# EJECTING PROPERTIES OF A BUCKET ELEVATOR 

O. A. AVERKOVA ${ }^{1}$, I.N. LOGACHEV ${ }^{1}$, K.I. LOGACHEV ${ }^{1}$ AND O.N. ZAYTSEV ${ }^{\mathbf{1}}$<br>${ }^{1}$ Belgorod State Technological University named after V.G. Shukhov<br>(BSTU named after V.G. Shukhov), Kostukova str., 46, Belgorod, Russia, 308012<br>e-mail: kilogachev@mail.ru, web page: http://www.bstu.ru<br>${ }^{2}$ V.I. Vernadsky Crimean Federal University (Vernadsky CFU), 4 Vernadskogo Prospekt, Simferopol, Russia, 295007<br>e-mail: zon071941@mail.ru, web page: http://www.eng.cfuv.ru

Key words: Granular Materials, Bulk Material Transfer, Air Suction, Local Exhaust Ventilation.


#### Abstract

Air inside the enclosure of a belt elevator may be brought into motion both by moving bucket belt and by spillage flows during loading and unloading of buckets. Initial findings from studies performed to evaluate air motion in ducts with mobile partitions have been published in our earlier monographs [1-3]. Here we'll consider the process of air ejection in bucket elevators from the standpoint of classical laws of change in air mass and momentum. Direction of airflow inside enclosures of the carrying and return runs of a bucket elevator is determined by the drag of buckets and moving conveyor belt as well as ejection head created by a stream of spilled particles when buckets are unloaded. As a result of these forces acting together inside an enclosure, differential pressure arises. This differential pressure is equal to the sum total of ejection heads created by conveyor belt with buckets $E_{k}$ and flow rate of spilled material $E_{p}$ minus aerodynamic drag of enclosure walls.

The ejection head $E_{k}$ created by a bucket-carrying conveyor belt is determined by aerodynamic coefficient $c_{e k}$ (proportional to the number of buckets, their head resistances and squared mid-sectional dimensions) together with an absolute value and the direction of bucket velocity relative to the velocity of airflow inside the enclosure. Ejection head of spilled particles $E_{p}$ depends on the drag coefficient of particles, their size and flow rate, as well as the enclosure length, enclosure cross-section and relative flow velocity of particles. When both the carrying and return runs of the conveyor belt are located in a common enclosure, the velocity of forward airflow varies over its length as a result of cross-flows of air through gaps between the conveyor runs and enclosure walls. Cross-flows are caused by a differential pressure between the carrying and return run enclosures and is dependent on the drag of the gap. Cross-flow direction depends on the ratio between $p_{v}$ and $p_{u}$. Given identical size of elevator enclosures, change in absolute values of longitudinal velocities is identical and depends on absolute values of cross-flow velocities and geometrical dimensions of the gap, as well as enclosure cross-section. The momentum of longitudinal


airflow in this case is determined by variable magnitudes of aerodynamic forces of buckets due to changes in their relative motion velocities.
The flow rate of air in enclosures may be determined by numerically integrating three dimensionless combined differential equations.

## 1 INTRODUCTION

Let's now consider ejection properties of a bucket-belt elevator. Air inside the enclosure of a belt elevator may be brought into motion both by moving bucket belt and by spillage flows during loading and unloading of buckets. Initial findings from studies performed to evaluate air motion in ducts with mobile partitions have been published in our earlier monographs [13]. Here we'll consider the process of air ejection in bucket elevators from the standpoint of classical laws of change in air mass and momentum.

## 2 THE RESULTS OF THE STUDY

Let's begin with considering airflow in a duct of elevator return line of length $d x$ (Fig. 1). For this area we can a momentum conservation equation can be written in projections onto axis $0 x$ directed vertically downwards. We'll formulate a one-dimensional problem assuming that the velocity of ejected air is directed downwards and is equal to the crosssectional average:

$$
\begin{equation*}
u=\frac{Q}{S} ; \quad S=a b, \tag{1}
\end{equation*}
$$

where $Q$ is the flow rate of air ejected inside the duct $\left(\mathrm{m}^{3} / \mathrm{s}\right) ; a, b$ are cross-sectional dimensions of the duct (m)

