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Abstract. This research deals with the solution of geotechnical problems on interme-
diate length scales, i.e. when the length scale of interest is larger than the size of the
grains of the soil (or rockfill) but the medium cannot be considered as a continuous body.
This is because on such scales, despite the large number of involved grains, the volumetric
average stress fluctuates around the mean value and the fluctuation is due to the truly
discrete nature of the soil. Then, the smooth stress field that would be predicted by
continuum mechanics approaches is replaced by a stochastic system of interparticle forces
forming force chains. The forces can be transformed into equivalent stresses by means of
homogenization techniques, but the obtained fields are again non-smooth and stochastic.
A classical statistical mechanics framework is followed to anticipate the probability dis-
tribution functions of equivalent (extensive) stresses according to the macroscopic con-
straints of the problem. In particular, we get stochastic models for two seminal problems
in geotechnics: the at rest lateral earth pressure acting on a retaining wall and the vertical
stress at a given point in the soil that is caused by a vertical surface load. The theory is
validated through massive numerical simulation with the Discrete Element Method.
Mesoscale geotechnical analysis can find its main applications in the case of rockfill or
other very coarse granular materials. However, it could be useful as well for laboratory,
numerical and theoretical researches that are approached on small length scales. This
theoretical framework contributes to fill the gap between micro and macro geotechnics
and the resulting stochastic models may be useful for reliability analyses.

1 INTRODUCTION

There is a class of problems in soil mechanics that deals with the estimation of the
stress field caused by the application of a certain load on the soil. The stress field is
needed to verify whether these stresses can be withstood by the soil or to determine the
deformations of the soil, which must usually remain limited.
In many seminal problems in soil mechanics the stress field was computed in the frame-
work of the theory of elasticity [1]. For example, for the case of a vertical surface load,
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(a) The solution in a continuous, homogeneous,

isotropic and lineal elastic half-space obtained

from continuum mechanics.

(b) A solution in a half-space made of discrete

and elastic particles obtained from DEM simu-

lation.

Figure 1: Flamant’s problem (with uniform load of magnitude p on a strip of width 2a).

Boussinesq [2], Flamant [3], Newark, etc. provided solutions by the end of the XIXth

century. In all these cases the soil is supposed to be a half-space that is continuous,
homogeneous, isotropic and linear elastic. Although this behavior may be a quite se-
vere approximation, it can be sometimes useful as it gives reasonably accurate solutions.
When this is not possible, rather complicated constitutive relationships are needed. Many
constitutive models have been proposed to capture the inhomogeneous, anisotropic, non-
linear or non-elastic behavior of soils [4]. These phenomenological laws are calibrated
from laboratory experiments and, as common numerical methods are capable for using
them, many geotechnical problems can be solved with noteworthy success. However it is
not yet clear how geotechnical problems can be solved when the truly discrete nature of
the soils cannot be ignored. Although such situation is not very common (since most of
the time the length scale of interest is much larger than the typical size of soil particles
and it behaves as a continuous body) there is no clear procedure to estimate the stresses
(and their variability) in such circumstances. This could be the case of large particles (e.g.
rockfill, rock blocks) or micromechanical approaches in which both length and grain scales
come together and the particulated nature of soil has consequences. The most direct one
is the existence of fluctuations of stresses (or forces [5]), with local values that may be
much higher than the average.
Stress fluctuations are possible because the voids interrupt the continuity of the stress

field from particle to particle. The support of the own weight or of any external load is
provided by a system of interparticle forces, which form force chains [6, 7, 8, 9, 10, 11,
12, 13, 14]. The next two significant features invalidate continuum based approaches:

1. the stress field may sharply change from a particle to its immediate neighbors,

2. the problem is stochastic: if particles are packed in a different way, a new equilibrium
is reached with a completely different system of interparticle forces.
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This is the reason why the equivalent stress field of a particle can only be anticipated with
some uncertainty. This work aims at establishing the statistical distribution of stress
values expected at a given position, what will make it possible to get expected values
with uncertainty intervals. This is done by following a statistical mechanics approach
that is presented in section 2. Then this approach is applied to two seminal problems in
geotechnics and verified trough numerical simulation (section 3). Results are shown in
section 4 and discussed in section 5.

