
Please cite this article as: R. Touma, A. Queralt and T. Cortes, CAPre: Code-Analysis based Prefetching for Persistent Object Stores, Future Generation Computer Systems
(2019), https://doi.org/10.1016/j.future.2019.10.023.

Future Generation Computer Systems xxx (xxxx) xxx

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

CAPre: Code-Analysis based Prefetching for Persistent Object Stores
Rizkallah Touma a, Anna Queralt a, Toni Cortes a,b,∗

a Barcelona Supercomputing Center, Jordi Girona 29, 08034 Barcelona, Spain
b Universitat Politècnica de Catalunya, Jordi Girona 31, 08034 Barcelona, Spain

a r t i c l e i n f o

Article history:
Received 4 June 2019
Received in revised form20 September 2019
Accepted 27 October 2019
Available online xxxx

Keywords:
Persistent Object Stores
Static code analysis
Data prefetching
Parallel prefetching
Object-Oriented programming languages

a b s t r a c t

Data prefetching aims to improve access times to data storage systems by predicting data records that
are likely to be accessed by subsequent requests and retrieving them into a memory cache before
they are needed. In the case of Persistent Object Stores, previous approaches to prefetching have been
based on predictions made through analysis of the store’s schema, which generates rigid predictions,
or monitoring access patterns to the store while applications are executed, which introduces memory
and/or computation overhead.

In this paper, we present CAPre, a novel prefetching system for Persistent Object Stores based on
static code analysis of object-oriented applications. CAPre generates the predictions at compile-time
and does not introduce any overhead to the application execution. Moreover, CAPre is able to predict
large amounts of objects that will be accessed in the near future, thus enabling the object store to
perform parallel prefetching if the objects are distributed, in a much more aggressive way than in
schema-based prediction algorithms. We integrate CAPre into a distributed Persistent Object Store
and run a series of experiments that show that it can reduce the execution time of applications from
9% to over 50%, depending on the nature of the application and its persistent data model.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

Persistent Object Stores (POSs) are data storage systems that
record and retrieve persistent data in the form of complete ob-
jects [1]. They are especially used with Object-Oriented pro-
gramming languages to avoid the impedance mismatch that oc-
curs when developing OO applications on top of other types
of databases, such as Relational Database Management Systems
(RDBMSs). POSs make it easier to access persistent data without
worrying about database access and query details, which can
amount to 30% of the total code of an application [2,3].

Examples of POSs include object-oriented databases
(e.g. Caché [4] and Actian NoSQL [5]) and Object-Relational Map-
ping (ORM) systems (e.g. Hibernate [6], Apache OpenJPA [7] and
DataNucleus [8]). The rise of NoSQL databases has also led to the
development of mapping systems for non-relational databases,
such as Neo4J’s Object-Graph Mapping (OGM) [9]. Moreover, sev-
eral POSs that support data distribution have been developed to
accommodate the needs of parallel and distributed programming
(e.g. Mneme [10], Nexus [11], Thor [12] and dataClay [13,14]).

Like in any other storage system, accessing persistent media
is very slow and thus prefetching is needed to improve access

∗ Corresponding author at: Barcelona Supercomputing Center, Jordi Girona
29, 08034 Barcelona, Spain.

E-mail addresses: rizk.touma@bsc.es (R. Touma), anna.queralt@bsc.es
(A. Queralt), toni.cortes@bsc.es (T. Cortes).

times to stored data. Previous approaches to prefetching in POSs
can be split into three broad categories: 1. schema-based, 2.
data-based, and 3. code-based. An example of a schema-based
approach is the Referenced-Objects Predictor (ROP), which uses the
following heuristic: each time an object is accessed, all the objects
referenced from it are likely to be accessed as well [15]. This type
of approach gives rigid predictions that do not take into account
how persistent objects are accessed by different applications.
Nevertheless, ROP is widely used in commercial POSs because
it achieves a reasonable accuracy and does not involve a costly
prediction process (see Section 2).

On the other hand, data-based approaches predict which ob-
jects to prefetch by detecting data access patterns while mon-
itoring application execution. This type of approaches causes
overhead that can amount to roughly 10% of the application ex-
ecution time [16]. Furthermore, they may require large amounts
of memory to store the detected patterns. Finally, few approaches
have based the predictions on analyzing the source code of the
OO applications that access the POS, and these have been largely
theoretical without any in-depth analysis of the prediction accu-
racy or the performance improvement that they can achieve. For
more details, Section 2 includes a study of the related work in the
field of prefetching in POSs.

In this paper, we present an approach to predict access to
persistent objects through static code analysis of object-oriented
applications. The approach includes a complex inter-procedural

https://doi.org/10.1016/j.future.2019.10.023
0167-739X/© 2019 Elsevier B.V. All rights reserved.

©
 2

01
9

El
se

vi
er

. T
hi

s m
an

us
cr

ip
t v

er
sio

n
is

m
ad

e
av

ai
la

bl
e

un
de

r t
he

 C
C

-B
Y-

N
C

-N
D

 4
.0

 li
ce

ns
e

ht
tp

://
cr

ea
tiv

ec
om

m
on

s.o
rg

/li
ce

ns
es

/b
y-

nc
-n

d/
4.

0/

https://doi.org/10.1016/j.future.2019.10.023
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
mailto:rizk.touma@bsc.es
mailto:anna.queralt@bsc.es
mailto:toni.cortes@bsc.es
https://doi.org/10.1016/j.future.2019.10.023

Please cite this article as: R. Touma, A. Queralt and T. Cortes, CAPre: Code-Analysis based Prefetching for Persistent Object Stores, Future Generation Computer Systems
(2019), https://doi.org/10.1016/j.future.2019.10.023.

2 R. Touma, A. Queralt and T. Cortes / Future Generation Computer Systems xxx (xxxx) xxx

analysis and takes non-deterministic program behavior into con-
sideration. Then, we present CAPre: a prefetching system that
uses this prediction approach to prefetch objects from a POS.
CAPre performs the prediction at compile-time without adding
any overhead to application execution time. It then uses source
code generation and injection to modify the application’s original
code to activate automatic prefetching of the predicted objects
when the application is executed. CAPre also includes a further
optimization by automatically prefetching data in parallel when-
ever possible, in order to maximize the benefits obtained from
prefetching when using distributed POSs.

We integrate CAPre into dataClay [14], a distributed POS, and
run a series of experiments to measure the improvement in appli-
cation performance that it can achieve. The experimental results
indicate that using CAPre to prefetch objects from a POS can
reduce execution times of applications, with the most significant
gains observed in applications with complex data models and/or
many collections of persistent objects.

Contributions.
The main contributions of the present paper can be summa-

rized as follows:

• We propose the theoretical basis of an approach to predict
access to persistent objects based on static code analysis.
• We design and implement CAPre, a prefetching system for

Persistent Object Stores, using this prediction approach.
• We demonstrate how CAPre improves the performance of

applications by integrating it into an independent POS and
running experiments on a set of well-known object-oriented
and Big Data benchmarks.

The work reported here extends our previous work [17] in sev-
eral directions. First, after presenting the theoretical grounds, we
present the design and implementation of a complete prefetching
system, based on static code analysis, and integrate it into an
independent POS. Second, we evaluate the accuracy and per-
formance gains obtained by our system by executing a set of
benchmarks instead of simulating the expected accuracy results.
These executions present the real effect of the technique on
benchmarks and applications that were impossible to obtain by
only using simulation.

Paper organization
Section 2 discusses the main differences of our proposal with

current state of the art. Section 3 presents an example that
motivates our work and that will be used throughout the paper to
guide the different steps. Section 4 summarizes the formalization
of the used static code analysis approach. Section 5 presents
our proposed prefetching system, CAPre, and how it was imple-
mented. Section 6 discusses the integration details of CAPre into
a distributed POS. Section 7 exposes the experimental evaluation
of the system. Finally, Section 8 concludes the paper and outlines
some future work.

2. Related work

The structure in which Persistent Object Stores (POSs) expose
data, in the form of objects and relations between these objects, is
rich in semantics ideal for predicting access to persistent data and
has invited a significant amount of research [18]. The most pop-
ular previous approach is the schema-based Referenced-Objects
Predictor (ROP), defined in Section 1. Hibernate [15], Data Nu-
cleus [19], Neo4JOGM [9] and Spring Data JPA [20] all support this
technique through specific configuration settings with varying
degrees of flexibility (e.g. apply the prefetching on system level or
only to specific types). For instance, Hibernate offers developers

OR-Mappers [21], which include predefined instructions that can
be used to decide which related objects to prefetch for each
object type, while with Django [22] developers need to supply
explicit prefetching hints with each access to the POS. This type of
implementation of ROP requires manual inspection of the entire
application code by the developer and is an error-prone process,
given that correct prefetching hints are difficult to determine and
incorrect ones are hard to detect [23].

Schema-based techniques, as opposed to our proposal, only
take into account the structure of the classes, but not how they
are actually used by application methods, and thus can imply
accessing a significant amount of unused data. Furthermore, given
their heuristic nature, ROP approaches do not prefetch collections
because the probability of bringing many unnecessary objects
is very high. In our approach, as we will know exactly what
collections will be accessed, we will show that we can use this
information to prefetch them in a safe way increasing the ef-
fectiveness of the prefetching without incurring in unnecessary
overhead.

Other prefetching mechanisms are data-based techniques that
rely on the history of accesses to objects stored in the POS.
Some examples of these approaches include object-page relation
modeling [18,24], stochastic methods [16], Markov-Chains [16,
25], traversal profiling [23,26], the Lempel–Ziv data compression
algorithm [27] and context-aware prefetching [28]. Moreover,
predicting access to persistent objects at the type-level was first
introduced by Han et al. based on the argument that patterns
do not necessarily exist between individual objects but rather
between object types [29]. The same authors later present an op-
timization of this approach by materializing the objects for each
detected access pattern [30]. However, all of these approaches
gather the information needed to make the predictions by mon-
itoring access to the POS during application execution and thus
introduce overhead in both memory and execution time.

Using code-based analysis to prefetch persistent objects was
first suggested by Blair et al. who analyze the source code of OO
applications at compile-time in order to model object relations
and detect when the invocation of a method causes access to a
different page [31]. This information is then used at runtime in or-
der to prefetch the page once the execution of the corresponding
method starts. The main difference with our approach is that they
are based on page granularity, thus bringing and keeping many
objects that may not be necessary just because they reside in the
same page.

Finally, there is a completely different approach based on the
queries executed over the data: ‘‘query rewriting’’. This mecha-
nism is another type of optimization that can be used to prefetch
objects. The idea behind this mechanism is to execute queries
that are made more general to prefetch objects that might be
relevant for future requests. Nevertheless, this again is based
on heuristics and many unnecessary objects may be brought to
the cache adding overhead and filling the cache with useless
data. For more information, [32] includes an extensive, albeit out-
dated, survey of different prefetching techniques while both [33]
and [31] present taxonomies categorizing prefetching techniques
in object-oriented databases.

