Electronic Systems
 Noteboook of Lab Activities

José Antonio
Soria Pérez

Departament d'Enginyeria Electrònica
Escola Politècnica Superior d'Enginyeria de Vilanova i la Geltrú

Contents:

Lab Activity 1. Lab Instrumentation 2
Lab Activity 2. Time and Frequency domains 24
Lab Activity 3. Linear DC Power Supplies 50
Lab Activity 4. Switching Electronics: The Bipolar Junction Transistor (BJT). 70
Lab Activity 5. Analog Electronics: The Operational Amplifier 100

Lab Activity n ${ }^{0}$ 1: Lab Instrumentation

Main Goal: To learn how to use the different instruments of the lab for measuring electrical signal parameters, both in continuous (DC) and alternate current (AC), and to get used to the basics of bread-board prototyping. These skills are considered CRUCIAL for the forthcoming lab activities of this course and development of technical skills during your current degree program.

As such, students are encouraged to observe and experiment with the different buttons and controls that instruments have, and to follow mounting instructions carefully. The machines of the lab can be grouped in the following two main groups:

- Stimulus (or Signal) generation: The Power supply for generating continuous (or DC) current and Waveform Function Generators for generating time-varying signals.
- Measurement Instrumentation: The Multi-meter, which contains an ohmmeter, a voltmeter and an ammeter, all of which are aimed for measuring steady-state electrical variables; and the Oscilloscope for visualizing and measuring parameters in time-varying signals.

1 DC Power Supply

This device fixes its output to a constant voltage and delivers energy to the circuit in the form of DC current. Two models are available in the labs: 1) The IPS2303DD from ISO-TECH (Fig. 1a) at L-104; and 2) The E3631A from Agilent (Fig.1b) at L-106. Both consist of two identical outputs (red boxes) with adjustable voltage from 0 to $30 \mathrm{~V} / 3 \mathrm{~A}$ and from 0 to $25 \mathrm{~V} / 2 \mathrm{~A}$, respectively. Another auxiliary high-power output (orange boxes) provides a fixed voltage of 5 V for a maximum 5A DC current (The auxiliary output of the E3631A is variable and of 6V/5A).

When the outputs are connected, the display shows both fixed voltage and injected current to the user's circuit. The maximum voltage and current admitted to the circuit is programmed through the control functions in the front panel (rollers and buttons inside the blue boxes). However, the procedure varies depending on the machine model.

Figure 1. Power supplies at the labs: a) IPS 2303DD from ISOTECH (L-104); b) E3631from Agilent (L-106)

Task LAB1: Configure one of the outputs from the DC power supply to operate at 5 V with a maximum current of $\mathbf{0 . 2 5 A}$. Proceed as indicated depending on the machine model available at your workstation (see below).

DC current limiter:

- IPS2303DD: With the device turned OFF, 1) Connect a cord between the positive and negative terminal at the output you're going to use; 2) Turn the power ON and observe the current value in the display; 3) Use the roller labelled as CURRENT to set the limit to 0.25 A; 4) Disconnect the output cord.
- E3631A: In this model you can configure the current limiter without connecting a cord at the output terminals. 1) Turn the power ON; 2) Select the CURRENT option from the ADJUST menu in the front panel on the right (a digit from the display blinks); 3) Use the ' $<$ ' and' >' buttons to move along the digits and set the value with the roller until the value 0.25 A is shown on the display.

DC Voltage configuration:

- IPS2303DD: 1) Turn the instrument ON leaving output terminals unconnected; 2) Use the VOLTAGE roller to set the output to 5 V .
- E3631A: 1) Select VOLTAGE from the ADJUST button (the display shows the current voltage and one digit blinks); 3) Use the buttons to move along the digits and set 10 V .

At this point, the machine is ready to operate with the configured options. However, for safety reasons, it is preferable to develop connections with unpowered outputs. In the E3631A model, an OUTPUT ON/OFF button allows these operations to be made while the machine is turned ON. In this case, a message appears indicating whether the output is deactivated; then, the user can connect the cords safety and push the button again to reactivate the output. In the IPS2303DD model, however, these operations may be made with the machine turned OFF.

REMARK: You must WRITE DOWN your answers in the form provided at the end of this document (See Annex 1) and deliver it to the lab teacher at the end of the session.

2 The Digital Multi-meter

A digital multi-meter (Fig. 2) integrates an ohmmeter, a voltmeter and an ammeter in one device and, as such, it can measure electric resistance, voltage and electric current; as well as other auxiliary parameters of stationary behavior.

From the different terminals on the right of the front panel (red box), the $\boldsymbol{V} \boldsymbol{\Omega}$ terminal is intended for measuring electric voltage and resistance, whereas the terminal labelled as 'Fuse on Rear Pannel' is the point of electric current measurement. The red color (as well as the 'HI' label) indicates the POSITIVE connection (+), and the black terminal in the middle (also labelled as LO) is the NEGATIVE (-) one, which is "common" to all three measure variables.

Figure 2. Digital multi-meter 34401A at the L-104 and L-106, courtesy from Agilent Technologies
The device function is configured through the keypad in the front panel (green box). The blue function above is selected by means of the SHIFT button. As such, for measuring resistance, DC voltage and electric current; the options are $\boldsymbol{\Omega}$, DC V or DC I (SHIFT > DC V) respectively.

Generally, the multi-meter is intended for viewing stationary parameters, which are refreshed over the time, as information can only be provided through the display. Nevertheless when timevarying signals are sensed through the output terminals, in DC mode (DC V as well as DC I) the display shows the average value, whereas in AC mode (AC V and AC I) it shows the true ${ }^{1}$ root-mean-square value (or $r m s$). Strictly speaking, the average value of any signal $x(t)$ is obtained as

$$
\begin{equation*}
\langle x\rangle=\frac{1}{T} \int_{T} x(t) d t \tag{1}
\end{equation*}
$$

where T corresponds to the measuring interval ${ }^{2}$ used by the device, and the true $r m s$ value is obtained as

$$
\begin{equation*}
x_{r m s}=\sqrt{\frac{1}{T} \int_{T} x^{2}(t) d t} . \tag{2}
\end{equation*}
$$

[^0]Task LAB2: Get acquainted with the multi-meter functions by carrying out the following measurements:

Electric resistance:

- 1) Identify each one of the five different resistors included in the kit. 2) Use the ohmmeter to measure the resistors. 3) Turn the multi-meter ON and select $\boldsymbol{\Omega}$ in the control panel button (the digital display shows the message MOHM). 4) Finally connect the cords and the resistor as shown in Fig. 3.
- Determine the deviation of each resistor from its nominal value according to the following equation. Check whether the values are within tolerances.

$$
\begin{equation*}
\operatorname{ERROR}(\%)=\frac{\left|R_{\text {Ohmetre }}-R_{\text {Nominal }}\right|}{R_{\text {Nominal }}} \times 100 \tag{3}
\end{equation*}
$$

REMARK: The TERMINALS button must be turned OFF in order to activate the front panel.

Electric DC voltage:

- Measure the 5V DC voltage configured in task LAB1 with the voltmeter. Configure the instrument by following these steps: 1) Turn both devices OFF; 2) Connect them as indicated in Fig. 4a; 3) Turn the multi-meter ON and press DC V in order to configure it as DC voltmeter (the display shows the message "VDC"); 4) Finally, turn the DC power supply ON.
- Repeat measurements by reversing output connections at the voltmeter (Fig. 4b)

Electric DC current:

- Keep this 5V DC voltage and connect a $1 \mathbf{K o h m}$ resistor to measure the electric DC current flow with the ammeter. As previously, 1) Turn both devices OFF. Make the connections of Fig. 5a; 2) Turn the multi-meter ON and select DC I (SHIFT > DC V) to configure it as an ammeter (the display shows the "ADC" message); and 3) Turn the DC power supply ON.
- Repeat measurements by reversing output connections at the ammeter (Fig. 5b)

Figure 3. Output connection and multi-meter configuration for measurement of electric resistance.

Figure 4. Measuring electric DC voltage from the supply with the voltmeter; a) Forward; b) Reverse.

Figure 5. Measuring electric DC current flow. Arrows indicate flow direction a) Forward; b) Reverse.

3 From the electric diagram to the Bread-board prototype

At this point, it becomes necessary to define symbols for representing the instruments, electronic components and their electrical connections. This will not only be used jut to drawing the schematics of electronic systems but also for understanding their behavior, which is essential in signal analysis and electronic design.

Fig. 6 shows basic symbology and common standard conventions used in wire connectivity. In general, each element is a dipole and its terminals are connected to other dipoles. The positive pole of instruments is represented by " + " (Fig. 6a and 6b), and the resistor symbol is depicted in Fig. 6c. More than three connections between wires and/or terminals are indicated by a "point", whereas a "bridge" (or the omission of points) means a crossing of unconnected wires (NC). Finally, the GROUND terminal (Fig. 6e) is a common reference used in electrical variables.

Figure 6. Basic symbols of the elements shown in this document.
In this sense, a schematic diagram for the current measurement layout of Fig. 5 is depicted in Fig. 7. An arrow represents the direction of I_{1}, which flows from the positive to the negative pole of the power supply. By convention, the entrance point at the resistor sets the positive sign of its voltage drop $\left(V_{1}\right)$. Finally, the supply V_{CC}, the ammeter (A) and the resistor $\left(\mathrm{R}_{1}\right)$ form a closed path (or mesh), whereas a node is any connecting point between two (or more) terminals.

This convention is similar to that used by the multi-meter. By default, electric currents ENTERING the red terminal are read positive ${ }^{3}$ by the multi-meter. So in the first situation of Fig. 7a, the value showed in the display matches to I_{1}, both in value and sign, whereas in the second one the sign is reversed $-I_{1}$.

Another element, not considered an instrument, but essential when experimenting with electronics, is the test board (Fig.8). This board is known as the bread-board and it is where an electronic design is previously mounted and tested before their commercial implementation on a printed circuit board (PCB).

The breadboard have five unconnected terminals, two columns, each vertically connected (left and right); and two rows, each horizontally connected (top and bottom). In addition, the central part have six groups of cells (from A to F), each with 47 x 5 holes horizontally connected but vertically unconnected. Knowing this layout is important to develop the circuit connections previously designed on a schematic. Mainly, it is important to place the components according to the schematic and ensure that terminals and wires are connected properly. Using terminals for common connections, such as the GROUND, developing as fewer connections as possible in the breadboard and using colors for assigning groups of connections (i.e: black for ground connection, red for + or grey for -); is important to avoid possible problems and to allow errors to be detected quickly and easily.

[^1]José Antonio Soria Pérez

Figure 7 Electric diagrams and variable conventions using the DC current measurement layout in Fig. 5.

Figure 8. Overview of the breadboard: a) Aerial view; b) Internal connections of holes.
Task LAB3: Build the simple circuits of Fig. 9 on the breadboard and obtain experimentally their electric resistance:

- In the first schematic; 1) Follow the breadboard distribution in Fig. 10; 2) Determine the theoretical value between A and B; and finally; 3) compare with experimental results.
- In the remaining circuits (Fig. 9b and 9c), 1) Use the information in Fig. 8 to guess the connections you need to make and; 2) Proceed with the calculations and measurements.

REMARK: The electric resistance between two points, A and B, is measured by DISCONNETING ALL SOURCES and connecting the ohmmeter IN PARALEL. NEVER touch the terminals with your own hands while carrying out this measurement.

Figure 9. Electric diagram of the circuits in Task LAB3: a) Series association; b) Parallel association; c) Seriesparallel connection.

(a)

(b)

Figure 10. Mounting example of the series circuit. a) Electric diagram; b) Breadboard layout
Task LAB4: Using a $\boldsymbol{V}_{C C}=\mathbf{5 V}$ at the input of the series circuit (Fig. 11a) determine the DC current flow in the close path I and the voltage drop at all resistors V_{1} and V_{2}.

Measurement of I :

- 1) Set the output supply to $\mathbf{5 V}$, if not set already; 2) Make sure the multi-meter is configured as ammeter (DC I) and turn OFF both devices for the moment. 3) Mount the series circuit again and connect the instruments (Fig. 11b), (use the breadboard layout in Fig. 12a if you need it). Make sure you use the FUSE ON REAR PANEL terminal as positive of the ammeter; 4) Turn both devices ON and annotate the value in the display. 5) Compare with its theoretical value.

Measurement of V_{1} and V_{2} :

- 1) Turn OFF the DC power supply and disconnect the ammeter; 2) Change to the voltmeter (DC V); 3) Place the connections as in Fig. 11c (or Fig. 12b) and make sure you use the $\boldsymbol{V} \boldsymbol{\Omega}$ terminal as positive of the voltmeter; 3) Turn the supply ON and annotate the value V_{1}.
- 1) Without turning the devices OFF, disconnect the voltmeter and connect it in parallel with R_{2} (Fig. 11d); 2) Annotate the measure $V_{2} 3$) Finally compare both V_{1}. And V_{2} with their theoretical values.

Figure 11. Electric diagrams of Task LAB4. a) General diagram and electrical variables of interest; b) Measuring I; c) Measuring V_{1}; d) Measuring V_{2}.

Figure 12. Two possible breadboard layouts for measuring; a) DC current I; b) and V_{1}.
$\mathbf{1}^{\text {st }}$ REMARK: For measuring electric current flow, you must OPEN at the branch point of measurement and close the circuit by connecting the ammeter IN SERIES. Electric voltage drop, on the other hand, must be measured by connecting the voltmeter IN PARALLEL.
$2^{\text {nd }}$ REMARK: DO NOT DISMOUNT the circuit. You'll use it again in the following sections.

4. The Waveform function generator

The waveform function generator is a device for generating time-varying periodical ${ }^{4}$ signals. In this school there are three models available depending on the lab and workstation (Fig. 13): a) the 33220A from Agilent; b) the GF-855 from Promax; and c) the HM8130 from Hameg.

Different symbols may be used depending on the waveform type at the output (Fig. 14a). In this case, a minimum of four parameters need to be set (Fig. 14b): 1) the shape (FUNC: saw tooth, square, sinusoid or pulse ${ }^{5}$); 2) the magnitude (AMP: voltage variation range); 3) the frequency (FREQ: number of repeated patterns within a second); and 4) the offset level (OFF: DC voltage added to the zero-reference level). This devices sources the output through a type of terminal known as BNC^{6} connector, which is labelled with a $\mathbf{5 0 \Omega}$ value (or 60Ω in certain models) indicating its output resistance.