The tangential frictional stress on the surface of a moving belt is equal to

$$
\begin{equation*}
\tau_{l}=c_{l} \frac{\left(v_{e}-u\right)\left|v_{e}-u\right|}{2} \rho, \tag{2}
\end{equation*}
$$

where $c_{l}$ is a dimensionless resistance coefficient, $v_{e}$ is the velocity of elevator belt $(\mathrm{m} / \mathrm{s})$.
Similarly, tangential frictional stress on the surface of enclosure walls is

$$
\begin{equation*}
\tau_{w}=c_{w} \frac{u|u|}{2} \rho, \tag{3}
\end{equation*}
$$

where $c_{w}$ is a dimensionless resistance coefficient of enclosure walls.
It is known that coefficients $c_{l}, c_{w}$ are related to friction coefficients in the DarcyWeisbach equation for determining pressure losses in straight pipe sections

$$
c_{l}=\frac{\lambda_{l}}{4} ; c_{w}=\frac{\lambda_{w}}{4},
$$

where $\lambda_{l}$ is the hydraulic friction coefficient of the belt; $\lambda_{w}$ is the hydraulic friction coefficient of enclosure walls.

The aerodynamic force of a bucket, expressed similarly to the aerodynamic force of particles, is

$$
\begin{equation*}
R_{k}=c_{k} F_{k} \frac{\left(v_{e}-u\right)\left|v_{e}-u\right|}{2} \rho, \tag{4}
\end{equation*}
$$

where $F_{k}$ is the mid-section area of a bucket $\left(F_{k}=A_{k} B_{k}\right)\left(\mathrm{m}^{2}\right), c_{k}$ is the drag coefficient of an empty bucket.


Figure 1: Diagram of forces acting on an element of elevator return run enclosure with a length $d x$

In this case the equation for change in momentum would appear as:

$$
\begin{gather*}
\rho u S(-u)+\rho(u+d u) S(u+d u)= \\
=p S-(p+d p) S-\tau_{w}(b+2 a) d x+\tau_{l} B_{l} d x+R_{k} \frac{d x}{l_{k}}+R_{z} \frac{\beta d x S}{V_{p}}, \tag{5}
\end{gather*}
$$

where $l_{k}$ is the spacing of buckets on the belt (m); $\beta$ is volumetric concentration of grain spillage, equal to

$$
\begin{equation*}
\beta=\frac{G_{p}}{\rho_{z} S v_{z}} ; \tag{6}
\end{equation*}
$$

$G_{p}$ is the mass flow rate of grain spillage during bucket unloading ( $\mathrm{kg} / \mathrm{s}$ ) $\rho_{z}$ is grain density $\left(\mathrm{kg} / \mathrm{m}^{3}\right)$
$v_{z}$ is the fall velocity of grain ( $\mathrm{m} / \mathrm{s}$ )
$V_{p}$ is the volume of an individual particle $\left(\mathrm{m}^{3}\right)$
$R_{z}$ is the aerodynamic force of a single particle of spilled material,

$$
\begin{equation*}
R_{z}=\psi_{z} F_{z} \frac{\left|v_{z}-u\right|\left(v_{z}-u\right)}{2} \rho ; \tag{7}
\end{equation*}
$$

$F_{z}$ is the mid-section area of a particle $\left(\mathrm{m}^{2}\right)$

$$
\begin{equation*}
F_{z}=\frac{\pi d_{e}^{2}}{4} ; \tag{8}
\end{equation*}
$$

$d_{e}$ is equivalent grain diameter (m).
Considering that, in this case,

$$
\begin{equation*}
u=\text { const }, \tag{9}
\end{equation*}
$$

after a trivial transformation of equation (5), ignoring infinitesimal second-order terms, we'll obtain the following relation for determining differential pressure inside the enclosure of the return run of the elevator:

$$
\begin{equation*}
p(0)-p(l)+E_{k}+E_{p}=p_{w}, \tag{10}
\end{equation*}
$$

where $p(0), p(l)$ are static pressures at the inlet/outlet of the enclosure ( Pa )
$p_{w}$ is aerodynamic drag of enclosure walls ( Pa )

$$
\begin{equation*}
p_{w}=\int_{0}^{1} \lambda_{w} \frac{2 a+b}{4 S} \frac{u^{2}}{2} \rho d x, \tag{11}
\end{equation*}
$$

equal at $u=$ const and $S=$ const

$$
\begin{gather*}
p_{w}=\lambda_{w} \frac{l}{D_{w}} \frac{u^{2}}{2} \rho,  \tag{12}\\
D_{w}=\frac{4 S}{b+2 a}, \tag{13}
\end{gather*}
$$