In summary, our approach performs the prediction process at
compile-time and produces type-level prefetching hints, combin-
ing the benefits of both types of approaches. The advantage of
performing the prediction process at compile-time is the absence
of overhead present in techniques which need information gath-
ered at runtime. Similarly, type-level prediction is more powerful
than its object-level counterpart and can capture patterns even
when different objects of the same type are accessed. Moreover,
information is not stored for each individual object which reduces
the amount of used memory [34]. Finally, our approach also
prefetches individual objects instead of entire pages of objects,
which reduces the amount of memory occupied by other objects
in the same page that might not necessarily be accessed.

Please cite this article as: R. Touma, A. Queralt and T. Cortes, CAPre: Code-Analysis based Prefetching for Persistent Object Stores, Future Generation Computer Systems
(2019), https://doi.org/10.1016/j.future.2019.10.023.

R. Touma, A. Queralt and T. Cortes / Future Generation Computer Systems xxx (xxxx) xxx 3

Fig. 1. Example of a Persistent Object Store (POS) schema. The schema represents a banking system with 7 entities, each of which corresponds to an object type in
the POS.

3. Motivating example

Fig. 1 shows the POS schema of a bank management system. In
the figure, we can see various classes representing the entities of
the system, such as Transaction, Account and Customer. Let us say
that we want to update the customers of the accounts responsible
for all the transactions to be in the name of the manager of
the bank. However, as a security measure, the system restricts
updates on accounts to customers of the same company as the
customer currently owning the account.

In order to achieve this task, we need to retrieve and iterate
through all the Transaction objects. We then navigate to the
referenced Account and Customer until reaching the Company of
each customer. Finally, we need to compare the company of the
customer currently owning the account with the company of the
bank manager.

As we have mentioned, the most well used prediction tech-
nique that can be applied in this case is the Referenced-Objects
Predictor (ROP), defined in Section 1. Applying ROP to our ex-
ample means that, for instance, each time a Transaction object is
accessed, the referenced Transaction Type, Account and Employee
objects are predicted to be accessed along with it.

However, in order to accomplish our task we also need to
access the Customer and Company objects which will not be
prefetched. On the other hand, the Transaction Type and Employee
objects will be prefetched with Transaction but in reality are not
needed for the task at hand. To put this in numbers, if we have
100,000 Transactions the ROP would wrongfully predict access
to as many as 200,000 objects in the worst case while missing
another 200,000 objects that will be accessed.

The prediction accuracy of ROP can be improved by increasing
its ‘‘fetch depth’’, i.e. the number of levels of referenced objects to
predict. For instance, instead of only predicting access to Trans-
action Type, Account and Employee, which are directly referenced
from Transaction, having a fetch depth equal to 2 would also
predict the objects referenced from them, which are Department
and Customer in this example.

Increasing the fetch depth of ROP may help in predicting more
relevant objects but it does not solve the problem of predicting
access to objects that are not necessary. As a matter of fact, the
more the fetch depth is increased the more likely it is to predict
irrelevant objects as well. This is due to the fact that the ROP
applies a heuristic based on the schema of the POS that does not
take into account the application behavior.

Another more complex approach would be to monitor ac-
cesses to the POS and generate predictions based on the most
commonly accessed objects [16,23,29]. For instance, monitoring
accesses to the POS shown in Fig. 1 might tell us that in 80% of the

cases where a Transaction object is accessed, its related Account
and Customer objects are accessed as well.

This would work perfectly for our task, we will only need to
load the referenced Company object and all the other necessary
objects will have been already prefetched. However, in the 20% of
cases where a transaction’s Account and Customer are not needed,
they will still be prefetched despite the fact that they will not be
accessed. Moreover, retrieving the necessary information for this
approach requires runtime monitoring of the application which
adds overhead to the application execution time and memory
consumption [16].

The problem faced in both cases is that sometimes we prefetch
objects that are not needed into memory and at the same time we
do not prefetch objects that are actually accessed. This partially
stems from the fact that the prediction heuristics are applied
without taking into consideration the actual applications being
used to access the data.

4. Approach formalization

This section summarizes the formalization of the approach
we use to predict access to persistent objects. The formalization
is based on the concept of type graphs presented by Ibrahim
and Cook [23] that we have extended in order to capture the
persistent objects accessed by a method in the form of a graph.
After constructing these graphs, we generate a set of prefetching
hints that predict which objects should be prefetched from the
POS for each method of the analyzed application.

Example. To help explain the approach, we use the sample
object-oriented application shown in Listing 1, that uses the
schema presented in Fig. 1, as a running example.

4.1. Initial definitions

For any such object-oriented application that uses a POS, we
define T as the set of types of the application and PT ⊆ T as its
subset of persistent types. Furthermore, ∀t ∈ T we define

• Ft : the set of persistent member fields of t such that
∀f ∈ Ft : type(f) ∈ PT ,
• Mt : the set of member methods of t .

4.2. Type graphs

4.2.1. Application type graph
First, we need to represent in a graph all the relationships

between classes in order to be able to decide which other classes
are reachable starting from the fields of a given class. To keep this
information, we represent the schema of the application through
a directed type graph GT = (T , A), where:

Please cite this article as: R. Touma, A. Queralt and T. Cortes, CAPre: Code-Analysis based Prefetching for Persistent Object Stores, Future Generation Computer Systems
(2019), https://doi.org/10.1016/j.future.2019.10.023.

4 R. Touma, A. Queralt and T. Cortes / Future Generation Computer Systems xxx (xxxx) xxx

Fig. 2. Two type graphs from Listing 1. Solid lines represent single associations and dashed lines represent collection associations.

Listing 1: Example OO application written in Java.
1 public class Transaction {

2 private Account account;
3 private Employee emp;
4 private TransactionType type;
5
6 public Account getAccount() {

7 if (this.type.typeID == 1) {

8 this.emp.doSmth();
9 } else {

10 this.emp.dept.doSmthElse();
11 }

12 return this.account;
13 }

14 }

15
16 public class Account {

17 private Customer cust;
18
19 public void setCustomer(Customer newCust) {

20 if (this.cust.company == newCust.company) {

21 this.cust = newCust;
22 }

23 }

24 }

25
26 public class BankManagement {

27 private ArrayList<Transaction> transactions;
28 private Customer manager;
29
30 public void setAllTransCustomers() {

31 for (Transaction trans : this.transactions) {

32 trans.getAccount().setCustomer(this.manager);
33 }

34 }

35 }

• T is the set of types defined by the application.
• A is a function T ×F → PT ×{single, collection} representing

a set of associations between types. Given types t and t ′

and field f , if A(t, f) → (t ′, c) then there is an association
from t to t ′ represented by f ∈ Ft where type(f) = t ′ with
cardinality c indicating whether the association is single or
collection.

Example. Fig. 2(a) shows the type graph of the application from
Listing 1. Some of the associations of this type graph are:

• A(Bank Management, trans) ↦→ (Transaction, collection)
• A(Transaction, account) ↦→ (Account, single)
• A(Employee, dept) ↦→ (Department, single)

4.2.2. Method type graph
While GT represents the general schema of the application,

it does not capture how the associations between the differ-
ent types are traversed by the application’s methods. When a
method m is executed, some of its instructions might trigger the
navigation of a subset of the associations in GT .

An association navigation t ⇁f t ′ is triggered when an instruc-
tion accesses a field f in an object of type t (navigation source)
to navigate to an object of type t ′ (navigation target) such that
A(t, f)→ (t ′, c). A navigation of a collection association has mul-
tiple target objects corresponding to the collection’s elements.
The set of all association navigations in m form the method type
graph Gm, which is a sub-graph of GT and captures the objects
directly accessed by the method’s instructions.

Example. Fig. 2(b) shows the type graph Gm of the method
getAccount() with the implementation shown in Listing 1 (lines
6 to 13). Notice that instructions that involve fields of primitive
types, such as typeID (integer), are not part of the graph because
they do not trigger a navigation between objects.

4.2.3. Augmented method type graph
The limitation of the method type graph (Gm) is that it only

includes association navigations that occur in the code of the
method m, but does not include associations navigated in other
methods invoked by the original method m. Thus, after construct-
ing Gm, we perform an inter-procedural analysis to capture the
objects accessed inside other methods invoked by m. The result
of this analysis is the augmented method type graph AGm, which
we construct by adding association navigations that are triggered
inside an invoked method m′ ∈ Mt ′ to Gm as follows:

• The type graph of the invoked method Gm′ is added to Gm
through the navigation t ⇁f t ′ that caused the invocation.
• Association navigations triggered by passing a persistent

object as a parameter to m′ are added directly to Gm.

Example. Fig. 3 shows the augmented method type graph AGm
of method setAllTransCustomers() from Listing 1. It includes the
type graphs of the invoked methods getAccount() and setCus-
tomer(newCust). Note that the navigations BankManagement
⇁manager Customer ⇁comp Company are triggered by passing the
persistent object BankManagement .manager as a parameter to the
method setCustomer(newCust).

4.3. Prefetching hints

After constructing the augmented type graph of a method, we
can predict which objects will be accessed once the execution

Please cite this article as: R. Touma, A. Queralt and T. Cortes, CAPre: Code-Analysis based Prefetching for Persistent Object Stores, Future Generation Computer Systems
(2019), https://doi.org/10.1016/j.future.2019.10.023.

R. Touma, A. Queralt and T. Cortes / Future Generation Computer Systems xxx (xxxx) xxx 5

Fig. 3. Augmented method type graph AGm of setAllTransCustomers() from
Listing 1 (lines 30–34). Navigations highlighted in orange are branch-dependent
(Section 4.4). (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

of the method starts. We achieve this by traversing AGm and
generating a set of prefetching hints PHm that predict access to
persistent objects:

PHm =
{
ph | ph = f1.f2.fn where ti ⇁fi ti+1 ∈ AGM :

1 ≤ i < n
}

Each prefetching hint ph ∈ PHm corresponds to a sequence
of association navigations in AGm and indicates that the target
object(s) of the navigations is/are accessed.

Example. The augmented method type graph AGm of Fig. 3 re-
sults in the following set of prefetching hints for method se-
tAllTransCustomers(). Note that hints starting with the collection
transactions predict that all its elements are accessed:

PHm =
{
transactions.type, transactions.emp,

transactions.account.cust.company, manager.company
}

4.4. Runtime application behavior

Given that we perform this analysis statically prior to the
execution of the application, there are association navigations
that we cannot decide if they are traversed or not, given that
they depend on the runtime behavior of the application. Thus, in
this section, we study how to react in such cases where a static
analysis might lead to erroneous predictions of which objects
should be prefetched. In particular, we considered two types of
such behavior:

• Navigations that depend on a method’s branching behavior,
which is determined by the method’s conditional state-
ments (e.g. if, if-else, switch-case) and branching instructions
(e.g. return, break). These navigations may or may not be
triggered during execution, depending on which branch is
taken, and hence might lead us to predict access to an object
that does not occur. An example of this is Employee ⇁dept

Department , highlighted in orange in Fig. 3, which is only
triggered inside the if branch of a conditional statement.
• Navigations that are triggered inside a method’s overridden

versions. This behavior is caused by the dynamic binding
feature of OO languages, which allows an object defined
of type t to be initialized to a sub-type t ′. Thus, when
invoking a method of type t , the method being executed
might actually be an overridden version defined in t ′, which
in turn might result in erroneous predictions.