Task LAB5: Learn to use the waveform function generator and get acquainted with the controls and configuration process. Set a 5 V -peak sinusoid without offset and a frequency of $\mathbf{1 0 0 H z}$. Make the following steps to measure its "rms" value with the voltmeter (Fig. 15). The process may be slightly different in other generator model:

- 1) Turn the generator on with the POWER button. 2) Select the sinusoid waveform FUNC(TION) option (red box), or select the SINE option if you use the 33220A model. 3) With the FREQ option, configure the 100 Hz value with the keypad (blue box), or move along the digits (orange box) with the buttons in the green box and set the frequency value with the roller. 4) Repeat the preceding step with the AMP(L) option, and set a 10 V peak-to-peak voltage, or a 5 V -peak voltage depending on the device model. 5) Repeat again in order to set a 0 V offset (OFF button). 6) Connect the BNC cord between generator and multi-meter. Make sure you use the $\mathbf{5 0 \Omega}$ and the $\boldsymbol{V} \boldsymbol{\Omega}$ terminals of both devices. 7) Select the AC V option in the multi-meter. 8) Finally, enable the generator output by means of the OUTPUT ON/OFF option if you're not using the GF-855 model and annotate the measure.

REMARK: Many students in this school pass through the lab every day and they alter instrument configurations constantly, including this device. For this reason, the preceding procedure may not be exactly. If that's your case, a good solution may be to load initial manufacturer configurations (except for the HM1380 model which does not have this built-in function) following these instructions:

33220A: Store/Recall > Set to default (from the keypad in the blue box).
GF-855: Shift (blue bottom) > Defau

[^2]

Figure 13. Waveform generators at the labs of the EPSEVG: a) 33220A from Agilent (L-106); b) GF-855 from Promax (L-104); c) HM8130 from Hameg (L-104).

Figure 14. a) Basic symbols for representing the sources of time-varying signals in schematics (from left to right: generic, sinusoid, square, saw tooth, pulse); b) Basic voltage and time parameters which configured by means of the function generator.

Figure 15. Connection between generator and multi-meter for measuring rms (AC) voltage.

Task LAB6: Replace the DC power supply from Fig. 11 by the waveform generator and repeat the voltage measures in the resistors, in rms or AC mode. Maintain the settings of the previous task.

REMARK: The theoretical expression of a sinusoid is:

$$
\begin{equation*}
v(t)=V_{O F F}+V_{\max } \sin (2 \pi f t)=\frac{O F F}{2}+\frac{A M P}{2} \times \sin (2 \times \pi \times F R E Q \times t) \tag{4}
\end{equation*}
$$

5. The oscilloscope

Perhaps, the oscilloscope is the most sophisticated device of the laboratory because of the huge number of control buttons and rollers; specifically necessary to observe time-varying signals on screen.

Two models can be found in the labs (Fig. 16). The DSO3062A from Agilent and the HP54603B from Hewlett Packard. Both are digital instruments which own a wide variety of functions. However, in this tutorial only the first model is considered in detail, since it is common at the lab, even though settings can be adapted easily to the second model.

In the frontal panel of the DSO3062A model, two separated sections can be found: the screen and the control panel (Fig. 17). TWO signals can be viewed at a time from the input terminals, channels CH1 and CH2 respectively, both located at the bottom part of the control panel (red box). Connecting a BNC probe is necessary to sense the signals and watch them on screen.

Configuring the instrument correctly not only is important for viewing the signals but also to understand the meaning of symbols, values and messages on screen ${ }^{7}$. The two values from the left bottom part, $\mathbf{1 0 0} \mathbf{m V} /$, (Fig. 17a) correspond to the grid resolution of the vertical axis of both channels (yellow and green for CH 1 and CH 2 , respectively), whereas the white value just on the right, $1 \mu \mathrm{~s} /$, is the time resolution of the horizontal axis. On the other hand, the numbered arrows left central part of the screen place the ZERO-voltage reference of both channels, whereas the arrow on the top part of the screen (labelled with a "T" concerning to the TRIGGER mechanism) establishes the signal reference ${ }^{8}$ and the time point in order to allow signals to be fixed on the screen.

As an example, If the sensibility is set to 100 mv -per-division (or equivalently $100 \mathrm{mV} /$) the voltage range on screen (8 vertical squares; $8 /$) is $\mathbf{8 0 0} \mathbf{m V}$-peak-to-peak (or $\mathbf{4 0 0 m V}$-peak), whereas on the horizontal axis, the screen time width is $\mathbf{1 2 \mu s e g o n s}$ for a $1 \mu \mathrm{~s} /$ sensibility (12 squares).

[^3]

Figure 16. Oscilloscope models available at the EPSEVG labs. a) DSO3602A from Agilent; b) HP54603B from HP

Figura 17. DSO3602A's front panel. a) Screen; (b) Configuration and control knobs. Each color references to a group of controls specified within boxes. Green - Voltage sensibility; purple - Time sensibility; and orange Trigger controls, among others.

Voltage parameters are configured with the control functions in the VERTICAL panel (Green box in Fig. 17b). Activation of CH1 and/or CH2 is carried out through the push buttons 1 and 2, respectively. The zero-voltage reference is set by means of the bottom rollers in this panel, whereas the voltage sensibility of the vertical grid is modified through the selectors located over the activation knobs.

On the other hand, time control is carried out through the HORIZONTAL menu (purple box). The window width is modified through the selector on the left, whereas moving along the waveform stored in the buffer is carried out by means of the roller on the right.

Task LAB7: Learn how to use the oscilloscope for viewing signals on screen, by the following instructions:

- 1) Turn the waveform generator ON and configure the previous settings (5V-peak sinusoid and 100 Hz -frequency) if they are not set already. 2) Connect a BNC-BNC probe between the 50Ω generator's output and the channel CH1 (Fig. 18). 3) Turn the oscilloscope ON and, follow these steps to observe the signal, once the grid appears (Fig. 17a):
A) Vertical Panel > "1-knob" > Coupling > GND: The input signal disappear from the screen and a horizontal line shows the zero-voltage reference of CH1. Use the yellow roller to place this line at the center of the screen.
B) Vertical panel > "1-knob" > Coupling > DC: The screen shows the waveform trace again.
C) Vertical panel > VOLTS/ (yellow selector): Change the voltage resolution to 2V/
D) Horizontal panel > TIME/ (left selector from the horizontal menu): Set the time resolution to 1mseg/

REMARK: At this point, you should see a sinus of $\mathbf{1 0}$ grid positions (or squares) wide in the horizontal axis, due to the fact that $T=1 / \mathrm{FREQ}=10 \mathrm{mseg}$. Likewise, the vertical range is $\mathbf{5}$ grid positions wide (2.5 band-to-band beyond the zero-reference voltage) in the vertical axis.

- 2) Access the TRIGGER menu by pressing the "Mode/Coupling" knob at the right in the control panel (orange box). Configure the following options:

Mode (1) = "Edge". Source = "CH1". Slope = "Ascending". Mode (2) = "Auto". Coupling = "DC".
3) Move the LEVEL roller (a discontinuous line appears and the text shows the activation threshold DC level on screen. 3) Move this line up to " 2 V " and observe how the signal shifts slightly along the time axis to set the 2 V -level reference at the center of the screen.

Coupling configuration:

- 1) In the waveform generator, change the offset settings of the sinusoid to $\boldsymbol{O F F}=\mathbf{2 V}$. 2) Use the Trigger to fix the signal on screen. 3) Adapt the vertical axis to enclose the signal as LARGE as possible on the screen, and the horizontal axis to observe 4 CYCLES.
- Configure the oscilloscope in AC mode (Vertical Panel > "1-knob" > Coupling > AC). Comment both results:

Figure 18. Oscilloscope connection for visualizing time-varying signals from the waveform generator.
$\mathbf{1}^{\text {st }}$. REMARK: The coupling mechanism is generally used to HIDE (NOT TO REMOVE) the average (or DC) input component from a signal. As such, the signal is forced to have a symmetric representation on screen, despite the 2 V -level offset. This is done when the AC mode is selected. This mechanism is extremely useful to observe small AC components overlapped in very high DC components, which sometimes are of interest in order to understand the behavior of certain electronic systems.
$\mathbf{2}^{\text {nd }}$. REMARK: All configurations explained in this task are considered ESSENTIAL for correct instrument usage so, most probably, you'll need to repeat them again during this course. Procedures also apply to CH2, which can be viewed with CH1 simultaneously. As the waveform generator, instrument configuration may be altered severely over students by the lab. In these situations, it may be wiser to upload the manufacturer initial configurations:

- In the menu: Save/Recall $>$ Storage $>$ Set-up $>$ Manuf.

Other device utilities (optional):

- Take the time to review other interesting configuration options from the oscilloscope which could be of interest for you, such as 1) the Measure button for displaying time and voltage measures automatically; 2) the Cursor menu to narrow the measures; 3) or the Math menu for developing mathematical operations with both channels.

Task LAB8: Now connect the waveform generator at the input of the series circuit of Fig. 11, and the CH1 input channel in parallel. Represent the voltage waveform in each resistor (Fig. 19).

- 1) Mount the circuit of Fig. 11a. if it's not mounted already. 2) Use a " T " connector at the CH1 input of the oscilloscope and connect the generator output, $v_{\text {Gen }}(t)$, by means of a BNC-BNC probe (Thus, you'll to use an additional prove connected at the breadboard (Fig. 19b). Keep the previous sinusoid configuration (5V-peak; $\boldsymbol{f}=\mathbf{1 0 0 H z}$ and $\boldsymbol{O F F}=\mathbf{2}$. 3) Connect the other cannel, CH2, in parallel with the second resistor to measure $v_{\mathrm{R} 2}(t)$ and represent its waveform shape. Do not forget coupling both channels in DC mode.

Figure 19. Oscilloscope and waveform generator connection for measuring the voltage drop at $v_{\mathrm{Gen}}(t)$, and, $v_{\mathrm{R} 2}(t)$. a) Connection diagram) Breadboard connection.

Differential mode (floating-point voltaje):

- Now, disconnect CH2 and connect this channel in parallel with the first resistor (all positive terminals from the generator, CH1 and CH2 must be TOGETHER. The negative pole of CH 2 must be connected between R_{1} and R_{2}). 3) What is the problem?
- 1) Undo the last change and connect back channel CH2 in R_{2}. 2) Now configure the oscilloscope in differential mode (MATH button > Operation > $\mathbf{1} \mathbf{- 2)}$). This action will generate a new purple trace on screen corresponding to the point wise subtraction CH1CH 2 , which is in fact $v_{\mathrm{R} 1}(t)=v_{\mathrm{Gen}}(t)-v_{\mathrm{R} 2}(t)$

REMARK: Both negative poles of CH 1 and CH 2 are INTERNALLY CONNECTED. As such, connecting them at different circuit points causes short-circuit and unpredicted circuit behavior may be of severe consequences.

Annex 1 - Results form

REMARK: Students must PRINT OUT THIS FORM and BRING it the day of the lab session.

1 DC Power Supply

- Task LAB1:

$$
I_{\text {LIMIT }}=\quad V_{\text {FONT }}=
$$

2 Multi-meter

- Task LAB2:

2.1 Electric resistance measurement

	$\boldsymbol{R}_{\mathbf{1}}$	$\boldsymbol{R}_{\mathbf{2}}$	$\boldsymbol{R}_{\mathbf{3}}$	$\boldsymbol{R}_{\mathbf{4}}$	$\boldsymbol{R}_{\mathbf{5}}$
$\boldsymbol{R}_{\text {nominal }}(\Omega)$					
$\boldsymbol{R}_{\text {Óhmetre }}(\Omega)$					
Error (\%)					

2.2 DC voltage measurement
$V_{\text {SUPPLY(Multi-meter) }}=$ \qquad $-V_{\text {SUPPLY(Multi-meter) }}=$ \qquad
2.3 DC current measurement

$$
I_{R(\mathrm{l} \mathrm{k} \Omega)}=
$$

$$
-I_{R(1 \mathrm{k} \Omega)}=
$$

\qquad

3 From the electric diagram to bread-board prototyping

- Task LAB3:
3.1 Series/parallel resistor association

	Series Circuit	Parallel Circuit	Series-parallel Circuit
$R_{\text {Tè̀rica }}(\Omega)$			
$R_{\text {Óhmetre }}(\Omega)$			

- Task LAB4:
3.2 Electric DC measures in the series circuit

	I	V_{1}	V_{2}
Theoretical			
Multi-meter			

4 Waveform generator

4.1 AC voltage measurement from the generator (rms value)

- Task LAB5:
$V_{A C(\text { Multi-meter })}=$ \qquad
4.2 Electric AC measures in the series circuit
- Task LAB6:

	$V_{1(\mathrm{AC})}$	$V_{2(\mathrm{AC})}$
Theoretical		
Multi-meter		

5 The Oscilloscope

- Task LAB7:

Basic oscilloscope configuration

Coupling setting with OFF $=2 \mathrm{~V}$ and DC mode

Coupling setting with $\mathrm{OFF}=2 \mathrm{~V}$ and AC mode

- Task LAB8:

Representation of $v_{\mathrm{Gen}}(t)$ and $v_{\mathrm{R} 2}(t)$ in the series circuit

Representation of $v_{\mathrm{Gen}}(t)$ and $v_{\mathrm{R} 1}(t)$ with CH 2 and R_{1} in parallel

Explain the problem

Representation of $v_{\mathrm{Gen}}(t), v_{\mathrm{R} 1}(t)$ and $v_{\mathrm{R} 2}(t)$ using the MATH option

Explain the configurations in the MATH menu here to view $v_{\mathrm{R} 1}(t)$ correctly

Annex 2 - Resistor value coding

Lab Activity n^{0} 2. Time and Frequency domains

Main Goal: Learning how to determine the transient and frequency response of any Linear Time invariant system (LTI) in the form of a passive circuit, by means of the transfer function. This goal is not only restricted to a theoretical level but also considers technical development and extends to measurements in order to know such information in real electronic systems.

