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Abstract. The inter-particle friction is known to be an important contributor to the strength 
and deformation characteristics in granular materials. The mechanism of inter-particle friction 
to the macroscopic responses can be explained by microscopic investigations. Based on the 
discrete element method (DEM), a series of true triaxial tests for the cubic granular assembly 
are carried out and the effects of inter-particle friction coefficient (μ) on the evolutions of 
macro- and micromechanical parameters of granular materials are studied. The macroscopic 
stress, the distribution of coordination numbers and contact force with regard to strong and 
weak contact networks are concerned, as well as the corresponding fabric tensor and 
anisotropies. Findings indicate that increasing inter-particle friction sharpens the peak value 
of deviatoric stress and enhances the degree of dilatancy of the granular assembly at the 
macroscopic level. From the microscopic perspective, the distribution of the coordination 
number of the weak contact system varies dramatically, while the number of particles with 
smaller coordination number in the strong contact system changes little with different μ. 
Besides, the difference between strong and weak contact networks is enlarged, and anisotropy 
indicators are significantly enhanced, which strengthen the bearing ability of anisotropic 
stresses in granular materials.  

 
 
1 INTRODUCTION 

Granular materials are closely linked to our daily life. Many important infrastructures 
concerning the quality and safety of our everyday life, such as rockfill dams, dikes and 
foundations, are built with geotechnical friction-dissipative granular materials. The 
performance of granular materials under external loads directly affects the design, 
construction and operation of these structures [1]. Under shear, granular materials exhibit 
extremely complex mechanical behaviors at the macroscopic level while the typical multi-
scale features contribute a lot to the overall complexity [2]. The granular materials are 
composed of discrete particles whose macroscopic responses are vitally interrelated to their 
interaction. Inter-particle friction as one of the key factors affecting the interplay between 
particles, may significantly contribute to the macro- and micro-responses of granular 
materials. 

DEM (Discrete Element Method) has demonstrated its ability in reproducing the 
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macroscopic responses and exploring the microscopic mechanism of granular materials [3]. 
Based on DEM simulations of granular assemblies, contact orientation [4, 5], force transmission 
[6, 7], contact networks [14] are regarded as the important characterization of the microstructure. 
Besides, the fabric tensor [9, 10, 11, 12] has been defined to measure the intensity and orientation 
of the contact texture anisotropy.  

 The interplay between particles is the intrinsic factor that causes the macroscopic 
responses of granular materials. To figure out the effects of inter-particle friction on granular 
materials, Rothenburg et al. [13] observed the relationship between void ratio and coordination 
number along different inter-particle friction by biaxial tests. Huang et al. [14] evaluated the 
sensitivity of critical state behaviors to inter-particle friction. Maya et al. [15]  identified that 
increasing inter-particle friction promotes the formation of straighter chains and a greater 
degree of branching in the force chain network by two-dimensional simulations. Antoy et al. 
[16] investigated how particle-scale friction affect the mechanism of mobilization of 
macroscopic shear strength by conventional triaxial tests. However, true triaxial tests are 
rarely used in these simulations, which can reflect the real situation in nature or engineering. 

The main purpose of this paper is to investigate the effects of inter-particle friction on the 
characteristic behaviors of granular materials under true triaxial tests. The stress–strain 
relationships and peak state of deviatoric stress are presented. From the view of strong-weak 
contact network, the micro-responses are explored, including the coordination number, the 
contact force, the fabric tensors and the anisotropies. The contribution of micro-investigations 
to macro-mechanical properties is further discussed.  

2 DEM SIMULATIONS OF TRUE TRIAXIAL TESTS 

2.1 Stress-strain invariants 

The stress invariants describing true triaxial stress state are generalized shear stress q, 
average hydrostatic pressure p and Lode angle θσ: 
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The intermediate principal stress ratio b responses the relative magnitude of the 

intermediate principal stress σ2 between the minor principal stress σ3 and the major principal 
stress σ1. The range of b is 0≤b≤1. The Lode angle θσ defines the angle between the major 
principal stress and the deviatoric part of stress in the principal stress space. The true triaxial 
test with b = 0.0 represents the triaxial compression test (σ2 = σ3, θσ=0) and b = 1.0 indicates 
the traxial extension test (σ1 = σ2, θσ = π/3).  