Fig. 4. For each power-of-10 interval on the x-axis, the y-axis represents the
number of applications of the SF110 corpus that have the number of classes,
methods, conditional statements and loop statements (as detected by our
approach) in that interval. For instance, the first dark blue line starting from
the left means that the number of applications that have between 0 and 10
methods is 20.

Table 1
Summarized statistics of the corpus of applications used in our approach study.

Max Median Avg Std. Dev. Total

Classes 2,292 38 139 381 14,760
Methods 26,261 335 1379 3517 146,182
Cond. Stmts. 17,935 162 656 1893 69,495
Loop Stmts. 6,747 46 185 674 19,634

Once we have detected the problem, and before proposing a
solution, we analyzed how often methods contain this kind of
runtime-dependent behavior in order to understand the magni-
tude of the problem. We performed this analysis using the appli-
cations we will later use, in Section 7, to evaluate our prefetching
algorithm (OO7, WC, K-means, and PGA) combined with the
applications of the SF110 corpus, which is a statistically rep-
resentative sample of 100 Java applications from SourceForge,
a popular open source repository, extended with the 10 most
popular applications from the same repository [35].

Fig. 4 shows an aggregation of relevant characteristics of the
applications used in our study: number of classes, methods, con-
ditional statements and loop statements. Table 1 also shows some
summarized statistics of these characteristics and indicates that
the test suite covers a wide range of applications, from very
small applications to large applications containing over 20,000
methods.

Let us now analyze the conditional and loop statements in the
studied applications. Fig. 5(a) shows the number of applications
per percentage of conditional and loop statements that do not
trigger any branch-dependent navigations. This means that the
prefetching hints obtained when any branch is taken are the
same (although the methods executed in each branch may be
different, the accessed objects are the same). The category axis of
Fig. 5(a) starts at 20% as none of the analyzed applications scored
less in either case. It should be noted that one of the studied
applications, greencow, does not have any conditional statements
while two, greencow and dash-framework, do not have any loop
statements. Table 2 shows that an average of 67.5% of conditional
statements and 82% of loop statements do not trigger branch-
dependent navigations, and hence do not pose a problem when
generating access hints.

We aggregated these results to calculate the percentage of
methods of each application that do not trigger any branch-
dependent navigations, i.e. the methods for which our approach
predicts the exact set of persistent objects that will be accessed.
Fig. 5(b) shows the results of this experiment, its category axis

Please cite this article as: R. Touma, A. Queralt and T. Cortes, CAPre: Code-Analysis based Prefetching for Persistent Object Stores, Future Generation Computer Systems
(2019), https://doi.org/10.1016/j.future.2019.10.023.

6 R. Touma, A. Queralt and T. Cortes / Future Generation Computer Systems xxx (xxxx) xxx

Fig. 5. For each 10% interval on the x-axis, the y-axis represents the number of applications of the SF110 corpus that have the percentage of conditional statements,
loop statements and methods that do not trigger any branch-dependent navigations in that interval.

Table 2
Summarized statistics of the experimental results. The first three rows show the
percentage of conditional statements, loop statements and methods that do not
trigger any branch-dependent navigations. The last row shows the analysis time
of the studied applications.

Min Max Median Avg Std. Dev.

Cond. Stmts. (%) 26.8% 100% 67.1% 67.5% 17%
Loop Stmts. (%) 24.8% 100% 85.7% 82% 15.7%
Methods (%) 44% 100% 89.9% 88.8% 7.9%

starts at 40% as none of the studied applications scored a lower
percentage. Fig. 5(b) shows that only 6 of the studied applica-
tions scored below 80%, which indicates that for 95.5% of the
studied applications, our approach can generate the exact set of
access hints for over 80% of methods. Table 2 indicates that on
average, 88.8% of an application’s methods do not trigger branch-
dependent navigations, which is significantly higher than the
average reported for conditional and loop statements, and also
reports a low standard deviation of 7.9%.

These results indicate that the prediction errors stemming
from branch-dependent navigations are confined to a limited
number of methods, while our static code analysis approach can
accurately predict access to persistent objects in most cases. This
is also in line with the intuition of the authors of [23] that
accesses to persistent data are, in general, independent of an
application’s branching behavior.

Given these results, we conclude that the difference between
the prefetching hints of the different branches of an application is
quite small. Thus, in the implementation of CAPrewe will include
hints corresponding to branch-dependent navigations (i.e. assum-
ing both branches are taken) to increase the true positive rate
(i.e. predicted objects that are accessed by the application), with
minimal effect on false positives (i.e. predicted objects that are
not accessed).

By contrast, our previous work has a detailed study indicating
that including prefetching hints of overridden methods sharply
increases the false positives rate in some cases [17]. Based on
the results of this study, in the implementation of CAPre, we will
not include the prefetching hints of overridden methods when
generating PHm of a particular method m.

5. System overview

CAPre is a prefetching system for Persistent Object Stores
based on the static code analysis of object-oriented applications
described in Section 4. It consists of two main components, as de-
picted in Fig. 6: 1. Static Code Analysis Component, and 2. Source

Fig. 6. Overview of the proposed prefetching system.

Code Injection Component. The Static Code Analysis Component
takes as input the source code of the application classes, written
in Java, and executes the static analysis approach formalized in
Section 4 in order to generate prefetching hints that predict, for
each method of the application, which persistent objects should
be prefetched. We implemented this analysis for Java applications
since it is the most common OO language, but the theoretical con-
cepts of our approach can be applied to any other OO language.

Afterwards, the Source Code Injection Component generates,
for each method, a helper prefetching method that prefetches
the objects predicted by the generated prefetching hints. It also
injects an invocation of this prefetching method to activate the
prefetching automatically when the application is executed. The
generated and injected code snippets uses multi-threading in
order to perform the prefetching without interrupting the normal
execution of the application, as well as to prefetch objects in
parallel when using a distributed POS.

In the following subsections, we describe both components in
detail.

5.1. Static code analysis component

This component includes the implementation of the prediction
approach summarized in Section 4. We used IBM Wala [36], an

Please cite this article as: R. Touma, A. Queralt and T. Cortes, CAPre: Code-Analysis based Prefetching for Persistent Object Stores, Future Generation Computer Systems
(2019), https://doi.org/10.1016/j.future.2019.10.023.

R. Touma, A. Queralt and T. Cortes / Future Generation Computer Systems xxx (xxxx) xxx 7

open-source tool that parses and manipulates Java source code, to
generate an Abstract Syntax Tree (AST) and an Intermediate Rep-
resentation (IR) of each method of the analyzed application. We
then constructed the augmented type graphs of the application’s
methods using these two structures, before finally generating the
set of prefetching hints for each method.

5.1.1. Wala AST and IR
We used Wala’s AST to identify conditional and loop state-

ments. In particular, we identified two loop patterns used to
iterate collections: using indexes or using iterators, each of which
can be implemented with a for or a while loop. Similarly, we
took if, if-else and switch-case statements into consideration when
identifying conditional statements. On the other hand, we used
the IR, which contains a custom representation of the method’s
instructions, in order to detect association navigations that occur
inside the method. Each IR instruction consists of five parts:
• II: the instruction’s index inside the IR,
• IType: the instruction type (e.g. method invocation),
• IParams: the instruction parameters (e.g. the invoked me-

thod, the accessed field),
• defVarId: the ID of the variable defined by the instruction

(can be null if the instruction does not define any variables),
• usedVarIDs[]: zero or more previously-defined variables that

are used by the instruction, indicated by their IDs.

Example. Listing 2 shows the IR instructions of the method se-
tAllTransCustomers() from Listing 1. The line numbers correspond
to the instruction indexes (II). Note that II2, II3, II4, II5 and II9 are
implicit instructions generated due to the for loop and are not
explicitly invoked in the method’s source code. Some examples
of instructions from Listing 2 include:

• II1, IType = getfield, IParams =< BankManagement, trans-
actions, java/util/ArrayList>, defVarID = v2, usedVarIDs =
{v1}: this instruction accesses the field BankManagement.
transactions of type ArrayList and assigns it the variable ID
v2. It also uses the variable ID v1, which corresponds to the
self-reference this, to access the field.
• II8, IType = invokemethod, IParams =< Account, setCus-

tomer (Customer)V >, defVarID = φ, usedVarIDs = {v6, v7}:
this instruction invokes the method Account .setCustomer
(newCust) and uses two variable IDs: v6 corresponding to the
object of type Account on which the method is invoked, and
v7 corresponding to the field manager used as a parameter
of the invoked method.

Listing 2: Wala’s Intermediate Representation (IR) of the method
setAllTransCustomers() from Listing 1.
1 v2= getfield <BankManagement, transactions,

java/util/ArrayList>: v1
2 v3= invokemethod <java/util/ArrayList,

iterator()java/util/Iterator>: v2
3 v4= invokemethod <java/util/Iterator, hasNext()B>: v3
4 conditionalbranch (eq, to iindex = -1): v4, true
5 v5= invokemethod <java/util/Iterator,

next()java/lang/Object>: v3
6 v6= invokemethod <Transaction, getAccount()Account>: v5
7 v7= getfield <BankManagement, manager, Customer>: v1
8 invokemethod <Account, setCustomer(Customer)V>: v6, v7
9 goto (from iindex = 10 to iindex = 3)

5.1.2. Constructing augmented type graphs
Table 3 summarizes the IR instructions that we take into

consideration when constructing the augmented method type
graphs. We detect single association navigations with the in-
struction getfield when the type of the used field is user-defined

Table 3
The IR instructions considered in our analysis.
IR instruction Restrictions

Single association navigations
getfield User-defined field type

Collection association navigations
arrayload Inside loop analysis scope
invokemethod method java.util.Iterator.next(), Inside loop statement

Branch-dependent navigations
break Inside loop statement
continue Inside loop statement
return Inside loop statement

Method invocations
invokemethod Method of user-defined class

Method return object
return N/A

(i.e. the type corresponds to a class defined in the application). As
for collection association navigations, we detect them when one
of the two following instructions occur inside a loop statement:

• arrayload: which is used to access array elements,
• invokemethod of the method next() of the class java.util

.Iterator: which is used to access collection elements.

To detect branch-dependent navigations, we consider the
branching instructions continue, break and returnwhen they occur
inside a loop statement. When such an instruction is detected,
the navigations resulting from all instructions inside the loop are
marked as branch-dependent. Moreover, all navigations resulting
from instructions inside a branch of a conditional statement are
marked as branch-dependent.

We also use invokemethod instructions to detect method in-
vocations and augment the method’s type graph with the type
graph of the invoked method, as discussed in Section 4.2. When
we do so, we bind the parameters of the method with the vari-
ables used in the invocation to detect association navigations
triggered by passing a persistent object as a method parameter.
Finally, we take into consideration return instructions, if any, to
detect the object that was returned by a method, which might
be used to access further objects from the method invocation
directly (e.g. getAccount().setCustomer(newCust)).