1. Capacitors and inductors

A capacitor consists of two electrodes separated by an insulating medium called the dielectric. The electric charge q on the electrodes is proportional to the voltage v_{c} across the capacitor,

$$
\begin{equation*}
q(t)=C v_{c}(t) \tag{1}
\end{equation*}
$$

where C is the capacitance. The unit is given in farads (abbreviated F): 1 farad equals 1 coulomb/volt, and habitual values are in the order of microfarads $\left(1 \mu \mathrm{~F}=10^{-6} \mathrm{~F}\right)$ or picofarads $\left(1 \mathrm{pF}=10^{-12} \mathrm{~F}\right)$. On the other hand, its electric current is given by the rate of change of the electric charge, so its voltage/current relationship is,

$$
\begin{equation*}
i_{c}(t)=\frac{d \boldsymbol{q}}{d t}=\frac{d\left(C \boldsymbol{v}_{c}\right)}{d t}=C \frac{d v_{c}(t)}{d t} . \tag{2}
\end{equation*}
$$

Table 1 represents the mathematical model of this component both in time and frequency domain. More precisely, using the Laplace Transform allows time transitions to be expressed as,

$$
\begin{equation*}
\frac{d x(t)}{d t} \xrightarrow{L^{-1}} s \times x(s) \tag{3}
\end{equation*}
$$

where $s \equiv d(\cdot) / d t$ is the laplacian operator containing the angular frequency ω,

$$
\begin{equation*}
s=j \omega \tag{4}
\end{equation*}
$$

also related to the oscillation frequency $f=\omega / 2 \pi$ which is expressed in Hz . As such, and with the use of basic theoretical rules (Ohm's law, Kirchoff law, etc) it is easy to handle the behavior of reactive components, since knowing its electric impedance X_{c} is, most of the times, enough for carrying out calculations. This principle is also equivalent in the inductor, whose voltage drop varies with the magnetic field ϕ as,

$$
\begin{equation*}
v_{L}(t)=\frac{d \phi}{d t}=\frac{d\left(L \boldsymbol{i}_{L}\right)}{d t}=L \frac{d i_{L}(t)}{d t}, \tag{5}
\end{equation*}
$$

where now L is the inductance, in henris (H). For this reason both components are considered duals (that is replacing i by v and v by i in one equation leads to the other) since their impedances are X_{c} and X_{L}, respectively.

Task PRELAB0: Search through the Internet, or any manufacturer catalog (such as RS Amidata, Farnell in One, Digi-key, Google, etc) a $\mathbf{1 0 n F}$ and a $\mathbf{1 0 \mu F}$ capacitor.

Symbols Capacitor/Inductor	I-V Characteristics (time domain)	Impedance (frequency domain)	I-V relationship with initial conditions (frequency domain)
	$i_{c}(t)=C \frac{d \nu_{c}(t)}{d t}$	$X_{c}(s)=\frac{v_{c}(s)}{i_{c}(s)}=\frac{1}{C s}$	
$\xrightarrow[+]{i_{L}(t)} \underbrace{L}_{v_{L}(t)}$	$v_{L}(t)=C \frac{d i_{L}(t)}{d t}$	$X_{L}(s)=\frac{v_{L}(s)}{i_{L}(s)}=L s$	

Table 1. Symbols, conventions, and I-V model of the capacitor and the inductor in time/frequency domain.

- Draw their approximate contour outline in the box provided and explain how the capacitor value and tolerance are specified on the package. Indicate polarity if necessary.

2. 'Step’ response (1st. Order system)

2.1 Definition of the 'Step' input signal

Consider a circuit in a black box, such as that of Fig. 1, to which a constant voltage source V_{A} is applied. The source begins to act thanks to a switch that shorts its terminals at time $t=0$. Then, the input v_{i} jumps from 0 to V_{A} instantaneously as indicated in Fig. 1b. Such a function is called the step function. A unit step function (Fig. 1c) is defined in time (t) and frequency (s) domains, respectively, as,

$$
u(t)=\left\{\begin{array}{ll}
0, & t<0 \tag{5}\\
1, & t \geq 0
\end{array} \xrightarrow{L} u(s)=\frac{1}{s} .\right.
$$

Therefore, a step function that is zero until $t=0$ and rises up to V_{A} for $t \geq 0$ is written as $V_{A} u(t)$:

$$
V_{A} u(t)=\left\{\begin{array}{cc}
0, & t<0 \tag{5}\\
V_{A}, & t \geq 0
\end{array} \xrightarrow{L} u(s)=\frac{V_{A}}{s} .\right.
$$

2.2 Step response in 1st. order RC circuits

Let us consider the response of the $R C$ series circuit in Fig. 2 to an input source of the form $V_{A} u(t)$ whose initial conditions are zero ($V_{c 0}=0 \mathrm{~V}$). By using a voltage divider, the voltage across the capacitor is expressed as,

$$
\begin{equation*}
v_{c}(s)=\frac{X_{C}(s)}{R+X_{C}(s)} V_{A}(s)=\frac{1 / C s}{R+1 / C s} \frac{V_{A}}{s}=\frac{1 / R C}{s+1 / R C} \frac{V_{A}}{s} . \tag{6}
\end{equation*}
$$

Figure 1. Step function. a) Circuit with a constant input; b) Waveform shape of the step function; c) Unit step.

Figure 2. The RC series circuit and its equivalent in s domain (zero initial conditions)
This expression has a known inverse transform (see the table in Annex 3), so the voltage across the capacitor is expressed in time domain as,

$$
\begin{equation*}
v_{c}(s)=\frac{1 / R C}{s+1 / R C} \frac{V_{A}}{s} \xrightarrow{L^{-1}} v_{c}(t)=V_{A}\left(1-e^{-t / R C}\right) . \tag{7}
\end{equation*}
$$

This signal has the exponential profile of Fig. 3. Since $V_{A} u(t)=V_{A}$, the current flow $i_{c}(t)$ can be determined by subtracting to the input $v_{c}(t)$ and then dividing by R.

Now we examine the behavior of the series $R C$ circuit from a more physical point of view. Initially, we assume zero voltage across the capacitor for $t<0$ and in $t=0$ the source V_{A} is connected to the circuit. Since the continuity condition in the capacitor requires $\boldsymbol{v}_{\boldsymbol{c}}=0$ just after connecting the source, $t=0+$ (otherwise $i_{c} \rightarrow \infty$ which would destroy the device. See Table 1), at this moment it holds that

$$
\boldsymbol{v}_{\boldsymbol{R}}=\boldsymbol{V}_{\boldsymbol{A}} \quad \text { i } \quad \boldsymbol{i}_{\boldsymbol{c}}=\boldsymbol{v}_{\boldsymbol{R}} / R=\boldsymbol{V}_{\boldsymbol{A}} / R \quad \text { for } \quad t=0+.
$$

The electric current jumps instantaneously from 0 to V_{A} / R at $t=0+$ (Note that an abrupt change in the capacitor's current is possible since this variable doesn't requires to accomplish with the continuity condition). Therefore, the current flows during this interval and the capacitor is charged.

Figure 3. RC series circuit. Output response: V_{A} (black discontinuous); $v_{c}(t)$ (blue); $i_{c}(t)$ (purple).
Since the resistor voltage is $v_{R}(t)=V_{A}-v_{c}(t)$, the current decreases at an exponential rate $e^{-t / R C}$ until it gets to zero, and the voltage drop becomes $\boldsymbol{v}_{\boldsymbol{c}}=V_{A}$. The state of affairs where no further change occurs (theoretically at $t=\infty$) is called the steady state of the circuit. From a practical point of view, however, the exponential term becomes negligibly small at $t=5 R C\left(e^{-5}<0.01\right)$ and the steady state may therefore be assumed at this time.

The transient component is also called the natural response of the circuit since it represents the manner in which passive components (R and C) would response when left to themselves. Additionally, the steady state is also known as the forced response imposed by the input source at the output. By expressing R and C in terms of the basic units, it is possible to show that the product $R C$ has time dimensions (in seconds). Furthermore, if (6) is rewritten as,

$$
\begin{equation*}
H(s)=\frac{v_{c}(s)}{V_{A}(s)}=\frac{1 / R C}{s+1 / R C} \Leftrightarrow H(s)=H_{0} \frac{1 / \tau}{s+1 / \tau} \tag{8}
\end{equation*}
$$

the new expression characterizes uniquely the circuit behavior on the variable of interest $\boldsymbol{v}_{\boldsymbol{c}}$ (the output) in relation to the source V_{A} (the input). Here, H_{0} denotes signal amplification on the steady state ($H_{0}=1$ in this case), whereas $\tau=R C$ is the time constant of the circuit. For this reason, expression (8) is often referred to as the transfer function of the circuit.

2.3 Response to a rectangular pulse (General charge/discharge expression of the RC circuit)

The response of an $R C$ circuit to a rectangular pulse (Fig. 4a) is important in electronics since a large number of signals in communication systems have similar shape. As initial conditions in the capacitor vary both at $t=0$ and $t=t_{\mathrm{p}}$, two time intervals must be considered: 1) $0<t<t_{p}$ and 2) $t_{p}<t<\infty$.

Figure 4. RC circuit schematics for a rectangular pulse (a). (b) Interval $0<t<t_{p}$; c) Interval $t_{p}<t<\infty$.
Interval $0<t<t_{p}$: This interval is equivalent to the situation shown in section 2.2 (Fig. 4b). H, the capacitor voltage at $t=t_{p}$ is not necessary V_{A} since it depends on the time constant τ. This voltage is given by (7) as,

$$
\begin{equation*}
v_{c}\left(t=t_{p}-\right)=V_{A}\left(1-e^{-t_{p} / R C}\right) \tag{9}
\end{equation*}
$$

Interval $t_{p}<t<\infty$: Unlike the previous interval, initial conditions are given by (9) as, $v_{c}\left(t_{p^{-}}\right)=$ $v_{c}\left(t_{p}+\right)=V_{c 0}$. Thus, from Fig. 4.4c, the capacitor voltage is given by the voltage divider,

$$
\begin{equation*}
v_{c}(s)=\frac{R}{R+1 / C s} \frac{V_{c 0}}{s}=\frac{s}{s+1 / R C} \frac{V_{c 0}}{s}=\frac{V_{c 0}}{s+1 / R C} \xrightarrow{L^{1}} v_{c}(t)=V_{c 0} e^{-\frac{t-t_{p}}{R C}} . \tag{10}
\end{equation*}
$$

Finally, by using (9) in (10) we obtain,

$$
V_{c}(t)=\left\{\begin{array}{cc}
V\left(1-e^{-t / R C}\right), & 0<t<t_{p} \tag{11}\\
V_{A}\left(e^{t_{p}} / R C\right. \\
\hline
\end{array}\right) e^{-t / R C}, \quad t \geq t_{p}
$$

2.4 Step-by-step procedure for the solution of $R C$ circuits to rectangular pulses

The discussion provided in the previous section shows that when a series $R C$ circuit is driven by rectangular pulses in different time intervals, the response may be obtained by an easy step-bystep procedure. This methodology avoids using differential equations or Laplace transformations and can be used in any $R C$ circuit of just one capacitor. The procedure is the following:

1. Write an expression of the form,

$$
\begin{equation*}
V_{c}\left(t-t_{n}\right)=V_{c \infty}+\left[V_{c}\left(t_{n}\right)-V_{c \infty}\right] e^{-\frac{t-t_{n}}{\tau}} \tag{12}
\end{equation*}
$$

for the time interval $t_{n} \leq t<t_{n+1}$, where $\tau=R C$ is the time constant of this interval and t_{n} is the initial time of the n-th interval, for $n=1 . . . N$.
2. Evaluate the steady term $\boldsymbol{V}_{\boldsymbol{c} \infty}$ by examining the circuit when the capacitor voltage has reached the maximum charge/discharge: $\boldsymbol{i}_{\boldsymbol{c}}(\infty)=\mathbf{0}$ in any case.
3. Use the steady term $\boldsymbol{V}_{\boldsymbol{c}}\left(t_{n}\right)$, already calculated by means of (12) in the previous interval $t=t_{n}$, and obtain the new voltage $v_{c}(t)$ by means of (12)
4. Proceed with interval $n=n+1$ by repeating the three previous steps. In the case of circuits containing a single capacitor, but not in the form of a series RC circuit, first obtain the Thevenin equivalent resistance, R_{th}, as seen from the capacitor terminals and repeat the steps described above, using $R=R_{t h}$.

Task PRELAB1: In the template corresponding to the PRELAB activities provided at the end of this document (Annex 1), draw the connections corresponding to the series RC circuit in Fig. 5, and the signal waveforms you'll expect to see in the oscilloscope.

- Include the connections of both components and instruments of Fig. 5.5b and indicate the generator function configuration for providing a SQUARE signal between 0 and 5V, with a frequency $f=0.25 \mathrm{~Hz}(T=4 s e g)$.
- As for the representation of signals, first determine the capacitor voltage expression, $v_{c}(t)$ using (11) and, then, with the oscilloscope configuration of CH 1 and CH 2 provided, use the grid to represent the waveforms you'll see on screen.

Task LAB1: Mount the circuit of Fig. 5 on the breadboard, connecting instruments as indicated, and obtain the value of τ experimentally:

- 1) First, mount the circuit. 2) Connect the TTL output from the waveform as the input of the circuit $v_{i}(t)$ (or configure a SQUARE signal between $\mathbf{0}$ and $5 \mathbf{V}$ in the case you use the $\mathbf{5 0 \Omega}$ terminal) and set a frequency $\boldsymbol{f}=\mathbf{0 . 2 5 H z}$. 3) Use the settings of PRELAB1 to configure the oscilloscope and, observing the POSITIVE CYCLE, obtain the measurement for the time constant τ (settling time $=5 \tau$). 5) Compare with $\tau=R C$.
- Use a capacitor of $\mathbf{1 0 n F}$ and repeat the measurements by using the oscilloscope settings that best suits your needs. Draw the waveforms on the plot provided.

$$
\begin{gathered}
v_{i}(t)= \begin{cases}0 V, & 0<t<T / 2 \\
5 V, & T / 2<t<T\end{cases} \\
v_{i}(t)=v_{i}(t+T)
\end{gathered}
$$

(a)

(b)

Figure 5. Schematics of the series $R C$ circuit for TASK1. a) Expression of the square signal to be configured with the waveform generator. b) Electric diagram including instrument connections.