$l$ is the total length of elevator enclosure (distance between the axes of driving and return drums along the belt of the bucket elevator) (m); $E_{k}$ is ejection head created by a conveyor belt with buckets:

$$
\begin{equation*}
E_{k}=\frac{1}{S} \int_{0}^{l}\left(c_{k} \frac{F_{k}}{l_{k}}+\frac{\lambda_{l}}{4} B_{l}\right) \frac{\left|v_{e}-u\right|\left(v_{e}-u\right)}{2} \rho d x, \tag{14}
\end{equation*}
$$

which, at constant relative velocity, is equal to

$$
\begin{equation*}
E_{k}=c_{e k} \frac{\left|v_{e}-u\right|\left(v_{e}-u\right)}{2} \rho ; \tag{15}
\end{equation*}
$$

$c_{e k}$ is aerodynamic coefficient of the return run of elevator belt (with account of empty buckets and conveyor belt carrying them):

$$
\begin{equation*}
c_{e k}=\frac{l}{S}\left(c_{k} \frac{F_{k}}{l_{k}}+\frac{\lambda_{l}}{4} B_{l}\right) \tag{16}
\end{equation*}
$$

$E_{p}$ is the ejection head created by a flow of spilled grain during unloading of elevator buckets:

$$
\begin{equation*}
E_{p}=\frac{1}{S} \int_{0}^{l} \psi_{z} K_{m} \varepsilon G_{p} \frac{\left|v_{z}-u\right|\left(v_{z}-u\right)}{2} \frac{d x}{v_{z}} \tag{17}
\end{equation*}
$$

which, for a constantly accelerated vertical flow of particles at $\psi_{z}=$ const , equals:

$$
\begin{equation*}
E_{p}=\frac{\psi_{z} K_{m} \varepsilon}{2} \frac{G_{p}}{S g} \frac{\left|v_{k}-u\right|^{3}-\left|v_{n}-u\right|^{3}}{3} \tag{18}
\end{equation*}
$$

or, for a uniformly accelerated flow of particles at $v_{z}=v_{e}=$ const ; $u=$ const ,

$$
\begin{equation*}
E_{p}=\frac{\psi_{z} K_{m} \varepsilon}{2} \frac{G_{p}}{S} \frac{l}{v_{e}}\left[\left|v_{e}-u\right|\left(v_{e}-u\right)\right] \tag{19}
\end{equation*}
$$

where $K_{m}$ is the ratio of mid-sectional area of a particle to its volume $(1 / \mathrm{m}) ; \varepsilon$ is the ratio of air density to particle density.

Let's now consider a more complex case with carrying and return runs of a bucket elevator both located in a common enclosure (Fig. 2). In this case air may flow laterally from one part of the enclosure (for example, the one with grain-laden buckets running) to another (with empty buckets running). The velocity of air cross-flow in the gap between the belt and enclosure walls will be designated as $\omega$. Parameters of airflow in the right-hand side of the enclosure (where empty buckets run and spilled particles fall) will be denoted with a subscript $u$ (from the designation of air velocity in the return run) while those in the left-hand side will be denoted respectively with $v$ (from the designation of air velocity in the carrying run of the conveyor).

The cross-flow velocity is determined by differential pressure and aerodynamic drag of gaps:

$$
\begin{equation*}
\Delta p=p_{v}-p_{u}=\zeta_{z} \frac{w|w|}{2} \rho, \tag{20}
\end{equation*}
$$

where $p_{v}, p_{u}$ are the respective excess static pressures in the left-hand and right-hand sides of the enclosure ( Pa ) ; $\zeta_{z}$ is the total local resistance coefficient (LRC) for two gaps between chute walls and the end sides part of carrying and return runs of the conveyor.

The sign of the absolute value in the right-hand side was introduced to ensure universality of the relation which in this case would be just as good for the case of a reverse flow (with $p_{u}>p_{v}$ ). The velocity $w$ in such "vector" case will be negative, that is, velocity vector will be directed oppositely (from right to left). This vector is represented with a dotted line on Fig.2.

Due to the presence of lateral cross-flow of air, velocities $u$ and $v$ will not be constant but rather would change along the height of the elevator enclosure.