These steps are detailed by the pseudo-code of Algorithm 1,
which takes as input the source code of a method m and returns
as output the augmented method type graph AGm. The algorithm
iterates through the instructions of the method and creates new
nodes in AGm through the method createNode(), which takes as
parameters the ID of the variable defined by the instruction,
whether it corresponds to a navigation of a single or collection as-
sociation and if it is branch-dependent. The method createEdge()
is used to add an edge to AGm between the node of the current
instruction and the nodes of previous instructions, based on the
variable IDs used and defined by the instructions. Finally, in order
to identify branch-dependent navigations, we implemented three
helper methods used by the algorithm:

• getASTNode(instr): which returns the AST node correspond-
ing to an IR instruction, and
• hasConditionalParent(node), hasLoopParent(node): which in-

dicate if an AST node has a parent node corresponding to a
conditional or loop statement, respectively.

Example. Applying Algorithm 1 on the instructions of setAllTran-
sCustomers() shown in Listing 2 results in the type graph AGm
depicted in Fig. 3 as follows:

Please cite this article as: R. Touma, A. Queralt and T. Cortes, CAPre: Code-Analysis based Prefetching for Persistent Object Stores, Future Generation Computer Systems
(2019), https://doi.org/10.1016/j.future.2019.10.023.

8 R. Touma, A. Queralt and T. Cortes / Future Generation Computer Systems xxx (xxxx) xxx

Algorithm 1: Construct Augmented Method Type Graph
Input : m ∈ Mt : Source code of the method to analyze
Output: AGm: Augmented Method Type Graph of m

AGm ← (φ, φ)

foreach instr ∈ Im do
instrASTNode← getASTNode (instr)

// Identify branch-dependent navigations

if hasConditionalParent (instrASTNode)) ||
(hasLoopParent (instrASTNode)) && IType (instr) ∈ {return,
break, continue}) then

isBranchDependent← true
else

isBranchDependent← false

// Create single-association node in AGm
if IType (instr) = getfield && IParams(instr).fieldType ∈ T
then

AGm ← AGm∪ createNode (defVarID (instr), ‘single’,
isBranchDependent)

// Create collection-association node in AGm

if
(
(IType (instr) = arrayload) || (IType (instr) =

invokemethod && IParams (instr).invokedMethod =
‘java.util.Iterator.next()’)

)
&& hasLoopParent (instrASTNode) then

AGm ← AGm∪ createNode (defVarID (instr), ‘collection’,
isBranchDependent)

// Add nodes of invoked method to AGm
if IType (instr) = invokemethod && IParams

(instr).invokedMethod ∈ MT then
m′ ← IParams (instr).invokedMethod
AGm′ ← getMethodGraph (m′)
foreach node ∈ AGm′ do

if isParameterNode (node) then
AGm ← AGm∪ bindParameter (node)

else
AGm ← AGm∪ node

// Flag return object of method

if IType (instr) = return then
usedNode← getNode(defVarID (instr))
setIsReturnNode (usedNode)

// Create edges between new and previous nodes

definedNode← getNode (defVarID (instr))
foreach usedVarID ∈ usedVarIDs (instr) do

usedNode← getNode (usedVarID)
AGm ← AGm∪ createEdge (usedNode, definedNode)

return AGm

• The instruction II1 = getfield transactions accesses a field of
type collection. Hence, no changes are made to AGm.
• II5 is an invocation of java.util.Iterator.next() inside a loop

statement, which means it is accessing elements of the
collection transactions. Hence, a new node with the variable
ID of transactions, cardinality collection and isBranchDepedent
= false is added to AGm.
• II6 is an invocation of getAccount(). Hence, the type graph

of getAccount() is added to AGm and linked to the node
corresponding to II5, based on the used variable ID v5.
• II7 is a getfield instruction that accesses the object manager.

Thus, it results in the creation of a new node with the
variable ID of manager and cardinality single.

• II8 is an invocation of setCustomer(newCust) and results in
adding its type graph to AGm, linking it to the node resulting
from II6, which represents the return object of getMethod().
We also bind the method’s parameter to the node resulting
from II7.

Note that II2, II3, II4, and II9 do not access any persistent ob-
jects and hence do not cause any changes to AGm.

5.1.3. Generating prefetching hints
We generate the set of prefetching hints of a method PHm

by traversing the augmented method type graph constructed
following Algorithm 1. At this point, it is important to remem-
ber how we handle runtime application behavior (discussed in
Section 4.4). In case of branch-dependent navigations, we will
include the prefetching hints of all the branches, both taken and
not taken, since it was shown in Section 4.4 to be the best option.
On the other hand, we will not include any hints to prefetch the
objects accessed by overridden methods, because it was shown to
be a significant source of false positives in our previous work [17].

We then perform one final modification to PHm by removing
hints already found in previous method calls. For instance, a
methodm that invokes another methodm′ will have the prefetch-
ing hints resulting from both m and m′, which allows us to bring
the prefetching forward ensuring that the predicted objects are
prefetched before they are accessed.

However, this also means that m and m′ might have prefetch-
ing hints predicting access to the same objects, which leads to
launching several requests to prefetch the same objects when the
application is executed, causing additional unnecessary overhead.
We solve this problem by removing from PHm those prefetching
hints that are found in all of the methods that invoke m. This
solution does not affect the prediction accuracy of the approach
since the objects predicted by the removed hints are prefetched
by other hints in a previously executed method.

5.1.4. Computational complexity of the static code analysis
Considering an application with a set of methodsM , Algorithm

1 has a complexity of O(|Im|) when generating the augmented
method type graph of any method m ∈ M , where |Im| is the
number of Wala IR instructions of m. Moreover, constructing the
augmented method type graphs of all of the methods in M has a
computational complexity of O(|M| ∗ max(|Im|)), where max(|Im|)
is the number of IR instructions of the largest method in the
application.

This is due to the fact that each method of the application is
only analyzed and its prefetching hints are only generated once,
even if it is invoked multiple times by different methods of the
application. Apart from this theoretical computational complex-
ity, we provide detailed results of the time it takes to execute this
static code analysis on various application in Section 7.1.

5.2. Source code injection component

The goal of this component is to modify the original source
code of the application in order to prefetch the objects predicted
by the prefetching hints generated by the Static Code Analy-
sis Component. To do so, we first generate a helper prefetching
method for each method of the application, which loads the
objects predicted by the method’s prefetching hints from the
POS. Afterwards, we use AspectJ to inject an invocation of the
generated prefetching method inside each method of the appli-
cation. By doing so, the objects predicted by a method’s AGm are
automatically prefetched when the application is executed.

Please cite this article as: R. Touma, A. Queralt and T. Cortes, CAPre: Code-Analysis based Prefetching for Persistent Object Stores, Future Generation Computer Systems
(2019), https://doi.org/10.1016/j.future.2019.10.023.

R. Touma, A. Queralt and T. Cortes / Future Generation Computer Systems xxx (xxxx) xxx 9

Listing 3: Helper prefetching method of setAllTransCustomers()
from Listing 1.
1 public class BankManagement_prefetch {

2 public void setAllTransCustomers_prefetch

(BankManagement rootObject) {

3 for (Transaction trans :

rootObject.load(transactions)) {

4 trans.load(type);
5 trans.load(emp);
6 trans.load(account).load(cust).load(company);
7 });

8 rootObject.load(manager).load(company);
9 }

10 }

5.2.1. Generating prefetching methods
Given that each POS has specific instructions that are used

to retrieve stored objects, the exact instructions used in the
prefetching methods to load the predicted objects depend on the
used POS. For the purposes of this example, we assume that the
POS has an instruction called load() that loads and returns a typed
object from the POS. The generated prefetching method takes as
parameter the object on which the original method is executed,
starting from which it then prefetches the predicted objects.

Example. The Source Code Injection Component generates the
prefetching method depicted in Listing 3 for the method se-
tAllTransCustomers() from Listing 1. Note that the prefetching
method is defined in a new prefetching class corresponding to
the class BankManagement. Also note that the instruction load()
is substituted with the concrete instruction that loads an object
depending on the used POS, as will be explained in Section 6.

5.2.2. Enabling parallel prefetching
We further optimize CAPre by performing parallel prefetch-

ing when an application accesses objects stored in a distributed
POS. For instance, in the set of prefetching hints PHm defined
in Section 4, the elements of the transactions collection can be
prefetched in parallel if they are stored in different nodes of a dis-
tributed POS. On the other hand, distributing single-association
hints, such as manager.company, is not possible since we need to
load the object manager before its associated company is loaded.

We implemented this parallel prefetching by using the Parallel
Streams of Java 8, which convert a collection into a stream and
divide it into several substreams. The Java Virtual Machine (JVM)
then uses a predefined pool of threads to execute a specific
task for each substream, which avoids the costs of creating and
destroying threads in each prefetching method. The number of
threads in the pool is set by JVM to the number of processor cores
of the current machine and the management of the threads is
done automatically by the JVM.

Example. The parallel version of the prefetching method setAll-
TransCustomers_prefetch() is shown in Listing 4.

5.2.3. Injecting prefetching method invocations
Instead of directly invoking the prefetching methods, we im-

plemented a multi-threaded approach where the prefetching
methods are executed by a background thread in parallel to
the main thread of the application. By doing so, we allow the
execution of the application to continue uninterrupted while
prefetching objects in another thread whenever possible.

We achieved this by using a thread pool executor that cre-
ates a pool of one or more threads at the application level and

Listing 4: Parallelized prefetching method of setAllTransCus-
tomers() from Listing 1.
1 public class BankManagement_prefetch {

2 public static void setAllTransCustomers_prefetch

(BankManagement rootObject) {

3 // Parallel prefetching of collection elements

4 rootObject.load(transactions).parallelStream().
5 forEach(trans -> {

6 trans.load(type);
7 trans.load(emp);
8 trans.load(account).load(cust).load(company);
9 });

10 // Cannot be parallelized

11 rootObject.load(manager).load(company);
12 }

13 }

Listing 5: Injected scheduling of the prefetching method from
Listing 4 into setAllTransCustomers().
1 public void setAllTransCustomers() {

2 // Injected scheduling of prefetching method

3 final BankManagement rootObject = this;
4 prefetchingExecutor.submit(new Runnable() {

5 @Override

6 public void run() {

7 BankManagement_prefetch

.setAllTransCustomers_prefetch(rootObject);
8 }

9 });

10 ...

11 }

then schedules tasks for execution in the created threads. This
solution helps to save resources, since threads are not created
and destroyed multiple times, and also contains the parallelism in
predefined limits, such as the number of threads that are run in
parallel. Hence, we inject the following instruction into the class
that contains the main method from which the execution of the
application starts:

public static final ThreadPoolExecutor

prefetchingExecutor = (ThreadPoolExecutor)

Executors.newFixedThreadPool(1);

This instruction creates a thread pool executor with a single
thread to execute the generated prefetching methods. Afterwards,
we inject at the beginning of each method a scheduling of its
helper prefetching method using this constructed thread pool.
The executor then checks the scheduled tasks and executes them
consecutively in its thread. Note that when using the parallel
prefetching methods, the single thread of the executor creates
multiple sub-threads to perform the prefetching in parallel.

Example. Listing 5 shows the injected instructions into the
method setAllTransCustomers(), which schedule its helper
prefetching method setAllTransCustomers_prefetch() for execution.

