fracture surface of the third pass sample does not show cleavage planes (Figure 5d), similarly to the specimens after 4 ECAP passes (Figure 5e). It can be observed that the strain at fracture was not much higher overall than that of the sample without deformation.

![Figure 5: Fracture surfaces of ZK60, in as-received state (a), and after 1 (b), 2 (c), 3 (d) and 4 (e) ECAP passes](image)

4. CONCLUSIONS

The microstructure of the magnesium alloy ZK60 processed by ECAP shows that grains are refined with the increasing number of ECAP passes at 250°C.

Using DSC analysis the recrystallization temperature of the ZK60 magnesium alloy has been studied. It was found that the peak temperature has a tendency to slightly decrease with the increasing number of ECAP passes.

The mechanical properties after the micro-tensile tests show that the values of elongation-to-failure improve in comparison with those of the raw material, because a finer grain microstructure should lead to a greater ductility. After the first ECAP pass, both the ultimate tensile strength and elongation present higher values than the as-received ZK60 magnesium alloy.

The fracture surfaces of the tensile samples showed cleavage facets, in the sample without ECAP, and cavities with different sizes and shapes, in the ECAP processed samples.
5. ACKNOWLEDGEMENTS

The work has been funded by the Sectoral Operational Programme Human Resources Development 2007-2013 of the Romanian Ministry of Labour, Family and Social Protection through the Financial Agreement POSDRU/88/1.5/S/60203. Authors thank M. Molmeneu and the Biomaterials research group of UPC for their support in the DSC analysis.

6. REFERENCES

Correspondence to:
Florina-Diana DUMITRU
dianadumitru1986@yahoo.com, Politehnica University of Bucharest