2.2 Sample preparation and loading paths 
The numerical sample is composed of 31 253 non-contacting spherical particles with 

Gaussian distribution in a 400mm×400mm×400mm cube. The minimum and maximum 
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particle sizes are 2 and 8.5 mm, respectively. Fig.1 shows the particle size distribution (PSD). 
In order to generate isotropic samples in the initial fabrics, we use the displacement control to 
compress the samples with a constant-speed in all directions until the target size. After that, 
isotropic consolidation is carried out and three-dimensional isobaric stress is applied to the 
specimen until the desired confining pressure 0.5 MPa is reached. Finally, the initial void 
ratio of the specimen is 0.582. The Hertz–Mindlin contact model is adopted. The inter-particle 
friction coefficient μ during loading process is set as 0.05, 0.1, 0.2, 0.3, 0.4 and 0.5, 
respectively, and other numerical parameters are shown in Table 1. 

 
     Fig.1 Radius distribution                          Fig.2 Stress path under true triaxial tests 

Table1: Microscopic parameters of numerical simulation 

Parameters Value 
Density ρ/(kg/m3) 2600 

Particle radius d/mm 2-8.5 
Young’s modulus E/GPa 65.0 

Poisson’s ratio ν 0.4 
coefficient of restitution e 0.95 

sliding friction coefficient μ 0.05,0.1,0.2,0.3,0.4,0.5 
 
In this paper, a series of true triaxial tests are under the constant-p and constant-b loading 

condition, and the stress paths are shown in Fig.2. In order to eliminate the boundary 
influence and avoid the occurrence of strain localization, these tests are carried out with 
periodic boundary. The stress in each direction of the specimen is controlled by the migration 
rate of periodic boundary. The intermediate principal stress σ2   and minor principal stress σ3 
can be estimated from Eq. (4) and Eq. (5) respectively: 
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3 MACRO-SCALE RESPONSES 
For various inter-particle friction, the evolution curves of generalized shear stress q and 

volumetric strain εv along deviatoric strain εd are shown in Fig. 3 (the positive volumetric 
strain represents contraction, negative value represents dilation). Increase in inter-particle 
friction μ steadily raises the shear strength of a granular assembly (the peak deviatoric stress) 
while the peak value occurs at a similar strain level (about 6%) irrespective of various μ. The 
deviatoric stress changes to a downward trend after reaching the peak value, which means 
strain softening. The larger inter-particle friction can enhance the strain softening behavior. In 
addition, diverse μ values lead to different volume responses of a granular assembly. 
Specifically, after a small compression deformation, the specimens are all in the dilatation 
condition. The particle assembly with large inter-particle friction starts the dilatation state 
earlier and shows a more evident dilatation degree at later stage of loading. 

 
Fig.3 Macroscopic response of granular assemblies with different inter-particle friction: evolution of deviatoric 
stress (a) and volumetric strain (b) versus deviatoric strain εd 

 

Fig.4 Peak state of deviatoric stress along different friction coefficients 
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Corresponding to different inter-particle friction, the three-dimensional stress surfcae in π 
plane is plotted in Fig. 4. For each given μ, the curve presents similar shape like triangular 
cone but differs from one another in size. The stress evolution in π plane reflects the peak 
deviatoric stress of the granular assmebly at different b and μ values. It can be seen that, the 
peak deviatoric stress decreases with the increase of b but improves with the increase of μ. 
Moreover, the sensitivity of the specimen to inter-particle friction debases along with μ, for 
the smaller increaseing extent of deviator stress. The stress characteristics shown in Fig. 4 
conform to the general rule of true triaxial test and are also consistent with the conclusions of 
other numerical tests [16, 17, 18]. 