6. Prefetching in dataClay

In order to evaluate the effect of CAPre on application perfor-
mance, we integrated it into dataClay. dataClay is an object store
that distributes objects across the network [13,14] among the
available storage nodes. In contrast with other database systems,
data stored in dataClay never moves outside the POS. Instead,
data is manipulated in the form of objects, exposing only the

Please cite this article as: R. Touma, A. Queralt and T. Cortes, CAPre: Code-Analysis based Prefetching for Persistent Object Stores, Future Generation Computer Systems
(2019), https://doi.org/10.1016/j.future.2019.10.023.

10 R. Touma, A. Queralt and T. Cortes / Future Generation Computer Systems xxx (xxxx) xxx

Fig. 7. System architecture of dataClay. A deployment of a Logic Module and three Data Services on different nodes is depicted with the communications between
the client and dataClay and between Logic Module and Data Services [14].

operations that can be executed on the data, which are executed
inside the data store, in a manner transparent to the applications
using the store. Fig. 7 shows the system architecture of dataClay.

To use dataClay, the client first needs to register the applica-
tion schema, i.e. the set of persistent classes (fields and methods)
that will be used by the application, to a centralized service called
the Logic Module. The Logic Module then adds system-specific
functionality to the received classes and deploys the modified
classes to the Data Services, which are the nodes of dataClaywhere
the persistent objects are stored, and sends them back to the
client.

We integrated CAPre into dataClay during this registration
process. When the classes are sent to the Logic Module for regis-
tration, CAPre intercepts the source code of the classes, performs
the analysis and injects the prefetching classes and prefetch-
ing method invocations. These prefetching classes are then sent
along with the modified application classes to the Logic Mod-
ule for registration. Since dataClay automatically loads an object
when a reference to that object is made, the generated prefetch-
ing methods do not use any specific instructions to load the
predicted objects but rather make explicit references to them
(e.g. trans.type, trans.account.cust.company).

Once the application schema is registered, the client can store
any local objects with the type of a registered class in dataClay,
which automatically distributes the stored objects among the
available Data Services. The client can then access the stored
objects to execute any method defined in the registered schema.
However, dataClay does not send the objects to the client but
rather executes the methods locally in the same Data Service
where the object is stored.

Given the changes made by CAPre during the schema regis-
tration, the helper prefetching method of the executed method is
invoked once an execution request is received by a Data Service,
and the predicted objects are prefetched into the local memory
of the Data Service. When a prefetching method encounters an
object in another Data Service, dataClay communicates with that
Data Service to load the object where it is stored.

Example. Executing the method setAllTransCustomers() (Listing 5)
from a client application using dataClay with three Data Services,
DS1, DS2 and DS3 (Fig. 7) on an object of type BankManagement
stored in DS1, is done through the following steps:

• First, the client application launches the execution request
to dataClay, which in turn automatically redirects it to DS1,
where the object BankManagement is stored.
• When DS1 receives the execution request of setAllTransCus-

tomers(), it schedules the prefetching method setAllTransCus-
tomers_prefetch() for execution with the prefetching thread
pool, as explained in Section 5.2.3.
• Once the prefetching method is executed, it creates several

sub-threads and starts loading the elements of the collec-
tion transactions, which was automatically distributed by
dataClay, in parallel from the different Data Services.

Fig. 8. For each power-of-10 interval on the x-axis, the y-axis represents the
number of applications for which our static code analysis approach finishes
within that interval (in milliseconds).

• When one of these threads, currently being executed on DS1,
tries to load an object stored in a different Data Service, say
DS2, dataClay redirects the load request to DS2 and loads the
object where it is stored.

7. Evaluation

The purpose of this evaluation is to analyze the benefits and
overheads of a practical implementation of CAPre. For this reason,
in this section we will study whether the static code analysis used
by CAPre influences the compilation time of applications (Sec-
tion 7.1). Afterwards, we will analyze the reduction in application
execution time that can be achieved by using CAPre, which is
the ultimate goal of our prefetching technique (Section 7.2). For
other indicators such as the true positive or false positive rates,
we refer the reader to our previous work, where these metrics
were analyzed in detail [17].

7.1. Static-code analysis time

Before we evaluate the performance gains obtained by ap-
plications when using CAPre, it is important to prove that the
proposed static code analysis and the generation of the prefetch-
ing hints can be run in a reasonable amount of time. In order
to understand this, we have run the static code analysis using
the applications of the SF110 corpus (introduced in Section 4.4)
as well as the applications we used to evaluate the performance
gains of CAPre, as detailed in Section 7.2.

Fig. 8 plots the number of applications per range of analysis
time in milliseconds and shows that 96 of the SF110 application
were analyzed in less than 1 s. Moreover, it also shows that the
longest time the static code analysis took was 16 s, and this
occurred with weka, the second largest application with over
20,000 methods.

Please cite this article as: R. Touma, A. Queralt and T. Cortes, CAPre: Code-Analysis based Prefetching for Persistent Object Stores, Future Generation Computer Systems
(2019), https://doi.org/10.1016/j.future.2019.10.023.

R. Touma, A. Queralt and T. Cortes / Future Generation Computer Systems xxx (xxxx) xxx 11

Fig. 9. Class diagram of the OO7 benchmark.

Table 4
Comparison between the compilation times and the times needed to perform the
CAPre static code analysis of each of the four benchmarks used in our evaluation
(Section 7.2).

Compilation CAPre analysis

OO7 1030 ms 827 ms
Wordcount 923 ms 633 ms
K-Means 916 ms 519 ms
PGA 1041 ms 1068 ms

As expected, the analysis time of our approach is correlated
with the number of classes and methods of an application. How-
ever, with an average analysis time of 651 ms and a maximum
of roughly 16 s, we believe that the analysis finishes within a
reasonable time for all of the analyzed applications. It is worth
mentioning again here that this static analysis is done only once,
prior to application execution and does not add any overhead to
its execution time.

Going into more details of the four benchmarks that we will
later use to assess the performance gains of CAPre, Table 4
shows the time needed to compile each of the benchmarks (by
executing a javac command) and the time needed to perform
our code analysis. As we can see, the time needed to analyze the
application code never exceeds the pure compilation time of the
application, thus it will not imply a significant overhead when
compiling the application (again, this analysis is only performed
once before the applications are executed).

7.2. Evaluation of application performance

We tested the effect that CAPre has on application perfor-
mance by calculating the execution times of four benchmarks
using dataClay without any prefetching, and with CAPre. We
also compared CAPre with the Referenced-Objects Predictor (ROP),
defined in Section 1, using different fetch depths, which indicate
the levels of related objects that the ROP should prefetch.

For each experiment, we executed the benchmark 10 times
and took the average execution times. We ran all of the ex-
periments on a cluster of 5 nodes interconnected by a 10GbE
link. Each node is composed of a 4-core Intel Xeon E5-2609v2
processor (2.50 GHz), a 32 GB DRAM (DDR3) and a 1 TB HDD
(WD10JPVX 5400rpm). We deployed dataClay on the cluster using
one node as both the client and Logic Module, and 4 nodes as 4
distinct Data Services.

The rest of this section exposes the results of our experiments
on each of the studied benchmarks separately.

7.2.1. OO7
OO7 is the de facto standard benchmark for POSs and object-

oriented databases [37]. Its data model is meant to be an ab-
straction of different CAD/CAM/CASE applications and contains a
recursive data structure involving a set of classes with complex
inheritance and composition relationships, as depicted in Fig. 9.
The benchmark includes a random data generator that takes as
parameter the size of the database to be generated: small (∼1000
objects), medium (∼30,000 objects) and large (∼600,000 objects).
The benchmark also has an implemented set of 6 traversals, from
which we executed the following:

• t1: tests the data access speed by traversing the benchmark’s
data model starting from the object Module.
• t2a, t2b and t2c: test the update speed by updating different

numbers of Composite Parts and Atomic Parts.

We did not execute the two remaining traversals, t8 and t9, given
that they were designed to test text processing speed and only
load one persistent object, Manual.

Fig. 10(b) shows the execution times of the traversal t1 with
the three OO7 database sizes. It indicates that CAPre offers more
improvement to the original execution time than the ROP, which
offers gradually better improvement when increasing its fetch
depth from 1 to 5 before it stagnates with a fetch depth of 10.
This behavior is expected since ROP can only prefetch objects
up to a certain depth before running out of referenced objects
to prefetch. On the other hand, CAPre does not depend on a
predefined fetch depth and can prefetch as many levels of related
objects as predicted by the code analysis it performs. In addition,
given that CAPre is able to know which collections will be ac-
cessed, their elements can also be prefetched, something that is
not done by the ROP algorithm regardless of its depth (prefetch-
ing a collection that may not be used is too much overhead). This
enables CAPre to prefetch many more objects, and thus take more
benefit from the parallel access to the distributed storage.

When considering previous work on prefetching that have
used OO7 as a benchmark, Ibrahim et al. report an improvement
of 7% in execution time with the small OO7 database while Bern-
stein et al. report an improvement of 11% on the medium-sized
database [28]. While these numbers are not directly comparable
to the ones obtained in our experiments given that the ap-
proaches use a different POS, with different levels of optimization
and run their experiments on different hardware, it is worth
mentioning that CAPre achieves an improvement of 30% and 26%
with the small and medium OO7 databases respectively.

Please cite this article as: R. Touma, A. Queralt and T. Cortes, CAPre: Code-Analysis based Prefetching for Persistent Object Stores, Future Generation Computer Systems
(2019), https://doi.org/10.1016/j.future.2019.10.023.

12 R. Touma, A. Queralt and T. Cortes / Future Generation Computer Systems xxx (xxxx) xxx

Fig. 10. Execution times of the traversals t1 and t2b of the OO7 benchmark.

Fig. 11. Class diagram of the Wordcount benchmark.

As for the traversal t2b, Fig. 10(c) shows that neither CAPre nor
the ROP offer any improvement, since the latency of the traversal
is not caused by data access but rather by the time taken to store
the updated objects. However, the figure also indicates that using
the ROP produces significant overhead, caused by the fact that it
prefetches the objects referenced from the object being updated,
when in fact these objects are never accessed. By contrast, CAPre
does not prefetch these objects since it takes into consideration
the application’s code and is aware that they are not needed, thus
producing very little overhead. Note that the execution times of
the traversals t2a and t2c were left out of this paper because
they exhibit similar behavior in terms of added overhead for both
CAPre and the ROP.

7.2.2. Wordcount
Wordcount is a parallel algorithm that parses input text files,

splitting their text lines into words, and outputs the number of
appearances of each unique word. Due to the resemblance of this
algorithm to the problem of creating histograms, Wordcount is
commonly used as a Big Data benchmark. Unlike OO7, the data
model of this benchmark, depicted in Fig. 11, is fairly simple. It
consists of several Text Collections, each containing one or more

Texts representing the input files. Each of the Text objects in turn
contains one or more Chunks, which represent fragments of the
text, and contain the words to be counted.

In our experiments, we used a data set of 8 files, containing
a total of 107 words, divided them into four collections, and
distributed the collections among the four dataClay Data Services.
Furthermore, we ran the benchmark with different numbers of
chunks c , ranging from one chunk containing all the words in
each text (i.e. few large objects) to 106 chunks per text containing
very few words (i.e. many small objects).