2 STATISTICAL MECHANICS

Statistical mechanics is the branch of physics that deals with systems made of a large
number of constituents [15]. Although it was originally developed for thermal systems,
several applications for granular media have been sought for [16, 17, 18, 19, 20, 21],
starting from first Edward’s model in 1989. Some of these approaches have been set up
by considering the role played by the extensive stress (i.e. the product of the volumetric
average of the stress within a region by the volume of that region) [19, 20, 21]. Following
these ideas, a theoretical model for geotechnical applications has been set up [22]. This
model is outlined in the following paragraphs:

1. There is vast number of ways of packing a granular system in static equilibrium ob-
jected to some body forces and boundary conditions. Each new random realization
of an experiment will end up with one of these solutions. In the absence of any
further information all the solutions are supposed to be equally likely.

2. Each packing can be partitioned into domains according to a Voronoi diagram. Each
cell includes the space occupied by the particle and an associated part of void space.

3. The volumetric average of the stress field within a cell can be obtained from the
interparticle forces that keep the corresponding particle in static equilibrium [23]:

〈
σm
ij

〉
=

1

V m

∫
σm
ij dV

m =
1

V m

∑

l

xmn
i Fmn

j , (1)

where V m is the volume of the cell associated to particle m, Fmn
j is the j-component

of the interaction force between particles m and n and xmn
i is the i-component of

the point of application of the force. The tensor product of forces by positions is the
so-called extensive stress Σm

ij =
∑

l x
mn
i Fmn

j . This tensor is equal to the volumetric

average of the stress field multiplied by the volume of the cell, Σm
ij =

〈
σm
ij

〉
V m. The

extensive stress is expressed in energy units and is additive (the extensive stress of
a composite body is equal to the sum of the extensive stress of its components).

4. The volumetric average of the stress field within a control volume V c (< V m) located
at xc, in the cell of particle m is supposed to be equal to the volumetric average of
the stress of the cell. This assumption becomes true as V c approximates V m.
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5. A statistical ensemble is an idealization consisting of a large number of virtual copies
of the system randomly generated and driven according to the same procedure.
Statistical samples can be generated by gathering the values of the extensive stress
Σij of a control volume V c that is located at xc.

6. Normal extensive stresses (Σxx,Σyy,Σzz) are supposed to take any positive value
provided that the average value over an ensemble is finite and corresponds to the
solution of the equivalent boundary value problem (this is the value of the corre-
sponding stress multiplied by the control volume: µΣii = σiiV

c). Values obtained
from different packings are uncorrelated and the three normal and shear compo-
nents are uncorrelated from each other. Shear extensive stresses take any positive
or negative value, provided that the distribution has a specified variance.

7. Under these constraints, the most probable statistical distribution of extensive nor-
mal components is an exponential distribution (similar to that of the Maxwell-
Boltzmann statistics but with the extensive stress playing the role of energy):

f(Σii) =
1

µΣii

e−Σii/µΣii . (2)

For shear stresses, this model is incomplete. If either positive or negative values were
possible and the variance was defined, then a normal distribution N(µΣij ,σΣij) would

be expected, because this is the PDF of maximum entropy under such constraints.
However a procedure to anticipate of such variance in a given problem is still missing.

3 METHODOLOGY

3.1 Estimation of the expected probability distribution function in two geotech-
nical problems

Two seminal problems in geotechnics have been analyzed in 2D, x-z plane, for the lack
of simplicity: a half-space made of almost equal sized disks under its own weight and the
same space supporting a vertical finite surface load.

Gravity: The gravity causes a stress field that at any point can be determined from
the weight of the overlying material:

σzz,g = γz, (3)

where γ is the unitary weight (in kN/m3) and z is the depth. γ = (1− n) ρsg, ρs is the
density of the material of the particles, g is the gravitational acceleration and n is the
average porosity of the overlying packing.
The horizontal stress also increases with depth, but it does at a rate given the at-rest
coefficient of lateral earth pressure:

σxx,g = K0σzz,g. (4)
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Just by the action of the gravity, vertical and horizontal stresses are aligned with principal
stresses,

σxz,g = 0.0. (5)

Vertical surface load: The stress field caused by a vertical surface load is obtained
from classical solutions (e.g. Boussinesq and Flamant problems, explained in [1]). In both
cases the stresses depend not only on the depth but also on the horizontal distance to the
applied load. In 2D, the stresses caused by a surface load p are given by:

σzz,p =
p

π
[(θ1 − θ2) + sin θ1 cos θ1 − sin θ2 cos θ2] , (6)

σxx,p =
p

π
[(θ1 − θ2)− sin θ1 cos θ1 + sin θ2 cos θ2] , (7)

and
σxz,p =

p

π

[
cos θ2

2 + cos θ1
2
]
, (8)

with θ1 = arctan (x−X1)/z and θ2 = arctan (x−X2)/z and X1, X2 the left and right
limits of the surface load.