3. Frequency Response

3.1 Response to a sinusoid input

The mathematical expression for a sinusoid waveform (Fig. 6) and its equivalence in s domain are written generally as,

$$
\begin{equation*}
x(t)=A \cos (\omega t) \quad \xrightarrow{L^{-1}} \quad x(s)=A \frac{s}{s^{2}+\omega^{2}}=A \frac{s}{(s+j \omega)(s-j \omega)} \tag{13}
\end{equation*}
$$

where A is the signal amplitude and $\omega=2 \pi f=2 \pi / T$ corresponds to the angular frequency, expressed in rad/seg. Finding the output response of the RC circuit for a sinusoid input (by means of the Laplace method) requires solving a $3^{\text {rd }}$. order expression of the form,

$$
\begin{equation*}
v_{c}(s)=\frac{1 / C s}{R+1 / C s} v_{i}(s)=A \frac{1 / R C}{s+1 / R C} \frac{s}{s^{2}+\omega^{2}}=\frac{B_{1}}{s+1 / R C}+\frac{B_{2}}{s+j \omega}+\frac{B_{2}^{*}}{s-j \omega} \tag{14}
\end{equation*}
$$

where B_{1} and B_{2} are the residues,

$$
\begin{equation*}
B_{1}=A \frac{(1 / R C)^{2}}{\omega^{2}+(1 / R C)^{2}} \quad \text { and } \quad B_{2}=\frac{A}{2} \frac{(1 / R C)^{2}-(j \omega / R C)}{\omega^{2}+(1 / R C)^{2}} . \tag{15}
\end{equation*}
$$

Respectively. So the inverse transform of (14) becomes,

$$
\begin{equation*}
v_{c}(t)=B_{1} e^{-\frac{t}{R C}}+B_{2} e^{j \omega t}+B_{2}^{*} e^{-j \omega t} \tag{16}
\end{equation*}
$$

where B_{1} corresponds to the natural response of the circuit disappearing with the time t, and B_{2} is the term forced by $v_{i}(t)$. Neglecting B_{1} and using the Euler theorem in (16) lead to

$$
\begin{equation*}
v_{c}(t)=A \frac{1 / R C}{\sqrt{\omega^{2}+(1 / R C)^{2}}} \cos \left[\omega t-\tan ^{-1}(\omega R C)\right]=A \times|H(j \omega)| \times \cos [\omega t+\angle H(j \omega)] \tag{17}
\end{equation*}
$$

where,

$$
\begin{equation*}
|H(j \omega)|=\frac{1 / R C}{\sqrt{\omega^{2}+(1 / R C)^{2}}} \quad \text { and } \quad \angle H(j \omega)=-\tan ^{-1}(\omega R C) \text {, } \tag{18}
\end{equation*}
$$

are known as the module and phase response, respectively, of the transfer function $H(s)$ defined in (8). In other words, the output is another sinusoid of the same frequency ω, but delayed by $\angle H(j \omega)$ radians in relation to the input and corrected by the factor $|H(j \omega)|$.

Figure 6. Sinusoid of the form: $x(t)=A \cos (\omega t)$
These two parameters are crucial since they specify circuit behavior at any frequency. In fact, there is a method by which calculations can be extended easily to ANY LTI system provided that the focus is on knowing only the steady state of the circuit. This methodology is even valid regardless of the number of resistors, capacitors and inductors included in the network.

3.2 Frequency response in steady-state LTI systems

In general, given a LTI-system expressed in terms of its transfer function $H(s)$ (Fig. 7), its module $|H(s)|$ is obtained as,

$$
\begin{equation*}
|H(j \omega)|=\sqrt{H_{R}^{2}(j \omega)+H_{I}^{2}(j \omega)} \tag{19}
\end{equation*}
$$

where " R " i " I " denote respectively the "real" and "imaginary" (complex) terms of $H(s)$, whereas the phase $\angle H(j \omega)$ is calculated as,

$$
\angle H(j \omega)=\left\{\begin{array}{cl}
\tan ^{-1}\left(\frac{H_{I}(j \omega)}{H_{R}(j \omega)}\right), & \text { si } H_{R}(j \omega) \geq 0 \tag{20}\\
\pi+\tan ^{-1}\left(\frac{H_{I}(j \omega)}{H_{R}(j \omega)}\right), & \text { si } H_{R}(j \omega)<0
\end{array}\right.
$$

where the units of $\angle H(j \omega)$ are in radians. However, most of the times $H(s)$ has a numerator and a denominator, both containing real and complex terms. In this situations, one can use,

$$
\begin{equation*}
|H(j \omega)|=\frac{\sqrt{n u m}\left[H_{R}^{2}(j \omega)\right]+\operatorname{num}\left[H_{I}^{2}(j \omega)\right]}{\sqrt{\operatorname{den}\left[H_{R}^{2}(j \omega)\right]+\operatorname{den}\left[H_{I}^{2}(j \omega)\right]}} \tag{21}
\end{equation*}
$$

to evaluate the numerical value $|H(s)|$, where "num" and "den" denote numerator and denominator of $H(s)$, respectively. On the other hand, for evaluating $\angle H(j \omega)$ we use,

Figure 7. General overview of the frequency response in a LTI-system.

Figure 8. Voltage and time parameters used in the experimental estimation of $|\mathrm{H}(\mathrm{s})|$ and $\angle H(s)$.

$$
\begin{equation*}
\angle H(j \omega)=\tan ^{-1}\left(\frac{n u m\left[H_{I}(j \omega)\right]}{\operatorname{num}\left[H_{R}(j \omega)\right]}\right)-\tan ^{-1}\left(\frac{\operatorname{den}\left[H_{I}(j \omega)\right]}{\operatorname{den}\left[H_{R}(j \omega)\right]}\right) . \tag{22}
\end{equation*}
$$

The reader can prove that using (21) and (22) in (8) leads to (18): the module and phase response of the series RC circuit. Furthermore, if we denote $V_{i}(\omega)$ and $\theta_{i}(\omega)$ as the input magnitude and phase, respectively, at frequency ω, the output response is given by,

$$
\begin{equation*}
V_{o}(\omega)=|H(j \omega)| \times V_{i}(\omega) \quad \text { and } \quad \theta_{o}(\omega)=\angle H(j \omega)+\theta_{i} \tag{23}
\end{equation*}
$$

Fig. 8 shows the most representative points of both input and output signals of the LTI system. In other words, the module $|H(j \omega)|$ is just their output-input peak relation,

$$
\begin{equation*}
|H(j \omega)|=V_{o} / V_{i} \tag{24}
\end{equation*}
$$

whereas the phase delay $\angle H(j \omega)$ is evaluated by measuring the reference points t_{0}, t_{1} and t_{2}. Then, assuming that $\theta_{i}=0$, and therefore $\angle H(j \omega)=\theta_{o}$, the phase is obtained from the signals as,

$$
\angle H(j \omega)= \begin{cases}2 \pi \frac{t_{2}-t_{1}}{T}, & \text { if } t_{1} \geq t_{2} \tag{25}\\ -2 \pi \frac{t_{1}}{T}, & \text { if } t_{1}<t_{2}\end{cases}
$$

Task PRELAB2: Using the capacitor value $C=\mathbf{1 0 n F}$, represent the waveform signals of the RC series circuit (Fig. 5b) that would be observed on screen if, instead of the square signal input, we use a sinusoid with amplitude $\boldsymbol{V}_{\boldsymbol{i}}=\mathbf{5 V}$, zero offset, and frequency $\boldsymbol{f}=\mathbf{1} \mathbf{k H z}(\omega=2 \pi f$)

- Use (18) to obtain module and phase response, and then determine the reference points of Fig. 8 by means of (24) and (25) to carry out this task. Use $\boldsymbol{\theta}_{\boldsymbol{i}}=\mathbf{0}$ and fix on screen a random point for t_{0} on the horizontal axis. Specify oscilloscope configuration in order to observe on screen an entire cycle of both signals in detail.

Task LAB2: Obtain the frequency response of the series RC circuit in the lab.

- 1) Use a $\boldsymbol{C}=\mathbf{1 0 n F}$ and connect the probe to the $\mathbf{5 0 \Omega}$ of the waveform function generator (instead of the TTL output) and configure an input sinusoid of amplitude $V_{i}=5 \mathrm{~V}$, zero offset, and frequency $\boldsymbol{f}=\mathbf{1} \mathbf{k H z} .2$) Draw the signals in the grip provided and annotate the parameters: $\boldsymbol{V}_{\boldsymbol{i}}, \boldsymbol{V}_{\boldsymbol{o}}, \boldsymbol{t}_{\mathbf{0}}, \boldsymbol{t}_{\mathbf{1}} \mathrm{i} \boldsymbol{t}_{\mathbf{2}}$. $\mathbf{3}$) Use (24) and (25) to evaluate module and phase; and compare with (18).
- Repeat the previous steps for $\boldsymbol{f}=\mathbf{2 0 0 H z}$.

4. $2^{\text {nd }}$. Order systems.

4.1 LTI system response to a step function

The standard notation of the 2 nd. order $L T I$ system is written as

$$
\begin{equation*}
H(s)=\frac{v_{o}(s)}{v_{i}(s)}=K \frac{\omega_{n}^{2}}{s^{2}+2 \xi \omega_{n} s+\omega_{n}^{2}} ; \text { o bé } \quad H(j \omega)=\frac{V_{o}(j \omega)}{V_{i}(j \omega)}=K \frac{1}{1-\left(\omega / \omega_{n}\right)^{2}+j 2 \xi \omega / \omega_{n}} \tag{26}
\end{equation*}
$$

The output of such a system to a step function $v_{i}(s)=V_{i} / s$ is,

$$
\begin{equation*}
v_{o}(t)=K \times V_{i}\left[1+\frac{1}{2 \sqrt{\varsigma^{2}-1}}\left(\frac{e^{-p_{1} t}}{p_{1}}-\frac{e^{-p_{2} t}}{p_{2}}\right)\right] \tag{27}
\end{equation*}
$$

where,

$$
\begin{equation*}
p_{1,2}=\xi \omega_{n} \pm \omega_{n} \sqrt{\xi^{2}-1} \tag{28}
\end{equation*}
$$

are the roots of the $2^{\text {nd }}$. order polynomial in the denominator of $H(s)$, known as the system poles.

Generally speaking, the behavior of $H(s)$ is best characterized by two parameters: the damping factor ξ and the natural frequency ω_{n}, respectively. Depending on the damping factor, there are three cases:

- Underdamped behavior: $0<\xi<1$

When $0<\xi<1$, p_{1} and p_{2} are complex conjugate. In this case, (27) can be rewritten as,

$$
\begin{equation*}
v_{o}(t)=K \times V_{i}\left\{1-\frac{e^{-\xi \omega_{n} t}}{\sqrt{1-\xi^{2}}} \sin \left[\omega_{d} t+\tan ^{-1}\left(\frac{\sqrt{1-\xi^{2}}}{\xi}\right)\right]\right\} \tag{29}
\end{equation*}
$$

and we obtain and underdamped behavior, which means that the output is characterized by an initial oscillating transient before it reaches its forced response (Fig. 9a). The parameter $\omega_{d}=$ $\omega_{n}\left(1-\xi^{2}\right)^{1 / 2}$ is called the natural-damped frequency and is the frequency during the initial transient. The relevant points of this signal can be evaluated using the expressions in Table 1.

- Critical damping: $\xi=1$

Here, the poles are real and equal ($p_{1}=p_{2}=\omega_{n}$), and the output has the fastest possible response without overshot,

$$
\begin{equation*}
v_{o}(t)=K \times V_{i}\left[1-e^{-\omega_{n} t}\left(1+\omega_{n} t\right)\right] \tag{30}
\end{equation*}
$$

- Over-damped: $\xi>1$

When $\xi>1$, the poles are real but different. The output (27), which responds to an exponential law, increases slowly until it settles to its steady state. However, in this case we may distinguish two situations: one in which both poles are close each other and another where $p 2$ gets over p_{1} (ξ $\gg 1 \rightarrow p_{1} \gg p_{2}$). In the last case, $H(s)$ can be approximated to a 1 st. order system of the form,

$$
\begin{equation*}
\hat{H}(s) \square \lim _{p_{1} \rightarrow \infty} \frac{v_{o}(s)}{v_{i}(s)}=K \frac{p_{2}}{s+p_{2}} \tag{31}
\end{equation*}
$$

where,

$$
\begin{equation*}
\hat{\tau}=\frac{1}{p_{2}}=\frac{1}{\xi \omega_{n}-\omega_{n} \sqrt{\xi^{2}-1}} \tag{32}
\end{equation*}
$$

would correspond to the new time constant resulting from this estimation.
In general, the order of $H(s)$ depends on the degree in the denominator. Since the laplacian operator $s=d(\cdot) / d t$ also represents the derivative in the differential equation, the order is also established by the number of capacitors and inductors, provided that elements of the same type do not form series or parallel associations.

(a)

(b)

Figure 9. Underdamped behavior in a 2nd. Order LTI system ($K=1$). a) Output waveform; b) Defining σ.

Parameter	Expression	Observations
1. Delay time $\left(\boldsymbol{t}_{\boldsymbol{d}}\right)$	-----	It can only by evaluated by using (27) and imposing $\boldsymbol{v}_{\boldsymbol{o}}(\boldsymbol{t})=\mathbf{0 . 5 V _ { i }}$
2. Rise time $\left(\boldsymbol{t}_{\boldsymbol{r}}\right)$	$t_{r}=\frac{1}{\omega_{d}} \tan ^{-1}\left(\frac{\omega_{d}}{-\sigma}\right)=\frac{\pi-\beta}{\omega_{d}}$	See Fig. 9b
3. Overshot time $\left(\boldsymbol{t}_{\boldsymbol{p}}\right)$	$\boldsymbol{t}_{\boldsymbol{p}}=\pi \omega_{\boldsymbol{d}}$	
3. Overshoot (SIP)	SIP $=\frac{v_{o}\left(t_{p}\right)-v_{o}(\infty)}{v_{o}(\infty)}=e^{-\frac{\xi}{\sqrt{1-\xi^{2}} \pi} \pi}$	$v_{o}\left(t_{p}\right), v_{o}(\infty)$ output value at $t=t_{p}$ and steady state, respectively
4. Settling time $\left(\boldsymbol{t}_{\boldsymbol{s}}\right)$ (* approximated value)	$\boldsymbol{t}_{\boldsymbol{s}}=3 /\left(\xi \omega_{n}\right)$	Error 5\% of Vi

Table 1. Important parameters of the underdamped response to a step function.

4.2 Response of the series RLC circuit to a step input

One very popular and didactical example of a $2^{\text {nd }}$ order LTI system is the series $R L C$ circuit (Fig. 10) which consists of a resistor, a capacitor and an inductor. Using a voltage divider, the capacitor voltage (in s domain) is expressed as,

$$
\begin{equation*}
v_{c}(s)=\frac{X_{c}(s)}{R+X_{L}(s)+X_{c}(s)} v_{i}(s) \tag{33}
\end{equation*}
$$

where, $X_{c}(s)=1 /(\mathrm{Cs})$ and $X_{L}(s)=L s$ are the impedances of the capacitor and the inductor, respectively. After rearranging (33), the standard expression becomes,

$$
\begin{equation*}
H(s)=\frac{v_{c}(s)}{v_{i}(s)}=\frac{1 / C s}{R+L s+1 / C s}=\frac{1 / L C}{s^{2}+(R / L) s+1 / L C} \tag{34}
\end{equation*}
$$

and, therefore, the gain factor, the natural frequency and the damping factor are,

$$
\begin{equation*}
K=1 ; \quad \omega_{n}=\frac{1}{\sqrt{L C}} \quad \text { and } \quad \xi=\frac{R}{2} \sqrt{\frac{C}{L}} . \tag{35}
\end{equation*}
$$

Task PRELAB3: On the Bread-board template, represent the necessary component and instrument connections from Fig. 11 you'll need to develop in order to measure the response to an input step of the series RLC circuit.