Fig. 12 shows the execution times of the Wordcount bench-
mark. Given that the data model of Wordcount is simpler than
OO7, we can see that the ROP stagnates at a lower fetch depth
of 3. For this motivation, we do not include the results for ROP
with a fetch depth of 10 with any of the rest of experiments
in this section. On the other hand, given that most of the data
are collections, CAPre knows which ones to prefetch and thus
does brings them to main memory (something that, as we have
mentioned cannot be done by ROP) increasing the hit ratio and,
thus, reducing the execution time by more than 50% in some
cases.

This improvement is considerably higher than what we ob-
tained with OO7, because the Wordcount data model contains
many collection associations, which can be prefetched by our
approach. Finally, Fig. 12 also shows that CAPre offers stable im-
provement regardless of the number of chunks, which indicates
that it can be equally beneficial for applications that handle a
small number of large objects or many small-sized objects.

7.2.3. K-Means
K-Means is a clustering algorithm commonly used as a Big

Data benchmark that aims to partition n input vectors into k
clusters in which each vector belongs to the cluster with the
nearest mean. It is a complex recursive algorithm that requires
several iterations to reach a converging solution. The data model

Please cite this article as: R. Touma, A. Queralt and T. Cortes, CAPre: Code-Analysis based Prefetching for Persistent Object Stores, Future Generation Computer Systems
(2019), https://doi.org/10.1016/j.future.2019.10.023.

R. Touma, A. Queralt and T. Cortes / Future Generation Computer Systems xxx (xxxx) xxx 13

Fig. 12. Execution times of the Wordcount benchmark.

Fig. 13. Class diagram of the K-Means benchmark.

of K-Means that we used, depicted in Fig. 13, consists of a set of
VectorCollections each containing a subset of the n input Vectors.
We ran our experiments using various numbers of randomly gen-
erated vectors, n, each consisting of 10 dimensions, and different
values of k. We also divided the input vectors into 4 collections
and distributed the collections among the dataClay Data Services.

Fig. 14 shows the execution times of this benchmark. In this
case, the ROP does not offer any significant improvement regard-
less of the fetch depth given that the benchmark’s data model
does not contain any single associations that can be prefetched.
On the contrary, CAPre achieves better improvement, reducing
between 9% and 15% of the benchmark’s execution time, when
prefetching data collections in parallel, which again shows the
advantage of CAPre.

7.2.4. Princeton Graph Algorithms
The Princeton Graph Algorithms (PGA) is a benchmark used

to test the execution times of complex graph traversal algo-
rithms using different types of graphs (e.g. undirected, directed,
weighted) [38]. Fig. 15 depicts the subset of the benchmark’s
classes that we used in our experiments. Namely, we executed
the Depth-First Search (DFS) and Bellman–Ford Shortest Path
algorithms using aWeightedDirectedGraph. The graph consists of a
set of Vertex objects, each containing the outgoing WeightedEdges
of the vertex. We ran our experiments using different numbers
of randomly generated vertices v and edges e, which we chose
to construct graphs with different levels of edge density. As with
the rest of the benchmarks, we distributed the data among the
four Data Services of dataClay.

Fig. 16(e) shows that the execution times of the DFS algorithm
are similar to those reported for the WordCount benchmark;
where CAPre doubles the improvement achieved by ROP and the
same rationale applies. On the other hand, Fig. 16(f) indicates that
even when using CAPre, we do not see significant improvement
in the execution time of the Bellman-Ford algorithm. This is due
to the fact that this algorithm does not access the graph’s vertices
in a predetermined order, but rather starts from a source vertex
and applies a trial-and-error approach to reach the shortest path

Fig. 14. Execution times of the K-Means benchmark.

Please cite this article as: R. Touma, A. Queralt and T. Cortes, CAPre: Code-Analysis based Prefetching for Persistent Object Stores, Future Generation Computer Systems
(2019), https://doi.org/10.1016/j.future.2019.10.023.

14 R. Touma, A. Queralt and T. Cortes / Future Generation Computer Systems xxx (xxxx) xxx

Fig. 15. Class diagram of the PGA benchmark.

solution using various intermediate data structures, and thus pre-
dicting access to the objects it uses is more difficult. Nevertheless,
it is also important to notice that in these cases, CAPre knows
what not to prefetch and does not add unnecessary overhead as
it happens in some cases with ROP.

7.3. Discussion

The results obtained from our experiments indicate that CAPre
offers the highest improvement in execution time when used
with applications with a complex data model, such as OO7. This is
due to the fact that CAPre is based on type graphs, which analyze
the way that the data model of the application is accessed by its
methods. As such, the more complex a data model is the more
information on which to base the prefetching predictions can be
retrieved.

Nonetheless, the fact that CAPre can safely predict access to
collections as well as single objects, allows it to be used with
simple data models that contain many collection associations as
well, such as the case with the Wordcount and K-Means bench-
marks. This prediction of access to collection also increases the
amount of objects to be prefetched at a time, thus giving CAPre

more margin to take advantage of any potential parallelism in the
POS when prefetching the predicted objects.

This prediction of access to collections of persistent objects,
and the associated parallel prefetching of these objects, is an
important area where CAPre outperforms ROP. As discussed
throughout this section, ROP is limited to predicting access to
single objects and unable to predict access to collections, due
to its heuristic of retrieving objects related to the one currently
being accessed. This in turn means that a prefetching system
based on ROP is not able to take advantage of parallelism in
the POS, given that collections of objects that can be accessed in
parallel are never predicted for prefetching.

In terms of data size, the experiments indicate that CAPre
provides the same level of improvement regardless of the number
or size of persistent objects manipulated by each benchmark.
This indicates that CAPre can be used with both applications
that manipulate a large number of small persistent objects, as
well as with those that manipulate a small number of large
persistent objects. When compared with the ROP, CAPre achieves
at least the same improvement and, in cases where prefetching
is not needed, the negative effect on application performance is
significantly smaller than when using ROP.

Throughout our experiments, we encountered two limitation
of CAPre. The first one appears with the Bellman-Ford shortest
path algorithm, where it could not offer significant improvement
because the algorithm accesses persistent objects in a random
order that is difficult to predict. Theoretically, we can also run
into a second limitation when the objects accessed by different
branches of a conditional statement do not have any overlap.
In this case, CAPre would retrieve many unnecessary objects
given that it prefetches the objects predicted by the union of the
prefetching hints of the different branches. However, our analysis
of the SF110 corpus, detailed in Section 4.4, shows that this
limitation only occurs in a very small minority of the analyzed
applications, and that in the majority of cases there is a big
overlap between the objects accessed by different branches of

Fig. 16. Execution times of the Princeton Graph Algorithms benchmark.

Please cite this article as: R. Touma, A. Queralt and T. Cortes, CAPre: Code-Analysis based Prefetching for Persistent Object Stores, Future Generation Computer Systems
(2019), https://doi.org/10.1016/j.future.2019.10.023.

R. Touma, A. Queralt and T. Cortes / Future Generation Computer Systems xxx (xxxx) xxx 15

a conditional statement (even though the methods executed on
these objects may be very different).

In these cases, any prefetching approach that uses a compile-
time prediction technique will face the problem of unpredictabil-
ity of the accessed objects, as evident by the inability of ROP
to offer any improvement in the execution time as well. One
solution to this problem is to use a hybrid approach that collects
some information during runtime in order to complement the
predictions made prior to the execution of the application. Such
an approach will evidently have to be studied and analyzed in
detail in order to determine the overhead that it might introduce.

Finally, CAPre currently uses the Java Virtual Machine’s (JVM)
predefined threadpool to execute the parallel prefetching of col-
lections. This approach reduces the costs of creating and destroy-
ing threads and delegates the management of the threads to the
JVM. Nonetheless, it does not allow us to test the effects that the
number of threads has on the experiment results, given that it
is the JVM that decides the optimal number of threads to create
without overloading the machine. It may be interesting, as future
work, to take control of the thread management operations from
the JVM in order to evaluate how the number of prefetching
threads influences the efficiency of the prefetching performed by
CAPre.

8. Conclusions

In this paper, we presented CAPre, a prefetching system for
Persistent Object Stores based on static code analysis of object-
oriented applications. We detailed the analysis we perform to
obtain prefetching hints that predict which persistent objects are
accessed by the application and how we use code generation and
injection to prefetch the predicted objects when the application
is executed. We also optimized the system by parallelizing the
generated prefetching methods, allowing objects to be prefetched
from various nodes of a distributed POS in parallel. Afterwards,
we integrated CAPre into a distributed POS and performed a
series of experiments on known benchmarks to evaluate the
improvement to application performance that it can achieve.

In the future, we want to address cases where CAPre of-
fers limited improvement by collecting more information during
application execution, while studying the overhead that such
a hybrid approach might introduce. We also plan to use the
predictions made by the developed static code analysis to apply
other performance improvement techniques in conjunction with
prefetching, such as smart cache replacement policies [39–41]
and dynamic data placement [42,43].

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgments

This work has been supported by the European Union’s Hori-
zon 2020 research and innovation program under the BigStorage
European Training Network (ETN) (grant H2020-MSCA-ITN-2014-
642963), the Spanish Ministry of Science and Innovation (contract
TIN2015-65316) and the Generalitat de Catalunya, Spain (contract
2014-SGR-1051).

References

[1] A.L. Brown, R. Morrison, A generic persistent object store, Softw. Eng. J. 7
(2) (1992) 161–168, http://dx.doi.org/10.1049/sej.1992.0017.

[2] M.P. Atkinson, P.J. Bailey, K.J. Chisholm, P.W. Cockshott, R. Morrison, An
approach to persistent programming, Comput. J. 26 (4) (1983) 360, http:
//dx.doi.org/10.1093/comjnl/26.4.360.

[3] T.-H. Chen, W. Shang, Z.M. Jiang, A.E. Hassan, M. Nasser, P. Flora,
Detecting performance anti-patterns for applications developed using
object-relational mapping, in: Proceedings of the 36th International Con-
ference on Software Engineering, ICSE 2014, ACM, New York, NY, USA,
2014, pp. 1001–1012, http://dx.doi.org/10.1145/2568225.2568259.

[4] InterSystems, Caché for unstructured data analysis, 2018, URL https://
www.intersystems.com/products/cache/. (Accessed 08/10/2018).

[5] Actian, Actian NoSQL object database, 2018, URL https://www.actian.com/
data-management/nosql-object-database/. (Accessed 08/10/2018).

[6] Apache Software Foundation, Hibernate. Everything data, 2018, URL http:
//hibernate.org/. (Accessed 08/10/2018).

[7] RedHat Community Contributors, Apache OpenJPA, 2013, URL http://
openjpa.apache.org/. (Accessed 08/10/2018).

[8] DataNucleus Community Contributors, DataNucleus, 2018, URL http://
www.datanucleus.org/. (Accessed 08/10/2018).

[9] Neo4J Community Contributors, Neo4J OGM - An object graph mapping
library for Neo4j v3.1, 2018, URL https://neo4j.com/docs/ogm-manual/
current/. (Accessed 08/10/2018).