4 COORDINATION NUMBER  
The geometric stability of a granular assembly under mechanical loading is generally 

studied in the matter of its apparent coordination number Z (i.e., average number contacts of 
per particle) at a given stage of loading. As a mesoscopic scalar index of granular materials, 
average coordination number Zt is given by 2Nc/Np where Nc and Np are the total number of 
contacts and particles in the specimen respectively. It can also reflect the overall volume 
change of a granular assembly. In generally, higher average coordination number is 
corresponding to smaller porosity, closer interaction between particles, and more 
stable/isotropic internal structure. On the contrary, the degree of anisotropy increases.  

Radjai et al. [5] divided the whole contact network into two complementary sub-contact 
nectworks, a strong contact subnetwork and a weak contact network that carry normal contact 
forces larger and less than the average. The two contact networks have different mechanisms 
for the geometric stability of granular materials. In presenting the results, we have hereby 
separated the contributions of the weak contact network from the strong contact network, 
along with the total value. The strong contact network is denoted by Γstrong, the part from the 
weak contact network by Γweak, and the entire contact network by Γtotal. Fig. 5 shows 
difference performance among the three contact networks in terms of the relationship between 
the average coordination number and the inter-particle friction in the triaxial compression 
condition. Under the given loading path, each contact network presents a law that Zt decreases 
with the increase of μ, which confirms the macroscopic phenomenon that the dilatation degree 
of the specimen is more obvious with large μ. Besides, average coordination number in Γweak 
is larger than that of Γstrong, reflecting stronger internal stability and higher isotropy of Γweak. 
Considering the relationship between the average coordination number and the volume 
deformation of granular materials, it indirectly shows that the weak contact network 
contributes greater to the deformation of a granular assembly.  

In a granular media, the coordination number Zt indicates an average over particles within 
contact networks while the number of contacts neighbors n varies from particle to particle. 
Bratberg et al. [19] recognized that the connectivity of a granular assembly should be given by 
the fraction Pn, defined by particles having n contact neighbors. From the study of Liu et al. 
[20], particles with fewer coordination numbers are in lower degree of restraint condition, 
corresponding to higher anisotropy. Conversely, particles are more stable and show isotropy 
feature.  

From the distribution of coordination number at stress peak state in Fig. 6, the coordination 
number Z in accordance with the abscissa denotes Pn,  and the corresponding ordinate refers to 
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the number of n adjacent particles in contact with a single particle. In the total contact 
network (Fig.6a), the maximum particle content changes from P5 to P4, meanwhile, all 
distribution curves seem to move left entirely with the increase of μ value. Evidently, some 
particles with n≥5 contacts lose neighbor contacts, causing the number of particles with n≤4 
contacts increase. The distribution of coordination number within weak contact network 
(Fig.6b) is similar to that of the total contact network, while the maximum particle content 
moves from P4 to P3. From that, the anisotropy feature of Γweak is stronger than that of Γtotal 
and both of them diminish owing to the increase of μ.  

It is interesting to take a quantitative look at the strong contact network (Fig.6c) whose 
distribution of coordination number is quite different from that of the total contact network. 
Thanks to the increase of μ value, the number of particles (Pn≥P3) decreases. However, μ 
value appears to have little effect on the number of particles whose coordination number is 1 
and 2, whereas P1 and P2 constitute the end and main body of the force chain in the contact 
network. It shows that the number of particles forming the force chain accounts for 1/3 of the 
total number and does not fluctuate with the change of μ value, as if satisfying the most 
advantageous condition of particulate distribution. This demonstrates that  the shear resistance 
of granular assembly can be mobilized by selecting relatively few benificial orientated 
contacts to transmit the greater than average contact force.  