Task LAB3: Obtain the true response of the series RLC circuit and compare measurements with the theoretical values.

- 1) Evaluate the theoretical value of ξ and ω_{n} by means of (35) and then evaluate the overshot (SIP) and the peak time (t_{p}) using the information in Table 1. 2) Mount the RLC circuit. 3) Connect the TTL output of the waveform generator and set a frequency $\boldsymbol{f}=$ $\mathbf{1 0 0 H z}$. Use the "T" connector. 4) Configure the oscilloscope in order to observe the initial transient of CH 2 , in one of the ascending steps of CH 1 , in much detail. Draw the waveforms on the grid. 5) Annotate the peak and rise time, $\boldsymbol{t}_{\boldsymbol{p}}$ and $\boldsymbol{t}_{\mathbf{r}}$; the damping factor $\boldsymbol{\xi}$ and the overshot SIP, and compare with the theoretical ones.
- 1) For $\boldsymbol{R}=\mathbf{1 0 0 k}$, evaluate the new values of $\boldsymbol{\xi}$ and ω_{n} by means of (35) and estimate the theoretical time constant $\boldsymbol{\tau}$ using (32). 2) Change the resistor in the circuit and draw the new signals. 3) Measure the settling time ($\boldsymbol{t}_{\boldsymbol{s}} \rightarrow 5 \boldsymbol{\tau}$ in half a cycle) and establish the experimental $\boldsymbol{\tau}$ of the circuit. Compare the values.

Figure 10. Schematics of the series RLC circuit and its equivalence in s domain.

Figure 11. Circuit and instrument connections for Task LAB3.
REMARK: The oscilloscope has a resistor $\boldsymbol{R}_{\mathbf{C H} 2}=\mathbf{1 M} \boldsymbol{M}$ and a capacitor $\boldsymbol{C}_{\mathbf{C H} 2}=$ $\mathbf{1 3 p F}$ in CH2 which connect in parallel with the circuit output (Fig. 12) when probes are plugged in. This connection has consequences in the true value of the parameters in (35). In fact, one can prove that the new transfer function considering these internal components becomes

$$
\begin{equation*}
H(s)=\frac{v_{c}(s)}{v_{i}(s)}=\frac{1}{K} \frac{K / L C_{E Q}}{s^{2}+\left(\frac{L+R R_{C H 2} C_{E Q}}{L R_{C H 2} C_{E Q}}\right) s+K / L C_{E Q}} \tag{36}
\end{equation*}
$$

where

$$
\begin{equation*}
K=\left(1+\frac{R}{R_{C H 2}}\right) ; \omega_{n}=\frac{K}{\sqrt{L C_{E Q}}} ; \xi=\frac{L+R R_{C H 2} C_{E Q}}{2 K R_{C H 2} \sqrt{L C_{E Q}}} \text { per } C_{E Q}=C+C_{C H 2} . \tag{37}
\end{equation*}
$$

For the same reason, when $\boldsymbol{R}=\mathbf{1 0 0 k}$ the settling value $\boldsymbol{v}_{\mathbf{c}}(\infty)$ decreases to $\boldsymbol{V}_{\boldsymbol{i}} / \boldsymbol{K}=$ 4.5 V . This analysis could be even more complex if the internal components of CH1 are also considered.
4.3 The electric resonance phenomenon (the series $R L C$ circuit case)

When RLC circuits are powered by sinusoids of the form $\boldsymbol{v}_{\boldsymbol{i}}(\boldsymbol{t})=\boldsymbol{V}_{\boldsymbol{i}} \mathbf{s i n}(\boldsymbol{\omega} \boldsymbol{t})$ (Fig. 6) there is an interesting phenomenon called electric resonance which occurs at a certain frequency.

In the series $R L C$ circuit, for example, let us define Z_{T} as the global impedance of the passive network. When $X_{L}(j \omega)=-X_{c}(j \omega)=+j / C \omega$, the resistor voltage is maximum. That is, when the

Figure 12. Effect of connecting CH2 at the output of the RLC circuit. a) Detail of CH 1 and CH 2 showing the input resistance $R_{C H 2}$ and the capacitor $C_{C H 2}$ which is added to the circuit when the probe is connected. b) Resulting schematics considering these two components.

Figure 13.Multi-meter connection for measuring the electric resonance.

$$
\begin{gather*}
Z_{T}(j \omega)=R+X_{L}(j \omega)+X_{c}(j \omega), \tag{38}\\
j L \omega_{r}=j / \omega_{r} C \quad \longrightarrow \quad \omega_{r}=\frac{1}{\sqrt{L C}} \tag{39}
\end{gather*}
$$

network produces its minimum impedance $\mathbf{Z}_{\boldsymbol{T}}\left(\boldsymbol{j} \omega_{r}\right)=\boldsymbol{R}$, so that the maximum resistor current becomes $\boldsymbol{\nu}_{\boldsymbol{R}}\left(\boldsymbol{j} \omega_{r}\right)=\boldsymbol{V}_{i} / \boldsymbol{R}$. To this frequency $\omega=\omega_{r}$ we refer to as the resonant frequency.

Task LAB4: Using the multi-meter, determine the experimental resonant frequency ω_{r} of the RLC circuit (Fig. 13).

- 1) Configure the waveform generator to the same sinus signal in task LAB2 (5V-peak, zero offset) but use a frequency $\boldsymbol{f}=\mathbf{1 0 0 H z}$ instead. 2) Connect the voltmeter with the resistor R in parallel. Use the AC measurement option (ACV). 3) In the waveform generator, increase the frequency \boldsymbol{f} until the resistor voltage v_{R} reaches its maximum value. 4) Annotate the frequency $f r$ the peak $\boldsymbol{V}_{\boldsymbol{R}}$ and the rms value $\boldsymbol{V}_{\boldsymbol{R r m s}}$.

Annex 1 - Results form PRELAB

REMARK: You MUST do these activities BEFORE THE LAB SESSION CORRESPONDING TO PRT2

PRELAB 0: Draw the contour package of a $\mathbf{1 0 n F}$ and a $\mathbf{1 0 \mu F}$ capacitor

How is the polarity indicated?
10nF:
\qquad
$10 \mu \mathrm{~F}:$

PRELAB1. Series RC circuit - Response to a step function. Waveform function generator configuration, mounting diagram, and waveform traces to be observed on the screen

Check the options you believe you need for the specified configuration

- OUTPUT: \square TTL $\square 50 \Omega$.
- FUNTION: \square Default \square SQUARE \square SINUS \square TRIANGULAR
- OFFSET: \square Default \square Value: \qquad
- AMPLITUDE: \square Defecte \square Vaue: \qquad
- FREQUENCY: \qquad

Representation of $v_{i}(t)$ and $v_{c}(t)$

PRELAB 2. Series RC circuit - Frequency response.

Representation of $v_{i}(t)$ i $v_{c}(t)$

PRELAB 3. Series RLC circuit - Response to a step function.

Annex 2 -Lab activities
REMARK: You MUST PRINT OUT this form and TAKE IT WITH YOU the day of the lab session

LAB 1: Series $R C$ circuit - Response to a step function

Waveforms corresponding to $v_{i}(t)$ and $v_{c}(t)(\mathbf{1 0} \boldsymbol{\mu} \mathbf{F})$

$t_{s}(=5 \tau):$ \qquad $\tau:$ \qquad

Waveforms corresponding to $v_{i}(t)$ and $v_{c}(t)(\mathbf{1 0 n F})$

$t_{s}(=5 \tau):$ \qquad $\tau:$ \qquad

LAB 2: Series RC circuit - Frequency response.

Waveforms corresponding to $v_{i}(t)$ and $v_{c}(t)(\boldsymbol{f}=\mathbf{1 K H z})$

Waveforms corresponding to $v_{i}(t)$ and $v_{c}(t)(\boldsymbol{f}=\mathbf{1 0 0 H z})$

Module and phase of $\mathrm{H}(\mathrm{s})$ for $\boldsymbol{f}=\mathbf{1 K H z}$ and $\boldsymbol{f}=\mathbf{1 0 0 H z}$ by using (18):

$$
\begin{array}{ll}
|H(j 2 \pi 1 \mathrm{KHz})|: & \angle H(j 2 \pi 1 \mathrm{KHz}): \\
|H(j 2 \pi 100 \mathrm{~Hz})|: & \angle H(j 2 \pi 100 \mathrm{~Hz}):
\end{array}
$$

f	t_{0}	t_{1}	t_{2}	V_{i}	V_{c}
100 Hz					
1 kHz					

Table 3. Signal parameters necessary to devaluate modeule and phase for $f=100 \mathrm{~Hz}$ i $f=1 \mathrm{KHz}$

Experimental values obtained for $\boldsymbol{f}=\mathbf{1 K H z}$ i $\boldsymbol{f}=\mathbf{1 0 0 H z}$
$|H(j 2 \pi 1 \mathrm{KHz})|:$ \qquad $\angle H(j 2 \pi 1 \mathrm{KHz}):$ \qquad
$|H(j 2 \pi 100 \mathrm{~Hz})|:$ \qquad $\angle H(j 2 \pi 100 \mathrm{~Hz}):$ \qquad

LAB 3: Series RLC circuit - Response to a step function

Waveforms corresponding to $v_{i}(t)$ and $v_{c}(t)(\boldsymbol{R}=\mathbf{1 k 8 \Omega})$

	t_{p}	t_{r}	SIP	$\boldsymbol{\xi}$	ω_{n}
Theoret.					
Measured					

Taula 3. Resultats de la resposta esgraó en el circuit RLC sèrie
Waveforms corresponding to $v_{i}(t)$ and $v_{c}(t)(\boldsymbol{R}=\mathbf{1 0 0} \mathbf{k} \boldsymbol{\Omega})$

t_{s} (=5 teòric): \qquad $t_{s}(=5 \tau$ mesurat): \qquad $\hat{\tau}$: \qquad

LAB 4: Resonant frequency of the series RLC circuit.

	f_{r} $(\mathrm{~Hz})$	$\omega_{r}\left(2 \pi f_{r}\right)$ $(\mathrm{rad} / \mathrm{seg})$	$V_{R}\left(j \omega_{r}\right)$ (peak)	$V_{R r m s}\left(j \omega_{r}\right)$ (rms)
Theoret.				
Mesaured				

Table 4. Resonant frequency measurements

Annex 3 -Basic Laplace Transformations

$f(t)$	$F(s)$
Unit impulse	1
Step function $u(t)$	$1 / \mathrm{s}$
t	$1 / s^{2}$
$\frac{t^{n-1}}{(n-1)!} \quad n=1,2,3, \ldots$	$1 / \mathrm{s}^{n}$
$t^{n-1} \quad n=1,2,3, \ldots$	$n!/ s^{n+1}$
$e^{-a t}$	$\frac{1}{s+a}$
$t e^{-a t}$	$\frac{1}{(s+a)^{2}}$
$\frac{1}{(n-1)!} t^{n-1} e^{-a t} \quad n=1,2,3, \ldots$	$\frac{1}{(s+a)^{n}}$
$t^{n} e^{-a t} \quad n=1,2,3, \ldots$	$\frac{n!}{(s+a)^{n+1}}$
$\sin (\omega t)$	$\frac{\omega}{s^{2}+\omega^{2}}$
$\cos (\omega t)$	$\frac{s}{s^{2}+\omega^{2}}$
$\sinh (\omega t)$	$\frac{\omega}{s^{2}-\omega^{2}}$
$\cosh (\omega t)$	$\frac{s}{s^{2}-\omega^{2}}$
$\frac{1}{a}\left(1-e^{-a t}\right)$	$\frac{1}{s(s+a)}$
$\frac{1}{b-a}\left(e^{-a t}-e^{-b t}\right)$	$\frac{1}{(s+a)(s+b)}$
$\frac{1}{b-a}\left(b e^{-b t}-a e^{-a t}\right)$	$\frac{s}{(s+a)(s+b)}$
$\frac{1}{a b}\left[1+\frac{1}{a-b}\left(b e^{-a t}-a e^{-b t}\right)\right]$	$\frac{1}{s(s+a)(s+b)}$

$f(t)$	$F(s)$
$\frac{1}{a^{2}}\left(1-e^{-a t}-a t e^{-a t}\right)$	$\frac{1}{s(s+a)^{2}}$
$\frac{1}{a^{2}}\left(a t-1+e^{-a t}\right)$	$\frac{1}{s^{2}(s+a)}$
$e^{-a t} \sin (\omega t)$	$\frac{\omega}{(s+a)^{2}+\omega^{2}}$
$e^{-a t} \cos (\omega t)$	$\frac{s+a}{(s+a)^{2}+\omega^{2}}$
$\frac{\omega_{n}}{\sqrt{1-\xi^{2}}} e^{-\xi \omega_{n} t} \sin \left(\omega_{n} \sqrt{1-\xi^{2}} t\right)$	$\frac{\omega_{n}^{2}}{s^{2}+2 \xi \omega_{n} s+\omega_{n}^{2}}$
$\begin{gathered} -\frac{\omega_{n}}{\sqrt{1-\xi^{2}}} e^{-\xi \omega_{n} t} \sin \left(\omega_{n} \sqrt{1-\xi^{2}} t-\phi\right) \\ \phi=\tan ^{-1}\left(\frac{\sqrt{1-\xi^{2}}}{\xi}\right) \end{gathered}$	$\frac{s}{s^{2}+2 \xi \omega_{n} s+\omega_{n}^{2}}$
$1-\frac{\omega_{n}}{\sqrt{1-\xi^{2}}} e^{-\xi \omega_{n} t} \sin \left(\omega_{n} \sqrt{1-\xi^{2}} t+\phi\right)$	$\frac{\omega_{n}^{2}}{s\left(s^{2}+2 \xi \omega_{n} s+\omega_{n}^{2}\right)}$
$1-\cos (\omega t)$	$\frac{\omega^{2}}{s\left(s^{2}+\omega^{2}\right)}$
$\omega t-\sin (\omega t)$	$\frac{\omega^{3}}{s^{2}\left(s^{2}+\omega^{2}\right)}$
$\sin (\omega t)-\omega t-\cos (\omega t)$	$\frac{2 \omega^{3}}{\left(s^{2}+\omega^{2}\right)^{2}}$
$\frac{1}{2 \omega} t \sin (\omega t)$	$\frac{s}{\left(s^{2}+\omega^{2}\right)^{2}}$
$t \cos (\omega t)$	$\frac{s^{2}-\omega^{2}}{\left(s^{2}+\omega^{2}\right)^{2}}$
$\frac{1}{\omega_{2}^{2}-\omega_{1}^{2}}\left[\cos \left(\omega_{1} t\right)-\cos \left(\omega_{2} t\right)\right]\left(\omega_{1} \neq \omega_{2}\right)$	$\frac{s}{\left(s^{2}+\omega_{1}^{2}\right)\left(s^{2}+\omega_{2}^{2}\right)}$
$\frac{1}{2 \omega}[\sin (\omega t)+\omega \cos (\omega t)]$	$\frac{s^{2}}{\left(s^{2}+\omega^{2}\right)^{2}}$