[10] J.E.B. Moss, Design of the mneme persistent object store, ACM Trans. Inf.
Syst. 8 (2) (1990) 103–139, http://dx.doi.org/10.1145/96105.96109, URL
http://doi.acm.org/10.1145/96105.96109.

[11] A. Tripathi, R. Wolfe, S. Koneru, Z. Attia, Management of persistent objects
in the nexus distributed system, in: Proceedings of the 2nd International
Workshop on Object Orientation in Operating Systems, IEEE, Washing-
ton, DC, USA, 1992, pp. 100–104, http://dx.doi.org/10.1109/IWOOOS.1992.
252992.

[12] B. Liskov, M. Castro, L. Shrira, A. Adya, Providing persistent objects in
distributed systems, in: R. Guerraoui (Ed.), ECOOP’ 99 — Object-Oriented
Programming, Springer Berlin Heidelberg, Berlin, Heidelberg, 1999,
pp. 230–257.

[13] dataClay Contributors, Dataclay - bsc-cns, 2018, URL https://www.bsc.es/
dataClay. (Accessed 11/10/2018).

[14] J. Martí, A. Queralt, D. Gasull, A. Barceló, J.J. Costa, T. Cortes, Dataclay: A
distributed data store for effective inter-player data sharing, J. Syst. Softw.
131 (2017) 129–145, http://dx.doi.org/10.1016/j.jss.2017.05.080, URL http:
//www.sciencedirect.com/science/article/pii/S0164121217301012.

[15] Hibernate Community Contributors, Hibernate documentation - chapter 19
- improving performance, 2018, URL https://docs.jboss.org/hibernate/orm/
3.3/reference/en/html/performance.html. (Accessed 08/10/2018).

[16] S. Garbatov, J. Cachopo, Data access pattern analysis and prediction for
object-oriented applications, INFOCOMP J. Comput. Sci. 10 (4) (2011) 1–14.

[17] R. Touma, A. Queralt, T. Cortes, M.S. Pérez, Predicting access to persis-
tent objects through static code analysis, in: New Trends in Databases
and Information Systems, Springer International Publishing, Cham, 2017,
pp. 54–62.

[18] N. Knafla, A prefetching technique for object-oriented databases, in: Ad-
vances in Databases, Vol. 1271, Springer-Verlag, Berlin, Heidelberg, 1997,
pp. 154–168, http://dx.doi.org/10.1007/3-540-63263-8_19.

[19] DataNucleus, DataNucleus - JDO fetch-groups, 2017, URL http:
//www.datanucleus.org/products/accessplatform_4_1/jdo/fetchgroup.html.
(Accessed 08/10/2018).

[20] O. Gierke, T. Darimont, C. Strobl, M. Paluch, Spring data JPA - Refer-
ence documentation, 2018, URL http://docs.spring.io/spring-data/jpa/docs/
current/reference/html/#jpa.entity-graph. (Accessed 08/10/2018).

[21] URL https://docs.jboss.org/hibernate/orm/3.3/reference/en/html/mapping.
html.

[22] Django, QuerySet API reference - Django documentation, 2018, URL
https://docs.djangoproject.com/en/1.9/ref/models/querysets/#django.db.
models.query.QuerySet.prefetch_related. (Accessed 08/10/2018).

[23] A. Ibrahim, W. Cook, Automatic prefetching by traversal profiling in object
persistence architectures, in: Proceedings of the 20th European Conference
on Object-Oriented Programming, in: ECOOP 2006, Springer-Verlag, Berlin,
Heidelberg, 2006, pp. 50–73, http://dx.doi.org/10.1007/11785477_4.

[24] J.-H. Ahn, H.-J. Kim, Dynamic SEOF: An adaptable object prefetch policy
for object-oriented database systems, Comput. J. 43 (6) (2000) 524–537,
http://dx.doi.org/10.1093/comjnl/43.6.524.

http://dx.doi.org/10.1049/sej.1992.0017
http://dx.doi.org/10.1093/comjnl/26.4.360
http://dx.doi.org/10.1093/comjnl/26.4.360
http://dx.doi.org/10.1093/comjnl/26.4.360
http://dx.doi.org/10.1145/2568225.2568259
https://www.intersystems.com/products/cache/
https://www.intersystems.com/products/cache/
https://www.intersystems.com/products/cache/
https://www.actian.com/data-management/nosql-object-database/
https://www.actian.com/data-management/nosql-object-database/
https://www.actian.com/data-management/nosql-object-database/
http://hibernate.org/
http://hibernate.org/
http://hibernate.org/
http://openjpa.apache.org/
http://openjpa.apache.org/
http://openjpa.apache.org/
http://www.datanucleus.org/
http://www.datanucleus.org/
http://www.datanucleus.org/
https://neo4j.com/docs/ogm-manual/current/
https://neo4j.com/docs/ogm-manual/current/
https://neo4j.com/docs/ogm-manual/current/
http://dx.doi.org/10.1145/96105.96109
http://doi.acm.org/10.1145/96105.96109
http://dx.doi.org/10.1109/IWOOOS.1992.252992
http://dx.doi.org/10.1109/IWOOOS.1992.252992
http://dx.doi.org/10.1109/IWOOOS.1992.252992
http://refhub.elsevier.com/S0167-739X(19)31429-3/sb12
http://refhub.elsevier.com/S0167-739X(19)31429-3/sb12
http://refhub.elsevier.com/S0167-739X(19)31429-3/sb12
http://refhub.elsevier.com/S0167-739X(19)31429-3/sb12
http://refhub.elsevier.com/S0167-739X(19)31429-3/sb12
http://refhub.elsevier.com/S0167-739X(19)31429-3/sb12
http://refhub.elsevier.com/S0167-739X(19)31429-3/sb12
https://www.bsc.es/dataClay
https://www.bsc.es/dataClay
https://www.bsc.es/dataClay
http://dx.doi.org/10.1016/j.jss.2017.05.080
http://www.sciencedirect.com/science/article/pii/S0164121217301012
http://www.sciencedirect.com/science/article/pii/S0164121217301012
http://www.sciencedirect.com/science/article/pii/S0164121217301012
https://docs.jboss.org/hibernate/orm/3.3/reference/en/html/performance.html
https://docs.jboss.org/hibernate/orm/3.3/reference/en/html/performance.html
https://docs.jboss.org/hibernate/orm/3.3/reference/en/html/performance.html
http://refhub.elsevier.com/S0167-739X(19)31429-3/sb16
http://refhub.elsevier.com/S0167-739X(19)31429-3/sb16
http://refhub.elsevier.com/S0167-739X(19)31429-3/sb16
http://refhub.elsevier.com/S0167-739X(19)31429-3/sb17
http://refhub.elsevier.com/S0167-739X(19)31429-3/sb17
http://refhub.elsevier.com/S0167-739X(19)31429-3/sb17
http://refhub.elsevier.com/S0167-739X(19)31429-3/sb17
http://refhub.elsevier.com/S0167-739X(19)31429-3/sb17
http://refhub.elsevier.com/S0167-739X(19)31429-3/sb17
http://refhub.elsevier.com/S0167-739X(19)31429-3/sb17
http://dx.doi.org/10.1007/3-540-63263-8_19
http://www.datanucleus.org/products/accessplatform_4_1/jdo/fetchgroup.html
http://www.datanucleus.org/products/accessplatform_4_1/jdo/fetchgroup.html
http://www.datanucleus.org/products/accessplatform_4_1/jdo/fetchgroup.html
http://docs.spring.io/spring-data/jpa/docs/current/reference/html/#jpa.entity-graph
http://docs.spring.io/spring-data/jpa/docs/current/reference/html/#jpa.entity-graph
http://docs.spring.io/spring-data/jpa/docs/current/reference/html/#jpa.entity-graph
https://docs.jboss.org/hibernate/orm/3.3/reference/en/html/mapping.html
https://docs.jboss.org/hibernate/orm/3.3/reference/en/html/mapping.html
https://docs.jboss.org/hibernate/orm/3.3/reference/en/html/mapping.html
https://docs.djangoproject.com/en/1.9/ref/models/querysets/#django.db.models.query.QuerySet.prefetch_related
https://docs.djangoproject.com/en/1.9/ref/models/querysets/#django.db.models.query.QuerySet.prefetch_related
https://docs.djangoproject.com/en/1.9/ref/models/querysets/#django.db.models.query.QuerySet.prefetch_related
http://dx.doi.org/10.1007/11785477_4
http://dx.doi.org/10.1093/comjnl/43.6.524

Please cite this article as: R. Touma, A. Queralt and T. Cortes, CAPre: Code-Analysis based Prefetching for Persistent Object Stores, Future Generation Computer Systems
(2019), https://doi.org/10.1016/j.future.2019.10.023.

16 R. Touma, A. Queralt and T. Cortes / Future Generation Computer Systems xxx (xxxx) xxx

[25] N. Knafla, Analysing object relationships to predict page access for
prefetching, in: Proceedings of the 8th International Workshop on Per-
sistent Object Systems, POS8, Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 1999, pp. 160–170.

[26] Z. He, A. Marquez, Path and cache conscious prefetching (PCCP), VLDB J.
16 (2) (2007) 235–249.

[27] K.M. Curewitz, P. Krishnan, J.S. Vitter, Practical prefetching via data com-
pression, SIGMOD Rec. 22 (2) (1993) 257–266, http://dx.doi.org/10.1145/
170036.170077.

[28] P.A. Bernstein, S. Pal, D. Shutt, Context-based prefetch for implementing
objects on relations, in: Proceedings of the 25th International Conference
on Very Large Data Bases, VLDB ’99, Morgan Kaufmann Publishers, San
Francisco, CA, USA, 1999, pp. 7–10.

[29] W. Han, K. Whang, Y. Moon, A formal framework for prefetching based on
the type-level access pattern in object-relational DBMSs, IEEE Trans. Knowl.
Data Eng. 17 (10) (2005) 1436–1448, http://dx.doi.org/10.1109/TKDE.2005.
156.

[30] W. Han, W. Loh, K. Whang, Type-level access pattern view: A technique
for enhancing prefetching performance, in: Proceedings of the 11th In-
ternational Conference on Database Systems for Advanced Applications,
DASFAA’06, Springer-Verlag, Berlin, Heidelberg, 2006, pp. 389–403, http:
//dx.doi.org/10.1007/11733836_28.

[31] S.A. Blair, On the Classification and Evaluation of Prefetching
Schemes (Ph.D. thesis), University of Glasgow, 2003.

[32] N. Knafla, Prefetching Techniques for Client/Server, Object-Oriented
Database Systems (Ph.D. thesis), University of Edinburgh, 1999.

[33] C. Gerlhof, A. Kemper, A multi-threaded architecture for prefetching in
object bases, in: Proceedings of the 4th International Conference on
Extending Database Technology: Advances in Database Technology, EDBT
’94, vol. 779, Springer-Verlag, New York, NY, USA, 1994, pp. 351–364,
http://dx.doi.org/10.1007/3-540-57818-8_63.

[34] W.-S. Han, Y.-S. Moon, K.-Y. Whang, Prefetchguide: capturing navigational
access patterns for prefetching in client/server object-oriented/object-
relational DBMSs, Inf. Sci. 152 (2003) 47–61.