Compared with strong, weak and total contact network (Fig.6d), the three curves can be 
roughly considered as the left translation of the total contact network curve. For the total 
contact network, the weak contact network makes more contribution to the coordination 
number distribution than the strong contact network. The influence of inter-particle friction on 
coordination number distribution of Γweak is greater than that of Γstrong. The weak contact 
network tends to be isotropic, balancing hydrostatic pressure of the granular media, 
dominating overall volume deformation; while the strong contact network has obvious 
anisotropic feature, and bear most of the deviatoric stress of the granular assembly (shown in 
next chapter). 

 
Fig.5 The relationship between the average coordination number and the inter-particle friction 
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Fig.6 The distribution of coordination number at stress peak state: Number distribution of coordination number 
Z in the total contact network (a) the weak contact network (b) the strong contact network (c) and the 
comparison (d) while μ=0.2 

5 FABRIC TENSOR AND ANISTROPY 

5.1 Contact force 
Radjai et al. [6] pointed out that the strong and weak contact network in a granular media 

have different mechanical mechanisms. Strong contacts have a decisive influence on the 
contribution of macro-mechanics. Fig. 7 shows the evolution of the average normal contact 
force and tangential contact force in the strong, weak and total contact network during true 
triaxial loading. The average normal contact force is much larger than the tangential contact 
force, indicating it’s leading position. There is great disparity between the average normal 
contact force of strong and weak contact network, and the numerical relationship between 
them is about 4 times. For the total contact network, the evolution contribution of the average 
normal contact force is dominated by the strong contact network. With the increase of μ value, 
the normal contact force and tangential contact force in each contact network increase 
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obviously, while the average coordination number of them decreases. This reasonably 
explains the increase in the mechanic anisotropy feature of the granular assmebly (see Fig. 8), 
and highlights the supporting effect of the strong contact network on balancing external load. 

  
Fig.7 The relationship between contact force and inter-particle friction (a) Normal contact force (b) Tangential 

contact force 

5.2 Definition of Contact Fabric Tensor 
Based on the work of Yimsiri et al. [21] in quantitatively analyzing the anisotropy of a 

particle assembly, two classes of anisotropy with different mechanisms are differentiated: 
geometric anisotropy and mechanical anisotropy. The geometrical anisotropy is defined by 
the local orientation of contact plane which can be expressed by the distribution of contact 
normals and branch vectors. The mechanical anisotropy, however, is mainly created by the 
external forces and can be splited into normal force anisotropy (caused by normal contact 
forces) and tangential force anisotropy (induced by tangential contact forces). This paper 
adopts the following expression of fabric tensor proposed by Satake [22] and Oda [23]: 

( )ij i jE n n d


                                                                （6） 

where n is the unit vector along the normal direction of the contact surface. Θ characterizes 
the orientation of n relative to the global coordination system. E(Θ) is the distribution 
probability density function, which can be expressed in terms of the second-order Fourier 
expansion: 

1( ) (1 a )
4

c
ij i jE n n


                                                       （7） 

where the second-order anisotropy tensor a c
ij is deviatoric and symmetric, which 

characterizes the geometrical anisotropy induced by normal contact.  
'a 15 / 2c

ij ij                                                                  （8） 
where '

ij is the deviatoric part of the fabric tensor ij . 
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Only when the particle system is composed of non-spherical particles, the branch vector 
contributes greater to geometric anisotropy. The distribution of branch vectors can be 
expressed in the way similar to formula (7) and formula (8):  

1 ( )
4ij i jd d n n d
 

                                                  （9a） 

0
( ) (1 a )l

ij i jd d n n                                                    （9b） 

where 0'a =15/2 /l
ij ijd d（ ） is the contribution value of branch vectors to the geometric 

anisotropic tensor. 0
= iid d   is the average length of branch vectors in the domain Θ and '

ijd  is 

the deviatoric part of ijd    . 
The distribution function of normal contact force and tangential contact force are expressed 

respectively as (10b) and (11b). Correspondingly, the normal contact force tensor and the 
tangential contact force tensor are defined by equation (10a) and (11a). 
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iif   is the average normal force in the domain Θ. The second-order anisotropy tensors  

, , ,
ij ij ij ij

c l n ta a a a  are deviatoric and symmetric, then, the degree of anisotropy can be quantified by 
using the second invariants of the three anisotropy tensors defined above:  

* *
*

3
2 ij ija a a                                                                   （12） 

where the sub/super-script * stands for contact normal, c, branch vector, l, normal contact 
force, n, and tangential contact force, t, respectively.   