Properties of the Laplace Transformation

1	$\mathcal{L}[A \cdot F(t)]=A \cdot F(s)$
2	$\mathcal{L}\left[f_{1}(t) \pm f_{2}(t)\right]=F_{1}(s) \pm F_{2}(s)$
3	$\begin{gathered} \mathrm{L}_{ \pm}\left[\frac{d^{n}}{d t^{n}} f(t)\right]=s^{n} F(s)-\sum_{k=1}^{n} s^{n-k} f^{k-1}(0 \pm) \\ \text { on } \stackrel{k-1}{f}(t)=\frac{d^{k-1}}{d t^{k-1}} f(t) \end{gathered}$
4	$\mathrm{L}_{ \pm}\left[\int \ldots \int f(t)(d t)^{n}\right]=\frac{F(s)}{s^{n}}+\sum_{k=1}^{n} \frac{1}{s^{n-k+1}}\left[\int \ldots \int f(t)(d t)^{k}\right]_{t=0 \pm}$
5	$\mathrm{L}\left[\int_{0}^{t} f(t) d t\right]=\frac{F(s)}{s}$
6	$\mathrm{L}\left[\int_{0}^{\infty} f(t) d t\right]=\lim _{s \rightarrow 0} F(s) ;$ si $\int_{0}^{\infty} f(t) d t$ existeix
7	$\mathrm{L}\left[e^{-a t} f(t)\right]=F(s+a)$
8	$\mathrm{L}[f(t-a) 1(t-a)]=e^{-a s} F(s)$ per $a \geq 0$
9	$\mathrm{L}\left[t^{n} f(t)\right]=(-1)^{n} \frac{d^{n}}{d s^{n}} F(s) \quad n=1,2,3, \ldots$
10	$\mathrm{L}\left[\frac{1}{t} f(t)\right]=\int_{s}^{\infty} F(s) ;$ si $\lim _{s \rightarrow 0} \frac{1}{t} f(t)$ existeix
11	$\mathrm{L}\left[f\left(\frac{t}{a}\right)\right]=a F(a s)$
12	$\mathrm{L}\left[\int_{0}^{t} f_{1}(t-\tau) f_{2}(\tau) d t\right]=F_{1}(s) F_{2}(s)$
13	$\mathrm{L}[f(t) g(t)]=\frac{1}{2 \pi j} \int_{c-j \infty}^{c+j \infty} F(p) G(s-p) d p$

Lab Activity 3. Linear DC Power Supplies

Main goal: Knowing the basic stages that make up a low-power DC supply (line transformation, voltage rectification, filtering and stabilization) and learn the function that basic semiconductors (diodes, bridge rectifiers, Zener and integrated circuits) develop within this electronic system.

1 Introduction

A DC power source provides a continuous DC voltage to a circuit. To make this possible, it is necessary to transform the high-power line voltage, which is in the form of a sinusoid of $220 \mathrm{~V} \cdot \sqrt{2}=311 \mathrm{~V}$ peak and 50 Hz , by means of several operations implemented in stages (Fig. 1):

- The transformer generates another voltage (v_{S}) of the same type as in the power line $\left(v_{A C}\right)$ at the second winding, but of a much lower amplitude. This value depends on the number of turns of both windings (N_{1} - primary and $N_{2}-$ secondary, where $N_{1} \gg N_{2}$) and is calculated as:

$$
\begin{equation*}
v_{S}=\frac{N_{2}}{N_{1}} v_{A C} \tag{1}
\end{equation*}
$$

- The rectifier is implemented by means of diodes and converts the output from the transformer into a unipolar voltage of considerable ripple.
- The ripple at the rectifier output is reduced even more with a filtering stage, which is responsible of removing the components of higher frequency. The ripple obtained with this operation, however, depends on other factors belonging to the output load (such as impedance and load current), and cannot be removed completely.
- This is precisely the function of the last stage, the voltage regulator, which makes the DC output independent from the input line.

2 Rectifier circuits (rectifier diodes)

We'll start with the rectifier diode, the most common nonlinear semiconductor in electronics (Fig. 2a) which acts as a semi-controlled switch (Fig. 2c and 2d):

- When a negative voltage is applied to both terminals (according to the reference in Fig. 1b, $v<0$), this device behaves as an open circuit (Fig. 2c). In this situation, its electric current, from anode to cathode, is zero and it is said that the diode is reverse biased, or it works in OFF mode.
- On the other hand, if the electric current is positive ($i>0$) the device act as shortcircuit (Fig. 2d) and it is said that the diode is forward biased. It works in ON mode.

The true behavior, however, varies slightly. In ON mode, it turns out that the voltage from anode to cathode (v) is not quite zero, but has a small value close to 0.7 V (the true value depends on diode the material used by the manufacturer). One way of representing this threshold consists in adding an additional source ($V_{D}=0.7 \mathrm{~V}$) in series with the ideal model (Fig. 3).

Figure 1. Block diagram corresponding to the different stages of the DC power supply. These are the necessary steps for the AC-DC energy conversion of the power line $v_{A C}$.

Figure 2. The ideal diode model: a) Symbol; b) i-v characteristics; c) OFF operation; d) ON operation.

Figure 3. a) True and linealized i-v characteristics; b) Equivalent linealized model.
One basic application which makes use of the diode characteristics is the rectifier (Fig. 4). This circuit consists of a diode D and a resistor R connected in series. When a sinusoid voltage $v_{I}=V_{P} \sin (2 \pi f t)$ is introduced as input, the diode will be in ON mode whenever $v_{I}(t) \geq V_{D}$, and in OFF mode otherwise. Since in this mode i_{D} becomes zero, the output voltage in the resistor R is also zero.

(a)

(b)

Figure 4. a) Single-phase half-wave rectifier circuit. B) Voltage waveforms $v_{I}(t)$ - blue; and $v_{O}(t)$ - red.

Figure 5. $v_{O}-v_{I}$ transfer characteristics of the half-wave rectifier in Fig. 3a.
Thus, the circuit "rectifies" the negative cycle from the unique (or single-phased) input. During the positive cycle, the output will be the same as the input but removing the threshold V_{D} corresponding to the voltage drop on the diode (Fig. 5). Hence, the name of the circuit: the single-phase half-wave rectifier.
In practice, the average output voltage $V_{O(a v)}$ is determined over an entire cycle as,

$$
\begin{equation*}
V_{O(a v)}=\frac{1}{T} \int_{0}^{T}\left[v_{I}(t)-v_{D}(t)\right] d t \square \frac{1}{2 \pi} \int_{0}^{\pi} V_{P} \sin (\omega t) d \omega t-V_{D} \square \frac{V_{P}}{\pi}-\frac{V_{D}}{2}, \tag{2}
\end{equation*}
$$

where V_{P} corresponds to the input amplitude and depends on the transformer windings $\boldsymbol{v}_{\boldsymbol{I}}=\boldsymbol{v}_{\mathbf{s}}$. As for the diode, the average and maximum value of electric current, $I_{D(\mathrm{av})}$ and $I_{D \text { max }}$, respectively is obtained as

$$
\begin{equation*}
I_{D(a v)}=\frac{V_{O(a v)}}{R} \quad \text { and } \quad I_{D \max }=\frac{V_{\text {Omax }}}{R}=\frac{V_{P}-V_{D}}{R} \tag{3}
\end{equation*}
$$

whereas the maximum repetitive voltage drop in OFF mode , $V_{R R M}{ }^{1}$ is,

$$
\begin{equation*}
V_{R R M}=\max \left\{-v_{D}(t)\right\}=V_{P} . \tag{4}
\end{equation*}
$$

This information regarding the half-wave rectifier is important in practice, as it specifies which is the correct diode to use on one hand, and then it permits a first glance of the main DC power source parameters, such as the DC output or the power transferred by the source.

[^4]

Figure 6. (a) Two-phae haf-wave rectifier. (b) Single-phase full-wave rectifier (or bridge rtectifier).

Electrical variables	Single-phase Rectifier (half-wave)	Two-phase Rectifier (half-wave)	Single-phase Rectifier (full-wave)
$V_{O(a v)}$	$\frac{V_{P}}{\pi}-\frac{V_{D}}{2}$	$\frac{2 V_{P}}{\pi}-V_{D}$	$\frac{2 V_{P}}{\pi}-2 V_{D}$
$V_{\text {RMM }}$	V_{P}	$2 V_{P}$	$V_{P}-V_{D}$
$\boldsymbol{I}_{\text {D max }}$	$\frac{V_{P}-V_{D}}{R}$	$\frac{V_{P}-V_{D}}{R}$	$\frac{V_{P}-2 V_{D}}{R}$
$I_{\text {D(av) }}$	$\frac{V_{O(a v)}}{R}$		

Table 1. Summary of specifications corresponding to the different rectifier circuits.
The rectifier circuits in Fig. 6, improve the features of the half-wave rectifier. On one hand, the two-phase half-wave rectifier increases the capacity of output power transferred to the load because using two phases doubles the average DC value on the resistor v_{0}. On the contrary, however, the diodes must stand twice the input voltage when operating in OFF mode ($V_{R R M} \approx 2 V_{P}$). The benefits of the single-phase full-wave rectifier (or bridge rectifier), on the other hand, are similar to the two-phase rectifier but with a reverse voltage $V_{R R M} \approx V_{P}$ (see Table 1).

Task PRELAB1: In the Bread-Board template provided at the end of the document, draw the connections corresponding to the two rectifiers shown in Fig. 7, to be implemented in the lab on the $3^{\text {rd }}$. session. Include the connections from the transformer, components and oscilloscope.

Task LAB1: In each circuit in Fig. 7, obtain the waveform at the second winding in the transformer $v_{I}(t)$, the output $v_{O}(t)$ and the voltage in one diode $v_{D}(t)$.

- 1) Mount the circuit in Fig. 7a. 2) Turning both transformer and oscilloscope OFF, connect the probes and wires. When you finish, turn both devices ON. 3) Configure CH1 and CH2 as indicated in order to observe both signals in detail. 4) Select the MATH option and activate the SUBSTRACTION operation (purple trace: CH1 - CH2). 5) Obtain the values of $V_{R R M}$ and $V_{O(a v)}$ by means of the MEASURE option of both channels.

Figure 7. Diagram connections the two rectifiers necessary to obtain $v_{I}(t), v_{D}(t)$ i $v_{O}(t)$ in the lab. a) Single-phase half-wave rectifier. b) Two-phase half-wave rectifier.

- Similarly, proceed with the second circuit (Fig. 7b) to obtain the waveform signals corresponding to the two-phase half-wave rectifier.

REMARK: It is very important NOT MANIPULATING OR NOT

 MODIFYING PROBE CONNECTIONS while the transformer is on, in order to prevent the internal protection fuses of 0.5 A from breaking. For the same reason, remember NOT TO CONNECT the negative terminal of the probes at different points in the circuit.As the benefits of the single-phase full-wave rectifier are quite acceptable, its use is extended as part of many commercial DC low-power supplies ${ }^{2}$. Because of the four diodes, this circuit increases in complexity and volume. Fortunately, today there are many integrated circuits including the four diodes in a single package, such as the bridge rectifiers (Fig. 8), which eases connectivity and implementation.

3 Filtering stage

The subsequent step to the rectification of the negative cycle in the input line consists in reducing the ripple. The easiest way consists in connecting a capacitor in parallel with the load (Fig. 9a) in order to cause a smooth transition between cycles (Fig. 9b), thus "filtering out" the high-frequency components of the input line. The full sequence of Fig. 9b develops as follows:

[^5]

Figure 8. Three bridge rectifiers commonly used in DC power supplies: a) the W10G-E4 from Vishay; b) the KBPC5010 from Fairchild Semiconductor; c) the DF06 from International Rectifier

(b)

Figure. 9. Single-phase half-wave rectifier with filter. a) Schematics. b) Waveforms corresponding to voltages in $v_{\mathrm{O}}, v_{\mathrm{I}}$; and electric currents $i_{\mathrm{D}}, i_{\mathrm{L}}$. We assume $R C \gg T$.