Gravity + Vertical surface load: As the material is supposed to be elastic, both
solutions can be superposed in such a way that σij = σij,g + σij,p. For any stress state,
a shear indicator can be defined as the ratio of the maximum shear stress to the mean
stress s = (σ1 − σ3) / (σ1 + σ3).

Once the expected values of stresses are known, the PDFs of extensive stresses can
be established. The mean values at any control volume are given by µΣij = σijV

c. For
normal components, these values set the scale of the exponential distributions. Regarding
extensive shear stresses, the PDF remains unknown.

Finally, when only the gravity acts, the at-rest coefficient of lateral pressure would
follow the next ratio distribution:

f(K0) =
µK0

(µK0 +K0)
2 , (9)

whose expected value would be µK0 = µΣxx/µΣzz.

3.2 Numerical validation

A series of numerical experiments were performed with the discrete element method [24],
implemented in YADE-DEM [25]1. A common frictional-Hookean DEM approach was fol-
lowed. Two types of numerical experiments were performed: Case 1 (gravity) and Case 2
(gravity + surface load). The parameters used in the simulations are included in Table 1.

1https://yade-dem.org/.
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Table 1: Parameters used in the DEM numerical simulations to generate ensemble sam-
ples.

Parameter Case1 Case2 Units

Number of particles N 5000 -

Number of experiments # 1812 5324 -

Simulation width L 1.0 1.0 m

Mean diameter D 0.01 m

Diameter dispersion
∆D
D 0.05 -

Young’s modulus E 1.0 · 107 kPa

Material density ρs 2.6 · 103 kg.m−3

Interparticle friction Φ π/6 0 rad

Loading width 2a - 0.045 m

Surface load p - 44.4 kPa

Control point O (xO, zO) (0.00, 0.29) (0.00, 0.10) m

Control point A (xA, zA) - (0.08, 0.10) m

Control point B (xB, zB) - (0.15, 0.10) m

Packings were generated by randomly pouring 5000 particles within a 1.0 m wide domain
and waiting for an almost complete dissipation of the kinetic energy. The diameters of
disks uniformly laid within the interval D±∆D. Gravity acted downwards with g = 9.81
m/s2. Surface loads were applied by gently and vertically (downwards) moving a rigid
body of length 2a and centered at x = 0.0. The simulation was stoped when the vertical
reaction of the soil on the rigid element was equal to 2ap.
A statistical sample of extensive stress values was measured at different control positions
(see 1). In Case 1 the control point was located in the middle of the simulation box
at a depth zc ± ∆zc from the surface. In Case 2, three control points were considered:
point O -right below the center of the surface load- and points A and B -located at the
same depth than O but horizontally shifted (leftwards and rightwards) a certain distance-.
These points were selected because the total stress induced there by the surface load σzz,p

is noticeable, with respective ratios σzz,p/σzz,g of 4.59, 2.15 and 0.65. The simulation box
was large enough to ensure that the stress field caused by the surface loading p is below
0.05p at the boundaries. The control volume was V c = 2.5 · 10−5 m2 � D2/4.
As the average height of the half-space H (and hence the porosity n) as well as the final
position of the footing Hf slightly changed with the realization of the experiment, there
are some uncertainties in the measurement. H±∆H and n±∆n were computed after per-
forming a linear regression of the vertical stress with the depth (Eq. 3, with z = H − hi).
The final position of the footing and the actual surface load, with their variation inter-
vals, are directly measured during the numerical experiments. An additional source of
uncertainty is caused by the fact that the position of the control point may separate up
to a distance � D/2 from the center of the particle used to compute the extensive stress
of the cell.
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(a) Normal extensive stresses. (b) Shear extensive stress.

Figure 2: Expected and measured statistical distribution of extensive stresses in Case 1.

4 RESULTS

The obtained height of the half-space after pouring the particles under the action of
gravity was H = 0.49 ± 0.01 (average porosity n = 0.22 ± 0.01) for interparticle friction
angle φ = π/6 and H = 0.46±0.02 m (n = 0.15±0.03) for frictionless particles. In Case 1,
the measured at-rest coefficient of lateral earth pressure (sample mean) was 〈K0〉 = 0.83.
The expected vertical extensive stress was Σzz = (19.68 ± 0.42) · 10−2 Jul and the mea-
sured sample mean was 〈Σzz〉 = 19.42 · 10−2 Jul, perfectly lying within the incertitude
interval. In Fig 2 the statistical distribution of vertical and horizontal extensive stresses
of the ensemble are compared to the expected exponential distributions.