Now we'll write an airflow conservation equation while still assuming velocities $u$ and $v$ to be averaged throughout cross-section and the positive direction of these velocities to coincide with bucket traveling direction:

$$
\begin{gather*}
u a b=(u+d u) a b-w\left(b-B_{l}\right) d x  \tag{21}\\
v a b=(v+d v) a b-w\left(b-B_{l}\right) d x . \tag{22}
\end{gather*}
$$



Figure 2: Longitudinal airflow diagram for return and carrying runs both located in a common elevator enclosure

It can be seen from here that change in the absolute value of dilatational velocities is equal:

$$
\begin{equation*}
\frac{d u}{d x}=w \frac{b-B}{a b}, \quad \frac{d v}{d x}=w \frac{b-B}{a b} . \tag{23}
\end{equation*}
$$

And the difference of these velocities does not vary along the enclosure

$$
\begin{equation*}
u-v=k=\text { const } . \tag{24}
\end{equation*}
$$

Let's now write a motion preservation equation for the chosen element of enclosure of length $d x$. For the right-hand (downward) airflow the momentum conservation equation in the projection onto axis $0 x$ does not differ in any way from equation (5). Trivial transformations would yield the following differential equation for the dynamics of the air current at hand:

$$
\begin{equation*}
2 \rho u \frac{d u}{d x}=-\frac{d p_{u}}{d x}-\frac{\lambda_{w}}{D_{w}} \frac{u^{2}}{2} \rho+\zeta_{u} \frac{\left|v_{e}-u\right|\left(v_{e}-u\right)}{2} \rho+A_{n} \frac{\left|v_{e}-u\right|\left(v_{e}-u\right)}{2 v} \rho, \tag{25}
\end{equation*}
$$

with the following notational simplification:

$$
\begin{gather*}
\zeta_{u}=\frac{\lambda_{l}}{4} \frac{B_{l}}{a b}+c_{k} \frac{A_{k} B_{k}}{a b l_{k}},  \tag{26}\\
A_{n}=\frac{1.5}{d_{e}} \frac{G_{p}}{\rho_{z}} \frac{\psi_{e}}{a b} \tag{27}
\end{gather*}
$$

For the left-hand (upward) airflow we'll first write the momentum preservation equation in differentials:

$$
\begin{equation*}
-\rho v v a b-\rho(v+d v) a b(-v-d v)=p_{v} a b-\left(p_{v}+d p_{v}\right) a b+\tau_{w}(b+2 a) d x-\tau_{l} B_{l} d x-R_{k} \frac{d x}{l_{k}}, \tag{28}
\end{equation*}
$$

where

$$
\begin{gather*}
\tau_{w}=\frac{\lambda_{w}}{4} \frac{v|v|}{2} \rho ;  \tag{29}\\
\tau_{l}=\frac{\lambda_{l}}{4} \frac{\left(v_{e}-v\right)\left|v_{e}-v\right|}{2} \rho ;  \tag{30}\\
R_{k}=c_{k z} A_{k} B_{k} \frac{\left(v_{e}-v\right)\left|v_{e}-v\right|}{2} \rho ; \tag{31}
\end{gather*}
$$

$c_{k z}$ is a dimensionless coefficient of aerodynamic drag of a grain-laden bucket.
After trivial transformations equation (28) would appear as follows:

$$
\begin{gather*}
2 \rho v \frac{d v}{d x}=-\frac{d p_{v}}{d x}+\frac{\lambda_{w}}{D_{w}} \frac{v^{2}}{2} \rho-\zeta_{v} \frac{\left|v_{e}-v\right|\left(v_{e}-v\right)}{2} \rho,  \tag{32}\\
\zeta_{v}=\frac{1}{a b}\left(\frac{\lambda_{l} B_{l}}{4}+c_{k z} \frac{A_{k} B_{k}}{l_{k}}\right) . \tag{33}
\end{gather*}
$$