- The diode allows the electric current to flow for small period of time (say $\Delta t=t_{2}$ $-t_{1}$). The ON mode begins at $t=t_{1}$, at this moment the input reaches the output value, which was decaying as a result of the capacitor discharge during the previous interval.
- When v_{I} has just reached the maximum value (we use the approximation $V_{\mathrm{P}}-V_{D}$ $\approx V_{\mathrm{P}}$ to simplify our comments), and assuming that the output transition is much slower in relation to that of the input because R and C are designed so that $\tau=R C \gg T$, the diode stops conducting at t_{2} and turns OFF.
- When the diode is OFF (in almost all the full cycle T), the capacitor C transfer its charge to the resistor R. The evolution of $v_{O}(t)$ is given by (5) where $t_{2}=0$ is assumed in order to simplify our comments:

$$
\begin{equation*}
v_{O}(t)=v_{O}(\infty)+\left[v_{O}\left(t_{2}\right)-v_{O}(\infty)\right] e^{-t / R C}=V_{P} e^{-t / R C} \tag{5}
\end{equation*}
$$

Here, $v(\infty)=0$ is the hypothetical voltage the capacitor would reach in an event of permanent discharge, $t=\infty$, and $v\left(t_{2}\right) \approx V_{P}$ correspond to the initial value of this interval. Assuming that $R C \gg T$, a good approximation is:

$$
\begin{equation*}
e^{-t / R C} \square 1-\frac{t}{R C} \tag{6}
\end{equation*}
$$

- Since $v_{o}\left(t_{1}\right)=V_{P}-V_{r} \square V_{P} e^{-t / R C} \square V_{P}(1-t / R C)$, equating (6) and (5) allows the ripple to be estimated as:

$$
\begin{equation*}
V_{r} \square V_{P} \frac{T}{R C}=\frac{V_{P}}{f R C}=\frac{I_{L}}{f C} \tag{7}
\end{equation*}
$$

Knowing this parameter, the average value of the output voltage $V_{O(a v)}$ is determined as

$$
\begin{equation*}
V_{O(a v)} \square V_{P}-\frac{V_{r}}{2} . \tag{8}
\end{equation*}
$$

Finally, we obtain the average and maximum value of the electric current flowing through the diode, $I_{D(\text { av })}$ and $I_{D(\text { màx })}$ respectively. Once again, these parameters are crucial for selecting one diode from the different suppliers. Taking into account that the diode stops conducting when $v_{I}(t) \approx V_{P}$, the conduction interval Δt can be estimated by means of $V_{P}-V_{r}=V_{P} \cos (\omega \Delta t)$, where $\omega=2 \pi f$. $=2 \pi / T$ corresponds to the angular frequency of the input line. Assuming that $\omega \Delta t$ is too small, the term $\cos (\omega \Delta t)$ can be approximated as $\cos (\omega \Delta t)=1-\frac{1}{2}(\omega \Delta t)^{2}$. So, the conduction angle α becomes

$$
\begin{equation*}
\alpha=\omega \Delta t=\sqrt{2 V_{r} / V_{P}} . \tag{9}
\end{equation*}
$$

Then, for estimating the average current $i_{\mathrm{D}(\mathrm{av})}$, we equate the capacitor charge supplied by the diode during the conduction interval Q_{s} and the charge lost during the OFF interval Q_{P} :

$$
\begin{equation*}
Q_{S}=i_{C(a v)} \Delta t=\left(I_{D(a v)}-I_{L}\right) \Delta t \quad \text { and } \quad Q_{P}=C V_{r} \tag{10}
\end{equation*}
$$

Equating $I_{D(a v)}$ from (10) and using (7) and (9) the average diode current is obtained as

$$
\begin{equation*}
I_{D(a v)}=I_{L}\left(1+\pi \sqrt{2 V_{p} / V_{r}}\right) \tag{11}
\end{equation*}
$$

On the other hand, the expression for the maximum diode current $I_{\text {Dmax }}$ is (the demonstration is far too long):

$$
\begin{equation*}
I_{D(a v)}=I_{L}\left(1+2 \pi \sqrt{2 V_{p} / V_{r}}\right) . \tag{11bis}
\end{equation*}
$$

As such, in an event of a ripple $V_{r} \ll V_{P}$, it is approximately correct saying that $I_{D(\text { max })} \approx 2 I_{D(a v)}$.

Increasing C allows the ripple to be reduced (7), but has the disadvantage of increasing the average diode current significantly (11) and, therefore, it could be destroyed. This conditions are relaxed a little by using the two-phase rectifier as well as the bridge rectifier. In these cases the ripple and the electric currents become:

$$
\begin{gather*}
V_{r} \square \frac{V_{P}}{2 f R C}=\frac{I_{L}}{2 f C} \tag{12}\\
I_{D(a v)}=I_{L}\left(1+\pi \sqrt{V_{p} / 2 V_{r}}\right) \text { and } I_{D(a v)}=I_{L}\left(1+2 \pi \sqrt{V_{p} / 2 V_{r}}\right) . \tag{13}
\end{gather*}
$$

This makes the bridge rectifier the most adopted configuration in low-power DC supplies.

Task PRELAB2: In the Bread-Board template provided, draw the connections from the bridge rectifier with filter you need to mount the circuit the day of the lab session, including the DF06 integrated circuit (Fig. 10).
Task LAB2: Obtain the output waveform $v_{O}(t)$ for different values of the capacitor C.

- 1) Mount the circuit using the integrated bridge rectifier DF06. First, use a capacitor $\boldsymbol{C}=\mathbf{1 0 0 n F}$ and connect ONLY the probe of channel CH1 in parallel with the resistor. 2) After observing the correct output waveform, obtain $\boldsymbol{V}_{\boldsymbol{O}(\operatorname{màx})}\left(=V_{P}\right)$ and $\boldsymbol{V}_{\boldsymbol{O}(\min)}$; and determine the ripple as $\left.\boldsymbol{V}_{\boldsymbol{r}}=\boldsymbol{V}_{\boldsymbol{O (\operatorname { m a x })}}-\boldsymbol{V}_{\boldsymbol{O}(\min)}\right)$. 3) Then, use (8) in order to determine the average output value $\boldsymbol{V}_{\boldsymbol{O}(\mathrm{av})}$.
- Repeat the preceding operations for different capacitors: $\boldsymbol{C}=\mathbf{1 0 \mu F}$ and $\boldsymbol{C}=$ $\mathbf{1 0 0} \mathbf{\mu F}$. Comment the differences between theoretical and experimental results, use (7) in case you need it.

Figure. 10.Schematics corresponding to the single-phase full-wave (or bridge) rectifier with filter, using the DF06 integrated circuit from International Rectifier.

4. Output voltage stabilization

We already mentioned (section 1) the functionality of the regulator in the last stage of the DC power supply, which is to provide a stable and independent voltage to the output. The simplest way of performing this operation consists in using a Zener diode (Fig. 11). The main difference in relation to the rectifier diode is that in the Zener the electric current can flow from cathode to anode. That is, $i=-i_{Z}<0$ (or equivalently $i_{Z}>$ 0). When this condition holds, it is normally said that the Zener is operating within the breakdown region ($\mathrm{ON}_{\mathrm{rev}}$), and the breakdown voltage is $v=-V_{\mathrm{Z}}$ (the voltage from cathode to anode is V_{z}).

In practice, however, the slope corresponding to the $i-v$ characteristics at the breakdown region is finite (Fig. 12) and the breakdown voltage V_{Z} is not as constant as desired. Even so, in applications where a great stability is not required this tolerance is accepted and the zener is used for stabilization purposes. One example is the voltage regulator of Fig. 13. Its true output voltage considering the approximated model is:

$$
\begin{equation*}
v_{O}=V_{Z 0}+r_{Z} I_{Z} \tag{12}
\end{equation*}
$$

where r_{Z} represents the internal resistance of the zener.
In this circuit, the resistor value R cannot be any. As $v_{R}=v_{S}-R\left(I_{L}+I_{Z}\right)$, where I_{L} varies according to the output requirements ($0>I_{L}>I_{L \text { (màx })}$) and there are a minimum and maximum current where the Zener operates correctly ($I_{Z \text { min }}$) and ($P_{Z(\text { màx })}=V_{Z} \cdot I_{Z(\text { màx })}$), meeting the following design condition is necessary:

$$
\begin{equation*}
\frac{v_{S(\min)}-v_{O(\operatorname{mín})}}{I_{L(\text { màx })}+I_{Z(\text { mín })}} \leq R \leq \frac{v_{S(\text { màx })}-v_{O(\text { màx })}}{I_{L(\text { mín })}+I_{Z(\text { màx })}} \tag{13}
\end{equation*}
$$

Task PRELAB3: In the Bread-Board template provided, draw the connections for the full DC power supply, including the transformer, the bridge rectifier, the capacitor and the Zener-based voltage regulator (Fig. 14). Include the oscilloscope connections for measuring the ripple $\boldsymbol{V}_{\boldsymbol{r}}$ (at $\boldsymbol{v}_{\boldsymbol{C}}$ by means of CH1), the output $\boldsymbol{v}_{\boldsymbol{O}}$ (with CH 2) and the ammeter connection for measuring I_{L}.

Figure 11. Zener diode. Mathematical model and i-v characteristics. a) Symbol. b) Equivalent model for the breakdown region $\left(\mathrm{ON}_{\text {rev }}\right)$ c) $i-v$ characteristics

Figure 12. The breakdown region of a real zener diode in more detail

(d)

Figure 13. Zener-based voltage regulator. The goal of the zener is to provide a more stable output in relation to that od the capacitor. In addition, this voltage is independent to power line fluctuations.

Figura 14. Esquema de la font DC completa amb regulador Zener.

Task LAB3: Obtain the regulator output V_{O} and the electric current I_{L} and check whether this stage is implementing its function correctly.

- 1) Using the capacitance value $\boldsymbol{C}=\mathbf{1 0 0 \mu F}$, mount the full DC power supply, including the zener-based regulator, as shown in Fig. 14. Use the 5.1 V zener (BZX5V1) and the resistor $\boldsymbol{R}=\mathbf{3 9 0 \Omega} \mathbf{/ 1 W}$. 2) Connect the positive terminal of the ammeter at the cathode and the negative terminal at the $\boldsymbol{R}_{L}=\mathbf{1} \mathbf{k} \boldsymbol{\Omega}$ resistor; and select the DC current option (IDC) 3) Connect the probe from CH1 in parallel with the capacitor C and CH 2 in parallel with the resistor R_{L}. 4) Turn the transformer on. 5) Represent both signals in the grid and, using the ammeter write down the values of $\boldsymbol{I}_{\boldsymbol{L}}$ and use the oscilloscope to measure the ripple \boldsymbol{V}_{r}, and the average voltage, $\boldsymbol{V}_{\boldsymbol{o}}$.
- Repeat the preceding steps for the resistors: $\boldsymbol{R}_{L}=\mathbf{5 6 0 \Omega}$ and $\boldsymbol{R}_{L}=\mathbf{1 0} \mathbf{k} \boldsymbol{\Omega}$ (There is no need to drqw the waveforms again). Is $\boldsymbol{V}_{\boldsymbol{r}}$ independent from $\boldsymbol{V}_{\boldsymbol{o}}$? Explain why.

5. Integrated Regulators (el 7805)

Voltage regulators are also manufactured as integrated circuits, so that they can be used more easily and reliably. One group available from many manufacturers are those regulators of fixed output. Perhaps, the most popular is the family of 78XX regulators from Intersil (where XX indicates the fixed output voltage).

One example is the popular 7805 (Fig. 15), which is manufactured by several companies. This is a three-terminal IC able to provide a fixed voltage of 5 V at a maximum current of 1A. The IC incorporates a series of peripherals aimed at protecting the devices from overloads, accidental short-circuit and thermal shut-down, among other features.). In addition, if a heat sing is used the output current can be increased up to several amperes. Finally, even though its main functionality is to provide a fixed voltage, one can obtain a variable output by using additional resistors and potentiometers. Table 2 shows the main electrical characteristics provided by the manufacturer.

Task PRELAB4: In the Bread-Board template, draw the connections from the DC power supply based on the 7805 IC (Fig. 16) you'll carry out in the lab session in order to obtain its main electrical parameters 7805 (Fig. 16).

Task LAB4: Mount the circuit in Fig. 16 and check out the correct performance of the DC power supply..

- 1) Mount the circuit. 2) Measure its output with three different resistors $\boldsymbol{R}_{\mathbf{L}}$: $\mathbf{3 9 0 \Omega}, 560 \Omega$ and $\mathbf{1 k} \Omega$. What are the differences, benefits and drawbacks of this configuration in relation to the Zener?

(a)

(b)

Figure 15. Voltage regulator 78XX. A) Pin distribution and; b) Basic connection for fixed output.

Figure 16. Schematics of a 5V full DC power supply based on the L7805 IC.

Table 4. Electrical characteristics of L7805

Symbol	Parameter	Test conditions	Min.	Typ.	Max.	Unit
V_{O}	Output voltage	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$	4.8	5	5.2	V
V_{0}	Output voltage	$\mathrm{I}_{0}=5 \mathrm{~mA}$ to $1 \mathrm{~A}, \mathrm{~V}_{\mathrm{I}}=8$ to 20 V	4.65	5	5.35	V
$\Delta V_{0}{ }^{(1)}$	Line regulation	$\mathrm{V}_{1}=7$ to $25 \mathrm{~V}, \mathrm{~T}_{J}=25^{\circ} \mathrm{C}$		3	50	mV
		$\mathrm{V}_{l}=8$ to $12 \mathrm{~V}, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$		1	25	
$\Delta V_{0}{ }^{(1)}$	Load regulation	$\mathrm{I}_{0}=5 \mathrm{~mA}$ to $1.5 \mathrm{~A}, \mathrm{~T}_{J}=25^{\circ} \mathrm{C}$			100	mV
		$\mathrm{I}_{0}=250$ to $750 \mathrm{~mA}, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$			25	
$I_{\text {d }}$	Quiescent current	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$			6	mA
$\Delta l_{\text {d }}$	Quiescent current change	$\mathrm{I}_{0}=5 \mathrm{~mA}$ to 1 A			0.5	mA
		$\mathrm{V}_{1}=8$ to 25 V			0.8	
$\Delta \mathrm{V}_{\mathrm{O}} / \Delta \mathrm{T}$	Output voltage drift	$\mathrm{I}_{\mathrm{O}}=5 \mathrm{~mA}$		0.6		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
eN	Output noise voltage	$\mathrm{B}=10 \mathrm{~Hz}$ to $100 \mathrm{kHz}, \mathrm{T}_{J}=25^{\circ} \mathrm{C}$			40	$\mu \mathrm{V} / \mathrm{V}_{\circ}$
SVR	Supply voltage rejection	$\mathrm{V}_{1}=8$ to $18 \mathrm{~V}, \mathrm{f}=120 \mathrm{~Hz}$	68			dB
V_{d}	Dropout voltage	$\mathrm{I}_{\mathrm{O}}=1 \mathrm{~A}, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$		2	2.5	V
R_{O}	Output resistance	$\mathrm{f}=1 \mathrm{kHz}$		17		$\mathrm{m} \Omega$
$\mathrm{I}_{\text {sc }}$	Short circuit current	$\mathrm{V}_{\mathrm{l}}=35 \mathrm{~V}, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$		0.75	1.2	A
$\mathrm{I}_{\text {scp }}$	Short circuit peak current	$\mathrm{T}_{J}=25^{\circ} \mathrm{C}$	1.3	2.2	3.3	A

1. Load and line regulation are specified at constant junction temperature. Changes in V_{O} due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

Table 2. Main electrical features from the datasheet L7805 from Intersil.

Annex 1 - Results form PRELAB
REMARK: You MUST DO THESE ACTIVITIES BEFORE THE LAB SESSION CORRESPONDING TO PRT3

Sistemes Electrònics (SIEK)
Activity 3: Introduction to DC supplies
PRELAB
Students:
Date:

PRELAB 1: Voltage rectifier circuits

a) Connections corresponding to the single-phase half-wave rectifier (Fig. 7a) ${ }^{3}$

[^6]b) Connections corresponding to the two-phase half-wave rectifier (Fig. 7b)

PRELAB 2. Voltage filter

Connections corresponding to the single-phase half-wave rectifier using filter (Fig. 10)

PRELAB 3. Estabilitzador de tensió Zener

Connexions de la font d’alimentació DC completa amb regulador Zener (Fig. 14)

PRELAB 4. Regulador de tensió integrat

Connexions de la font d’alimentació DC completa amb regulador integrat L7805 (Fig. 16)

Annex 2 -Lab activities
REMARK: You MUST PRINT OUT this form and TAKE IT WITH YOU the day of the lab session

LAB 1: Voltage rectifiers

Waveforms $v_{I}(t) ; v_{O}(t)$ and $v_{D}(t)=v_{I}(t)-v_{O}(t)$ observed in the single-phase half-wave rectifier (Fig. 7a).