In Case 2, 〈K0〉 = 0.95 after the gravity deposition. The action of the surface load
increased shear ratios from sO = sA = sB = 0.023 to sO = 0.693, sA = 0.614 and sB =
0.466 and rotated the principal stressess 33.9◦ and 51.6◦ in points A and B, respectively,
and did not rotate them in point O. The expected vertical extensive stress at points O,
A and B were ΣO

zz = (33.17± 1.00) · 10−2 Jul, ΣA
zz = (18.73± 1.40) · 10−2 Jul and ΣB

zz =
(9.81± 1.01) · 10−2 Jul. The sample mean at the control points were

〈
ΣO

zz

〉
= 32.6 · 10−2

Jul,
〈
ΣO

zz

〉
= 17.8 · 10−2 Jul and

〈
ΣB

zz

〉
= 8.9 · 10−2, lying within the interval in all the

cases. In Fig. 4 the PDFs are plotted. In the three cases, the distributions seem to
follow the exponential distribution predicted by the proposed model. The fitting with
the exponential distribution is better in Case 2 than in Case 1, something that could be
related to the higher shear ratios and the stress rotation.

5 DISCUSSION

The statistical distributions of extensive stress measured with DEM fit quite well those
that were predicted under certain hypotheses: exponential distributions for extensive
normal stresses and normal distribution for extensive shear stresses. The fitting is better

7

418



Ignacio González Tejada

(a) Normal extensive stresses. The dotted

line corresponds to the mean K0 value.

(b) At-rest coefficient of earth trust. The

doted line is the expected ratio distribution

resulting from two independiently exponen-

tially distributed normal stresses

Figure 3: Measured normal extensive stresses and K0 in Case 1.

Figure 4: Expected and measured statistical distribution of vertical extensive stress in
Case 2.
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when a vertical surface load is acting after the deposition by gravity than in the the case
that there is no such load. This could have to do with the fact that the stresses obtained
after the gravity deposition were asymmetrically increased and modified during the ap-
plication of the surface load. This higher level of shear and the stress rotation could have
driven the distribution of forces and stresses towards the expected PDFs.
These result are interesting for geotechnical applications since they provide a way to solve
geotechnical problems when particle and length scale of interest are close. For example,
let be a rigid rectangular framework of width L covered with a layer of coarse granular fill
(of depth H). Continuum based approaches would predict2 that the total load on the top
of the framework would correspond to the weight of the overlaying material γHL, being
γ the unitary weight of the fill. However if the discrete nature of the filling is considered,
the total load will fluctuate around the mean, especially when the number of particles
interacting with the framework (N = L/D) is small. The model here presented would
anticipate that, with 100 particles interacting with the top of the framework, in 5% of
cases the total pressure would be 20% higher than the mean value. Another example of
interest could be the estimation of the total horizontal force acting on a block of an earth
retaining wall that is supporting a rockfill.

6 CONCLUSIONS

- The solution of geotechnical problems in truly discrete media needs a stochastic
model that provides interval estimations of the stress at a given point, rather than
a point estimation.

- A simplistic model based on classical statistical mechanics has been set up to an-
ticipate the probability distribution function of the extensive stresses (this is the
average vertical stress field of a domain multiplied by its volume).

- This approach has been used to determine the PDFs of extensive stresses in two
cases: an elastic half-space under its own weight and the same case with a vertical
finite surface load. The mean value of the stresses is got from classical solutions.

- The model predicts that the PDF of normal components is an exponential distribu-
tion, while that of the shear extensive stresses could be normally distributed.

- Massive DEM simulation have been used to generate statistical samples of values
of extensive stresses at several control points. The matching between expected and
obtained PDFs is good, especially for practical purposes.

- Anticipating the PDF of extensive stresses can be very useful when the size of the
discrete particles and the length scale of the problem come close. For example,
this approach could provide the probability of finding stresses that double the value
obtained from the corresponding continuum approach.

2Provided that the stiffness of the fill and framework are the same.)
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- This research fills a gap between discrete and continuum geotechnical models and
opens a way to treat other seminal problems in geotechnics.
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[11] Farhang Radjai, Stéphane Roux, and Jean Jacques Moreau. Contact forces in a gran-
ular packing. Chaos: An Interdisciplinary Journal of Nonlinear Science, 9(3):544–
550, 1999.

[12] T. S. Majmudar and R. P. Behringer. Contact force measurements and stress-induced
anisotropy in granular materials. Nature, 435(7045):1079–1082, 2005.

10

421



Ignacio González Tejada
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blies. Géotechnique, 29(1):47–65, 1979.
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