Thus, longitudinal airflow in case of co-location of the carrying and return runs in the same enclosure can be described with combined equations:

$$
\begin{equation*}
2 \rho u \frac{d u}{d x}=-\frac{d p_{u}}{d x}+f_{u}, \tag{34}
\end{equation*}
$$

$$
\begin{align*}
& 2 \rho v \frac{d v}{d x}=-\frac{d p_{v}}{d x}+f_{v}  \tag{35}\\
& \frac{d u}{d x}=w \frac{b-B_{l}}{a b}  \tag{36}\\
& v=u-k  \tag{37}\\
& \Delta p=\zeta_{z} \frac{w|w|}{2} \rho ; \quad \Delta p=p_{v}-p_{u} \tag{38}
\end{align*}
$$

with the following assignments for brevity:

$$
\begin{gather*}
f_{u}=-\frac{\lambda_{w}}{D_{w}} \frac{u|u|}{2} \rho+\zeta_{u} \frac{\left|v_{e}-u\right|\left(v_{e}-u\right)}{2} \rho+A_{n} \frac{\left|v_{z}-u\right|\left(v_{z}-u\right)}{2 v_{z}} \rho,  \tag{39}\\
f_{v}=\frac{\lambda_{w}}{D_{w}} \frac{v|v|}{2} \rho-\zeta_{v} \frac{\left|v_{e}-v\right|\left(v_{e}-v\right)}{2} \rho . \tag{40}
\end{gather*}
$$

Newly-introduced functions $f_{u}$ and $f_{v}$ can be written in a more convenient (symmetric) form. First of all let's assume that spillage velocity is equal to the velocity of the return run (considering that gap between buckets and enclosure walls is rather narrow, particles would first impinge on the bottom of a bucket and then accelerate gravitationally and "catch up" with uniformly moving buckets):

$$
\begin{equation*}
v_{z} \approx v_{e} \tag{41}
\end{equation*}
$$

Then,

$$
\begin{align*}
& f_{u}=-\xi_{u} \frac{\mathrm{~T}}{l} \frac{\rho u^{2}}{2}+\gamma_{u} \frac{M_{u}}{l} \frac{\rho\left(v_{e}-u\right)^{2}}{2}  \tag{42}\\
& f_{v}=\xi_{v} \frac{\mathrm{~T}}{l} \frac{\rho v^{2}}{2}-\gamma_{v} \frac{M_{v}}{l} \frac{\rho\left(v_{e}-v\right)^{2}}{2} \tag{43}
\end{align*}
$$

where $\mathrm{T}, M_{u}$ and $M_{v}$ are dimensionless parameters:

$$
\begin{gather*}
\mathrm{T}=\lambda_{w} \frac{l}{D_{w}}  \tag{44}\\
M_{u}=\lambda_{l} \frac{l}{D_{l}}+c_{k} \frac{l}{l_{k}} \frac{A_{k} B_{k}}{S}+1.5 \psi \frac{l}{d} \beta_{e}  \tag{45}\\
M_{v}=\lambda_{l} \frac{l}{D_{l}}+c_{k z} \frac{l}{l_{k}} \frac{A_{k} B_{k}}{S}  \tag{46}\\
D_{w}=\frac{4 S}{b+2 a} \\
D_{l}=\frac{4 S}{B_{l}} \tag{47}
\end{gather*}
$$

$$
\begin{gather*}
\beta_{e}=\frac{G_{p}}{\rho_{z} v_{e} S} ;  \tag{48}\\
\xi_{u}=\operatorname{signum}(u), \xi_{v}=\operatorname{signum}(v)=\operatorname{signum}(u-k) ;  \tag{49}\\
\gamma_{u}=\operatorname{signum}\left(v_{e}-u\right) ; \quad \gamma_{v}=\operatorname{signum}\left(v_{e}-v\right)=\operatorname{signum}\left(v_{e}+k-u\right) . \tag{50}
\end{gather*}
$$

Combined equations ( $34 \ldots 38$ ) can be simplified significantly. Cross-flow velocity of a lateral flow can be derived from (38):

$$
\begin{equation*}
w=\delta \sqrt{\frac{2|\Delta p|}{\zeta_{z} \rho}}, \quad \Delta p=p_{v}-p_{u} \tag{51}
\end{equation*}
$$

where

$$
\begin{equation*}
\delta=\operatorname{signum}(\Delta p) . \tag{52}
\end{equation*}
$$

Substitution of (51) into (36) yields

$$
\begin{equation*}
\frac{d u}{d x}=\delta \frac{L}{l} \sqrt{\frac{2|\Delta p|}{\rho}}, \tag{53}
\end{equation*}
$$

where

$$
\begin{equation*}
L=\frac{l(b-B)}{S \sqrt{\zeta_{z}}} . \tag{54}
\end{equation*}
$$