5.3 Characteristics and Evolution of Anisotropy 
The characteristics of anisotropy and its evolution during the loading process are depicted 

in Fig.8. Owing to the use of spherical particles with a relatively narrow size distribution, the 
branch vector is almost in the same direction as contact normal vector and contributes so little 
to the total strength that can be ignored. The anisotropic coefficient of the initial specimen 
increases rapidly with the increase of the deviation strain, and the increase rate becomes more 
sharply with larger inter-particle friction. It can be seen evidently that the peak value of the 
normal contact force anisotropy an (about 3% of the deviatoric strain) comes earlier than that 
of the contact normal anisotropy ac (about 6% of the deviatoric strain), and the peak value is 
higher than the latter. With the increase of μ value, the difference is more obvious. 
Interestingly, the contact tangential force anisotropy at reaches its peak within 1% of the 
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deviatoric strain, then decreases slightly and remains stable. Compared with the two 
mechanical anisotropy coefficients, the contribution of the tangential contact force anisotropy 
at to the anisotropy of the whole system is significantly less than that of the normal contact 
force anisotropy an. 

 
Fig.8 Anisotropy coefficient evolution curve (a) geometric anisotropy (b) mechanical anisotropy 

The initial state, loading path and final size of the granular assembly are all the same under 
the true triaxial tests. Because of different inter-particle friction, great changes happen in the 
contact structure of the granular assembly. The average coordination number Zt decreases, 
while the contact force enlarges, and the degree of anisotropy increases. The stark contrast 
between strong and weak contact forces is more striking, which effectively stimulates the 
anistropy of strong contact network and mobilizes shear strength to banlance external loads. 
Meanwhile, larger inter-particle friction makes the tangential contact point more difficult to 
destroy, which is conducive to the formation of the strong normal support to ensure that the 
granular assembly has a close contact state and maintain stability. 

6 CONCLUSIONS 
This paper has made a contribution to advance fundamental understanding of granular 

material response by considering the effects of inter-particle friction on the material response. 
Using DEM simulations of true triaxial tests, we have presented alternative ways to link the 
evolution of micro-mechanical parameters to the macro-scale behaviour of granular materials. 
The primary findings drawn from this qualitative study are the followings: 

- In the constant-p and constant-b true triaxial tests, the macro stress-strain relationship 
of the granular assembly conforms to the existing physical and numerical results. 
With the increase of inter-particle friction, the peak deviatoric stress increases, the 
dilatancy state comes more rapidly, and the degree of dilatancy is more obvious. 

- The influence of inter-particle friction on the coordination number of the strong and 
weak contact networks varies greatly. In the peak deviatoric stress state, the 
coordination number distribution of the weak contact network is similar to that of the 
total contact network and greatly affected by μ, while the number of particles forming 
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the force chain in the strong contact network does not fluctuate. The average 
coordination number of Γweak is larger than that of Γstrong, with different inter-particle 
friction. It can be deduced that the weak contact network contributes greatly to the 
deformation of granular materials.  

- The inter-particle friction has a significant effect on the micro-mechanical properties 
of the granular assembly, enhancing the contact force between particles and the 
overall stability. The increase in inter-particle friction results in the decrease of the 
relative slip behavior between particles, the increasing difference of contact forces 
between strong and weak contact networks, and the enchanced anisotropy feature of 
the total network. These phenomena stimulate the strong contact network to 
strengthen the shear strength to balance the external loads and enhance the ability of 
the granular assembly to bear macro-stress anisotropy. 
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