[35] G. Fraser, A. Arcuri, A large-scale evaluation of automated unit test
generation using evosuite, ACM Trans. Softw. Eng. Methodol. 24 (2) (2014)
8:1–8:42, http://dx.doi.org/10.1145/2685612.

[36] IBM Wala, Wala wiki, 2015, URL http://wala.sourceforge.net/wiki/index.
php/Main_Page. (Accessed 08/10/2018).

[37] M.J. Carey, D.J. DeWitt, J.F. Naughton, The oo7 benchmark, in: Proceedings
of the 1993 ACM SIGMOD International Conference on Management of
Data, SIGMOD ’93, ACM, New York, NY, USA, 1993, pp. 12–21, http:
//dx.doi.org/10.1145/170035.170041.

[38] R. Sedgewick, K. Wayne, Algorithms, 4th edition - graphs, 2016, URL
https://algs4.cs.princeton.edu/40graphs/. (Accessed 09/10/2018).

[39] A. Jaleel, H.H. Najaf-abadi, S. Subramaniam, S.C. Steely, J. Emer, Cruise:
Cache replacement and utility-aware scheduling, SIGARCH Comput. Archit.
News 40 (1) (2012) 249–260, http://dx.doi.org/10.1145/2189750.2151003,
URL http://doi.acm.org/10.1145/2189750.2151003.

[40] J. Jeong, M. Dubois, Cost-sensitive cache replacement algorithms, in:
Proceedings of the 9th International Symposium on High-Performance
Computer Architecture, IEEE Computer Society, Washington, DC, USA,
2003, pp. 327–337, http://dx.doi.org/10.1109/HPCA.2003.1183550.

[41] G. Keramidas, P. Petoumenos, S. Kaxiras, Caché replacement based on
reuse-distance prediction, in: Proceedings of the 25th International Con-
ference on Computer Design, ICCD’07, IEEE, Washington, DC, USA, 2007,
pp. 245–250, http://dx.doi.org/10.1109/ICCD.2007.4601909.

[42] C.-W. Lee, K.-Y. Hsieh, S.-Y. Hsieh, H.-C. Hsiao, A dynamic data
placement strategy for hadoop in heterogeneous environments, Big
Data Res. 1 (2014) 14–22, http://dx.doi.org/10.1016/j.bdr.2014.07.002,
URL http://www.sciencedirect.com/science/article/pii/S2214579614000033,
Special Issue on Scalable Computing for Big Data.

[43] N. Maheshwari, R. Nanduri, V. Varma, Dynamic energy efficient data place-
ment and cluster reconfiguration algorithm for MapReduce framework,
Future Gener. Comput. Syst. 28 (1) (2012) 119–127, http://dx.doi.org/
10.1016/j.future.2011.07.001, URL http://www.sciencedirect.com/science/
article/pii/S0167739X1100135X.

Rizkallah Touma is a Knowledge Solutions Engineer
with the Semantic Business Unit (SEMBU) at Everis
Spain, where he is working on various commercial
and research projects in the Semantic Web area. He
is also a part-time lecturer in master and postgraduate
courses on Big Data Management at the UPC School of
Professional and Executive Development. He obtained
a PhD in Computer Architecture from the Universitat
Politecnica de Catalunya (UPC) in 2019 and a joint MSc
degree in Business Intelligence from the Universitat
Politecnica de Catalunya (UPC) and the Universit Libre

de Bruxelles (ULB) in 2015. His main research interests include Big Data
Management, Knowledge Management and Engineering and Semantic Web
technologies.

Anna Queralt is a senior researcher at the Barcelona
Supercomputing Center (BSC) since 2012, where she
leads the Distributed Object Management research
line. She holds a PhD in Computer Science (2009)
from the Universitat Politcnica de Catalunya (UPC-
BarcelonaTech). She was a faculty member at the UPC
from 2003 to 2012, coordinator and lecturer in the
Technology for Big Data course at the ESADE Business
School from 2016 to 2018, and is lecturing master and
postgraduate courses on Big Data Management at the
UPC School of Professional and Executive Development

since 2015. She was a member of the Steering Committee of the Standard
Performance Evaluation Corporation (SPEC) Research Group, and a member
of the SPEC Big Data Working Group. Her research interests are related to
data sharing, distributed storage systems, data management in IoT, and the
integration of data in the programming model to facilitate the development of
data-intensive applications. She has served as a chair, organizer, and program
committee member of several international conferences and workshops, and has
participated in national and European projects related to these areas such as
EUDAT, BigStorage, EXPERTISE, mF2C, CLASS or ELASTIC. The research line she
leads has been developing the dataClay distributed storage platform for the last
6 years, being evolved and leveraged in these projects.

Toni Cortes is an associate professor at Universitat
Politcnica de Catalunya (since 1998). He received his
M.S. in computer science in 1992 and his Ph.D. also in
computer science in 1997 (both at Universitat Politc-
nica de Catalunya). Currently he develops his research
at the Barcelona Supercomputing Center, where he
acted as the leader of the storage system research
group from 2006 til 2019. Since 1992, Toni as been
teaching operating system and computer architecture
courses at the Barcelona school of informatics (UPC)
and from 2000 to 2004 he also served as vice dean

for international affair at the same school. His research concentrates in storage
systems, programming models for scalable distributed systems and operating
systems. He has published 118 technical papers (28 journal papers and 90
international conferences and workshops), 3 book chapters, and has co-edited
one book on mass storage systems. In addition, he has also advised 15 PhD
thesis. Dr. Cortes has been involved in several EU projects (Paros, Nanos,
POP, XtreemOS, Scalus, IOlanes, PRACE, Mont-Blanc, EUDAT, BigStorage, IOStack,
NextGenIO, Rethinkbig, Severo Ochoa, mF2C, Xpertise, and Elastic) and has
also participated in cooperation with IBM (TJW research lab) on scalability
issues both for MPI and UPC, and Intel in understanding Luster behavior and
heterogeneous memory placement. He is also editor of the Cluster Computing
Journal and served as the coordinator of the SSI task in the IEEE TCSS. He has also
served in many international conference program committees and/or organizing
committees and was general chair for the Cluster 2006 and 2021 conference,
LaSCo 2008, XtreemOS summit 2009, and SNAPI 2010. He is also served as the
chair of the steering committee for the Cluster conference series (2011-2014).
His involvement in IEEE CS has been awarded by the ‘‘Certificate of appreciation’’
in 2007.

http://refhub.elsevier.com/S0167-739X(19)31429-3/sb25
http://refhub.elsevier.com/S0167-739X(19)31429-3/sb25
http://refhub.elsevier.com/S0167-739X(19)31429-3/sb25
http://refhub.elsevier.com/S0167-739X(19)31429-3/sb25
http://refhub.elsevier.com/S0167-739X(19)31429-3/sb25
http://refhub.elsevier.com/S0167-739X(19)31429-3/sb25
http://refhub.elsevier.com/S0167-739X(19)31429-3/sb25
http://refhub.elsevier.com/S0167-739X(19)31429-3/sb26
http://refhub.elsevier.com/S0167-739X(19)31429-3/sb26
http://refhub.elsevier.com/S0167-739X(19)31429-3/sb26
http://dx.doi.org/10.1145/170036.170077
http://dx.doi.org/10.1145/170036.170077
http://dx.doi.org/10.1145/170036.170077
http://refhub.elsevier.com/S0167-739X(19)31429-3/sb28
http://refhub.elsevier.com/S0167-739X(19)31429-3/sb28
http://refhub.elsevier.com/S0167-739X(19)31429-3/sb28
http://refhub.elsevier.com/S0167-739X(19)31429-3/sb28
http://refhub.elsevier.com/S0167-739X(19)31429-3/sb28
http://refhub.elsevier.com/S0167-739X(19)31429-3/sb28
http://refhub.elsevier.com/S0167-739X(19)31429-3/sb28
http://dx.doi.org/10.1109/TKDE.2005.156
http://dx.doi.org/10.1109/TKDE.2005.156
http://dx.doi.org/10.1109/TKDE.2005.156
http://dx.doi.org/10.1007/11733836_28
http://dx.doi.org/10.1007/11733836_28
http://dx.doi.org/10.1007/11733836_28
http://refhub.elsevier.com/S0167-739X(19)31429-3/sb31
http://refhub.elsevier.com/S0167-739X(19)31429-3/sb31
http://refhub.elsevier.com/S0167-739X(19)31429-3/sb31
http://refhub.elsevier.com/S0167-739X(19)31429-3/sb32
http://refhub.elsevier.com/S0167-739X(19)31429-3/sb32
http://refhub.elsevier.com/S0167-739X(19)31429-3/sb32
http://dx.doi.org/10.1007/3-540-57818-8_63
http://refhub.elsevier.com/S0167-739X(19)31429-3/sb34
http://refhub.elsevier.com/S0167-739X(19)31429-3/sb34
http://refhub.elsevier.com/S0167-739X(19)31429-3/sb34
http://refhub.elsevier.com/S0167-739X(19)31429-3/sb34
http://refhub.elsevier.com/S0167-739X(19)31429-3/sb34
http://dx.doi.org/10.1145/2685612
http://wala.sourceforge.net/wiki/index.php/Main_Page
http://wala.sourceforge.net/wiki/index.php/Main_Page
http://wala.sourceforge.net/wiki/index.php/Main_Page
http://dx.doi.org/10.1145/170035.170041
http://dx.doi.org/10.1145/170035.170041
http://dx.doi.org/10.1145/170035.170041
https://algs4.cs.princeton.edu/40graphs/
http://dx.doi.org/10.1145/2189750.2151003
http://doi.acm.org/10.1145/2189750.2151003
http://dx.doi.org/10.1109/HPCA.2003.1183550
http://dx.doi.org/10.1109/ICCD.2007.4601909
http://dx.doi.org/10.1016/j.bdr.2014.07.002
http://www.sciencedirect.com/science/article/pii/S2214579614000033
http://dx.doi.org/10.1016/j.future.2011.07.001
http://dx.doi.org/10.1016/j.future.2011.07.001
http://dx.doi.org/10.1016/j.future.2011.07.001
http://www.sciencedirect.com/science/article/pii/S0167739X1100135X
http://www.sciencedirect.com/science/article/pii/S0167739X1100135X
http://www.sciencedirect.com/science/article/pii/S0167739X1100135X

	CAPre: Code-Analysis based Prefetching for Persistent Object Stores
	Introduction
	Contributions.
	Paper Organization

	Related work
	Motivating example
	Approach formalization
	Initial definitions
	Type graphs
	Application type graph
	Method type graph
	Augmented method type graph

	Prefetching hints
	Runtime application behavior

	System overview
	Static code analysis component
	Wala AST and IR
	Constructing augmented type graphs
	Generating prefetching hints
	Computational complexity of the static code analysis

	Source code injection component
	Generating prefetching methods
	Enabling parallel prefetching
	Injecting prefetching method invocations

	Prefetching in dataClay
	Evaluation
	Static-code analysis time
	Evaluation of application performance
	OO7
	Wordcount
	K-Means
	Princeton Graph Algorithms

	Discussion

	Conclusions
	Declaration of competing interest
	Acknowledgments
	References