By subtracting relation (35) from the equation (34) and considering $\frac{d v}{d x}=\frac{d u}{d x}$ in view of (37) we'll get:

$$
\begin{equation*}
2 \rho k \frac{d u}{d x}=\frac{d \Delta p}{d x}-\xi_{u} \frac{T}{l} \frac{u^{2}}{2} \rho+\gamma_{u} \frac{M_{u}}{l} \frac{\left(v_{e}-u\right)^{2}}{2} \rho-\xi_{v} \frac{T}{l} \frac{v^{2}}{2} \rho+\gamma_{v} \frac{M_{v}\left(v_{e}-v\right)^{2}}{l} \rho \tag{55}
\end{equation*}
$$

or, in view of (53),

$$
\begin{equation*}
-\frac{d \Delta p}{d x}=-2 \delta k \rho \frac{L}{l} \sqrt{\frac{2|\Delta p|}{\rho}}-\xi_{x} \frac{T}{l} \frac{u^{2}}{2} \rho+\gamma_{u} \frac{M_{u}}{l} \frac{\left(v_{e}-u\right)^{2}}{2} \rho-\xi_{v} \frac{T}{l} \frac{v^{2}}{2} \rho+\gamma_{v} \frac{M_{v}}{l} \frac{\left(v_{e}-v\right)^{2}}{2} \rho . \tag{56}
\end{equation*}
$$

Equation (56) can be supplemented with (34) in view of (42) and (53):

$$
\begin{equation*}
\frac{d p_{u}}{d x}=-2 \rho u \delta \frac{L}{l} \sqrt{\frac{2|\Delta p|}{\rho}}-\xi_{u} \frac{T}{l} \frac{u^{2}}{2} \rho+\gamma_{u} \frac{M_{u}}{l} \frac{\left(v_{e}-u\right)^{2}}{2} \rho . \tag{57}
\end{equation*}
$$

This, in view of (53), yields a familiar combined set (considering (37)) of three differential equations (57), (56) and (53) describing the process of averaged longitudinal airflows in an enclosure with co-location of the carrying and return runs of bucket elevator inside it.

Changes in the velocity $u$ can be found from (55) using (53) which can be written as follows:

$$
\begin{equation*}
\Delta p=A\left(\frac{d u}{d x}\right)^{2} \frac{\rho}{2}\left(\frac{l}{L}\right)^{2} \tag{58}
\end{equation*}
$$

where

$$
A=\operatorname{signum}\left(\frac{d u}{d x}\right)
$$

A substitution of (58) into (55) using the relation (37) results in a $2 n d$ order non-linear equation relative to the sought function $u$ :

$$
\begin{gather*}
-A \rho\left(\frac{l}{L}\right)^{2} \frac{d^{2} u}{d x^{2}} \frac{d u}{d x}+2 \rho k \frac{d u}{d x}=-\xi_{u} \frac{T}{l} \frac{u^{2}}{2} \rho+\gamma_{u} \frac{M_{u}}{l} \frac{\left(v_{e}-u\right)^{2}}{2} \rho- \\
-\xi_{v} \frac{T}{l} \frac{(u-k)^{2}}{2} \rho+\gamma_{v} \frac{M_{v}}{l} \frac{\left(v_{e}+k-u\right)^{2}}{2} \rho \tag{59}
\end{gather*}
$$

We'll use a dimensionless differential equation formula to facilitate our numerical integration of the resulting dimensional equations. It will enable us to reduce the number of constants. The following quantities will be considered as basic values:

- elevator belt velocity $v_{e}$
- elevator enclosure length or height $l$;
- dynamic pressure $\rho v_{e}^{2} / 2$.

Thus, let

$$
\begin{equation*}
p_{u}=p \frac{v_{e}^{2} \rho}{2} ; \quad \Delta p=R \frac{v_{e}^{2} \rho}{2} ; \quad u=u^{*} v_{e} ; \quad k=m^{*} v_{e} ; \quad x=z l, \tag{60}
\end{equation*}
$$

then, after we substitute accepted conventions into equations (34 (56) (53) and perform certain trivial transformations, the following system of dimensionless differential equations will result:

$$
\begin{gather*}
\frac{d p}{d z}=-\delta u^{*} 4 L \sqrt{|R|}-\xi_{u} T\left(u^{*}\right)^{2}+\gamma_{u} M_{u}\left(1-u^{*}\right)^{2} ;  \tag{61}\\
\frac{d R}{d z}=4 \delta m^{*} L \sqrt{|R|}+\xi_{u} T\left(u^{*}\right)^{2}-\gamma_{u} M_{u}\left(1-u^{*}\right)^{2}+\xi_{v} T\left(u^{*}-m^{*}\right)^{2}-\gamma_{v} M_{v}\left(1+m^{*}-u^{*}\right)^{2} ;  \tag{62}\\
\frac{d u^{*}}{d z}=\delta L \sqrt{|R|}, \tag{63}
\end{gather*}
$$

where

$$
\begin{gather*}
\delta=\operatorname{signum}(R), \quad \xi_{u}=\operatorname{signum}\left(u^{*}\right), \quad \xi_{v}=\operatorname{signum}\left(u^{*}-m^{*}\right),  \tag{64}\\
\gamma_{u}=\operatorname{signum}\left(1-u^{*}\right), \gamma_{v}=\operatorname{signum}\left(1+m^{*}-u^{*}\right) . \tag{65}
\end{gather*}
$$

Similarly, (59) will now appear as:

$$
\begin{gather*}
\left(-A_{3} \frac{2}{L^{2}} \frac{d^{2} u^{*}}{d z^{2}}+4 m^{*}\right) \frac{d u^{*}}{d z}=  \tag{66}\\
=-\xi_{u} T\left(u^{*}\right)^{2}+\gamma_{u} M_{u}\left(1-u^{*}\right)^{2}-\xi_{v} T\left(u^{*}-m^{*}\right)^{2}+\gamma_{v} M_{v}\left(1+m^{*}-u^{*}\right)^{2},
\end{gather*}
$$

where

$$
\begin{equation*}
A_{3}=\operatorname{signum}\left(\frac{d u^{*}}{d z}\right) \tag{67}
\end{equation*}
$$

## CONCLUSIONS

- Direction of airflow inside enclosures of the carrying and return runs of a bucket elevator is determined by the drag of buckets and moving conveyor belt as well as ejection head created by a stream of spilled particles when buckets are unloaded. As a result of these forces acting together inside an enclosure, differential pressure (10) arises. This differential pressure is equal to the sum total of ejection heads created by conveyor belt with buckets $E_{k}$ (14) and flow rate of spilled material $E_{p}$ (17) minus aerodynamic drag of enclosure walls (11).
- The ejection head $E_{k}$ created by a bucket-carrying conveyor belt is determined by aerodynamic coefficient $c_{e k}$ (16) (proportional to the number of buckets, their head resistances and squared mid-sectional dimensions) together with an absolute value and the direction of bucket velocity relative to the velocity of airflow inside the enclosure.
- Ejection head of spilled particles $E_{p}(19)$ depends on the drag coefficient of particles, their size and flow rate, as well as the enclosure length, enclosure cross-section and relative flow velocity of particles.
- When both the carrying and return runs of the conveyor belt are located in a common enclosure, the velocity of forward airflow varies over its length as a result of crossflows of air through gaps between the conveyor runs and enclosure walls. Crossflows are caused by a differential pressure between the carrying and return run enclosures and is dependent on the drag of the gap (20). Cross-flow direction depends on the ratio between $p_{v}$ and $p_{u}$.
- Given identical size of elevator enclosures, change in absolute values of longitudinal velocities is identical and depends on absolute values of cross-flow velocities and geometrical dimensions of the gap, as well as enclosure cross-section (23, 24). The momentum of longitudinal airflow in this case is determined by variable magnitudes of aerodynamic forces of buckets due to changes in their relative motion velocities.
- The flow rate of air in enclosures may be determined by numerically integrating three dimensionless combined differential equations (61) - (63).
- The work has been carried out with the financial support of the Grant Council of the President of the Russian Federation (project MD-95.2017.8) and RFBR (research project No. 16-08-00074a).


## REFERENCES

[1] O. D. Neikov and I.N. Logachev. Suction and air dedusting in production of powders. Moscow: Metallurgiya, 1981. 124 p .
[2] I. N. Logachev. Aspiration in loose-matter handling systems of agglomeration shops // Local exhaust ventilation. Moscow, Moscow House for Research and Engineering Information (MDNTI), 93-106 (1969).
[3] I.N. Logachev and K.I. Logachev. Industrial Air Quality And Ventilation: Controlling Dust Emissions. Boca Raton: CRC Press, 2014.