CH1 VOLT/: 5V/
Zero POS1: 0V
CH2 VOLT/: 5V/
Zero POS2: 0V
MATH VOLT/: 5V/
TIME/: $5 \mathrm{mseg} /$
Acob: DC

$V_{\text {RRM }}$: \qquad $V_{O(a v)}:$ \qquad

Waveforms $v_{I}(t)$; $v_{O}(t)$ and $v_{D}(t)=v_{I}(t)-v_{O}(t)$ observed in the two-phase half-wave rectifier (Fig. 7b).

CH1 VOLT/: 5V/
Zero POS1: OV
CH2 VOLT/: 5V/
Zero POS2: OV
MATH VOLT/: 10V/
TIME/: 5mseg/
Acob: DC
$V_{\text {RRM }}$: \qquad $V_{O \text { (av) }}:$ \qquad

LAB 2: Voltage filter

Waveform corresponding to $v_{O}(t)$ using $\mathbf{C}=\mathbf{1 0 0 n F}$.

$V_{\text {Omax }}:$ \qquad $V_{\text {Omin }}:$ \qquad V_{r} : \qquad $V_{O(\mathrm{av})}$: \qquad

Waveform corresponding to $v_{o}(t)$ using $\mathbf{C}=\mathbf{1 0 \mu F}$.

$V_{\text {Omax }}$: \qquad $V_{\text {Omin }}:$ \qquad $V_{r}:$ \qquad $V_{O(a v)}:$ \qquad

Waveform corresponding to $v_{O}(t)$ using $\mathbf{C}=\mathbf{1 0 0 \mu} \mathbf{F}$.

CH1 VOLT/: 5V/
Zero POS1: -5V
TIME/: 2mseg/
Acob: DC and AC
$V_{\text {Omax }}$: \qquad $V_{\text {Omin }}:$ \qquad $V_{r}:$ \qquad $V_{O(\mathrm{av})}:$ \qquad

Explain the results:
\qquad
\qquad
\qquad

LAB 3: Voltage regulator

Waveforms corresponding $\operatorname{to} v_{c}(t)$ and $v_{O}(t)$

Variable	$R_{L}=560 \Omega$	$R_{L}=1 \mathrm{k} \Omega$	$R_{L}=10 \mathrm{k} \Omega$
V_{r}			
V_{o}			
I_{L}			

Table 3. Electric variables corresponding to the Zener regulator
Is V_{r} independent from V_{o} ? Explain why
\qquad
\qquad
\qquad
\qquad

LAB 4: Voltage regulator using integrated circuit

Variable	$R_{L}=390 \Omega$	$R_{L}=1 \mathrm{k} \Omega$	$R_{L}=10 \mathrm{k} \Omega$
V_{r}			

V_{o}			
I_{L}			

Taula 4. Electric variables corresponding to the IC regulator L7805

Explain the difference of results regarding to the Zener configuration of section LAB3. What are the improvements and drawbacks of this configuration?

Lab Activity 4. Switching Electronics: the Bipolar Junction Transistor (BJT)

Main goal: To understand the performance of the bipolar transistors (aka BJT) ${ }^{1}$ and knowing its main application in the field of switching electronics (analog, digital and mixed).

1 Introduction

In this lab activity you'll get introduced to the most common three-terminal electronic device: the bipolar junction transistor (BJT). Its operation principle is quite similar to a two-terminal current source which is controlled from another terminal. That is, the electric current at the base terminal (B) sets (or controls) the amount of current flowing from the collector terminal (C) to the emitter (E).

Both electric symbols and current/voltage conventions are shown in Fig. 1. In general, we find two types of BJT: the npn (Fig. 1a) and the pnp (Fig. 1b). Their main difference lie on the sign convention used in all variables, which is opposite in relation to the other.

As for the electric currents in each of the terminals, it holds that:

$$
\begin{equation*}
i_{E}=i_{B}+i_{C} . \tag{1}
\end{equation*}
$$

On the other hand, $v_{B E}$ corresponds to the voltage drop between base and emitter terminals, whereas $v_{C E}$ is the collector-emitter voltage.

Unlike the diode, the BJT is able to operate up to three regions depending on the different conditions that may be given in the electrical variables when the three terminals are connected to other components (see Table 1):

- When the base current i_{B} is zero, there is no current flow at the collector terminal $i_{\mathrm{C}}=0$. In this case, we say that the BJT operates in the CUTOFF mode. This happens whenever the v_{BE} voltage is under the threshold level $V_{\mathrm{BE} \gamma}$ (typically $\boldsymbol{V}_{\mathbf{B E} \boldsymbol{\gamma}}=\mathbf{0 . 7} \mathbf{V}$), specified by the manufacturer's datasheet.
- When the electric power at the base is significantly enough so as to make the base current i_{B} greater than zero, the BJT leaves the cutoff region and enters in ACTIVE mode. The BJT will remain in this region as long as i_{B} is significantly enough to keep the v_{CE} voltage above the threshold level $V_{\mathrm{CE}(\text { sat) }}$ (also specified in the datasheet). In this situation, $v_{\mathrm{BE}}=V_{\mathrm{BE} \mathrm{\gamma}}$ and i_{C} is proportional to i_{B}. The gain in current that is obtained between this to variables is denoted as h_{FE} and is also provided by the manufacturer in the datasheet.

[^7]
(a)

(b)

Figure 1. The BJT. Symbols and electric current/voltage sign conventions. a) npn, b) pnp.

Operating zone	Electrical conditions	Electrical behavior
Cutoff (OFF)	$v_{\mathrm{BE}}<V_{\mathrm{BE} \gamma}, v_{\mathrm{CE}}>V_{\mathrm{CE}(\mathrm{sat})}$	$i_{\mathrm{B}}=0, i_{\mathrm{C}}=0$
Active	$i_{\mathrm{B}}>0, v_{\mathrm{CE}}>V_{\mathrm{CE}(\text { sat })}$	$v_{\mathrm{BE}}=V_{\mathrm{BEF},}, i_{\mathrm{C}}=h_{\mathrm{FE}} i_{\mathrm{B}}$
Saturation (ON)	$i_{\mathrm{B}}>0, i_{\mathrm{B}}>i_{\mathrm{C}} / h_{\mathrm{FE}}$	$v_{\mathrm{BE}}=V_{\mathrm{BE} \gamma,}, v_{\mathrm{CE}}=V_{\mathrm{CE}(\text { sat })}$

Table 1 Operating modes in the npn BJT: electric conditions and device behavior are specified. The same considerations apply to the pnp type when changing the variable index, i.e. $v_{C E} \rightarrow v_{E C}$.

- When i_{B} is very large, the relation $i_{\mathrm{C}}=h_{\mathrm{FE}} i_{\mathrm{B}}$ is not fulfilled anymore and the BJT enters the SATURATION mode. The voltage v_{CE} takes its minimum value ($v_{\mathrm{CE}(\text { sat) })}$), and ν_{BE} is the same as in the active region, $V_{\mathrm{BE} \gamma}$.

Fig. 2 summarizes the BJT $i-v$ characteristics. In fact, the base-emitter junction acts as a diode: in both active and saturation regions this BE junction is in ON mode ($v_{\mathrm{BE}}=V_{\mathrm{BE} \gamma} \mathrm{i}$ $i_{B}>0$), whereas in the cutoff region this junction is in OFF mode ($v_{\mathrm{BE}}<v V_{\mathrm{BE} \gamma} \mathrm{i} i_{\mathrm{B}}=0$).

In order to understand these three operating regions, consider the BJT circuit of Fig. 3, where $V_{i n}$ is some variable input voltage. Applying both KVLs at the input and output meshes (left and right, respectively) we obtain:

$$
\begin{array}{r}
V_{i n}-R_{B} i_{B}-v_{B E}=0 \\
v_{2}-R_{C} i_{C}-v_{C E}=0 \tag{3}
\end{array}
$$

- CUTOFF operation: The boundary of $V_{i n}$ between the cutoff and active mode is obtained by using the condition $V_{\mathrm{BE}}<V_{\mathrm{BE} \gamma}$ and setting $i_{B}=0$ in (2) (see Table 1). So the condition of $\boldsymbol{V}_{\text {in }}$ in the cutoff region is,

$$
\begin{equation*}
V_{i n} \leq V_{B E \gamma} \tag{4}
\end{equation*}
$$

Since $i_{C}=0$, the condition $v_{C E}>V_{C E s a t}$ must hold, so,

$$
\begin{equation*}
v_{C E}=V_{2}>V_{C E(s a t)} \tag{5}
\end{equation*}
$$

Figure 2. The BJT $i-v$ transfer characteristics. a) Input: $i_{\mathrm{B}}-v_{\mathrm{BE}}$. b) Output: $i_{\mathrm{C}}-v_{\mathrm{CE}}$.

Figure 3. Schematics of the basic BJT configuration: npn type.

- ACTIVE operation: It is clear that the input condition must be opposite to (4) if the BJT is to operate in this region. Indeed, expressing i_{B} from (2) and using the equality $v_{B E}=V_{B E \gamma}$ we obtain,

$$
\begin{equation*}
i_{B}=\frac{V_{i n}-V_{B E}}{R_{B}} \geq 0 \quad \rightarrow \quad V_{i n} \geq V_{B E \gamma} . \tag{6}
\end{equation*}
$$

However, this is not the only condition for the active region because, on the other hand, when i_{B} is large enough the BJT may enter the saturation region. The other boundary is determined using the condition $v_{C E}>V_{C E(\text { sat })}$. In addition, since we have $i_{C}=h_{F E} i_{B}$ in active mode, using (6) in (3) leads to the condition,

$$
\begin{equation*}
V_{i n} \leq R_{B} \frac{V_{2}-V_{C E(s a t)}}{R_{C} h_{F E}}+V_{B E \gamma}, \tag{7}
\end{equation*}
$$

Therefore, the active region is obtained within the input range,

$$
\begin{equation*}
V_{B E \gamma} \leq V_{i n} \leq R_{B} \frac{V_{2}-V_{C E(s a t)}}{R_{C} h_{F E}}+V_{B E \gamma} . \tag{8}
\end{equation*}
$$

In this situation, it holds that the output $v_{C E}$ is,

$$
\begin{equation*}
v_{C E}=V_{2}-R_{C} i_{C}=V_{2}-R_{c} h_{F E} \frac{V_{i n}-V_{B E \gamma}}{R_{B}} \tag{9}
\end{equation*}
$$

- SATURATION operation: Obviously, the saturation condition is the opposite to (7). To confirm this hypothesis we use the condition

$$
\begin{equation*}
i_{B}>\frac{i_{C}}{h_{F E}} \tag{10}
\end{equation*}
$$

from Table 1. In this case, the equalities $v_{\mathrm{BE}}=V_{\mathrm{BE} \gamma}$ and $v_{\mathrm{CE}}=V_{\mathrm{CE}(\text { sat })}$ must hold so, if we use (3), i_{C} is readily obtain as,

$$
\begin{equation*}
i_{C}=\frac{v_{2}-v_{C E}}{R_{C}}=\frac{v_{2}-V_{C E(s a t)}}{R_{C}} . \tag{11}
\end{equation*}
$$

Using (6) and (11) in (10) allows the BJT saturation condition to be obtained as,

$$
\begin{equation*}
\frac{V_{i n}-V_{B E \gamma}}{R_{B}}>\frac{v_{2}-V_{C E(s a t)}}{R_{C} h_{F E}} \rightarrow V_{i n}>R_{B} \frac{V_{2}-V_{C E(s a t)}}{R_{C} h_{F E}}+V_{B E \gamma} \tag{12}
\end{equation*}
$$

which, of course, is the opposite to active mode.
Table 2 summarizes all the conditions for the BJT behavior in this circuit. As shown, with no input $\left(V_{i n}=0\right)$ the collector-emitter voltages $\left(v_{C E}\right)$ takes its maximum value $\left(V_{2}\right)$ and $i_{C}=0$. However, if the input level is greater than the value obtained from (12) the output is almost zero ($v_{C E}=V_{C E \text { (sat) }}=0.2 \mathrm{~V}$) and $i_{C} \neq 0$.

So, in cutoff mode the transistor opens the circuit between collector and emitter when $\mathrm{V}_{\text {in }}=0$, and they are shorted when $V_{i n}>V_{B E \gamma}$. On the other hand, the BJT has a linear behavior in active mode, as shown in (9). For this reason, the BJT is considered one of the most important general purpose semiconductor used in electronics: ranging from signal amplifiers, power control systems, digital switches and memory devices, among others.

Region	Conditions	Circuit behavior
Cutoff	$v_{\mathrm{in}}<V_{\mathrm{BE} \gamma}$	$i_{B}=0, i_{C}=0$ and $v_{C E}=V_{2}$
Active	$V_{B E \gamma} \leq V_{i n} \leq R_{B} \frac{v_{2}-V_{C E(s a t)}}{R_{C} h_{F E}}+V_{B E \gamma}$	$i_{C}=h_{F E} i_{B} v_{C E}=V_{2}-R_{C} i_{C}$
Saturation	$V_{\text {in }}>R_{B} \frac{v_{2}-V_{C E(\text { sat })}}{R_{C} h_{F E}}+V_{B E \gamma}$	$i_{B}=\frac{V_{i n}-V_{B E \gamma}}{R_{B}}$
		$i_{C}=h_{F E} i_{B} v_{C E}=V_{2}-R_{C} i_{C}$

Table 2. Summary of operating modes in the circuit of Fig. 3
For brevity, we will only consider switching applications in this activity (cutoff and saturation regions). The reader can find some application examples of the BJT operating in active mode in Annex 1.

Task PRELAB 0. Search the web for information on the bipolar transistor BC547C and specify its main characteristics.

- Look for the datasheet of the reference BC547C and draw its contour Package in the box provided. Identify each of the terminals: collector, base and emitter; and specify the value of $\boldsymbol{h}_{\text {FE }}, \boldsymbol{V}_{\boldsymbol{B e r}} \mathrm{i}$ $\boldsymbol{V}_{\boldsymbol{C E}(\text { sat })}$

2. The BJT as main logic unit in Digital Circuits

The previous circuit (Fig. 3) is one way of implementing a logic inverter (the NOT gate). The term "logic" refers to the fact that it is a circuit generating ON/OFF commands. As such, they find applications in decision making tasks.

Very often, when talking about digital electronics, the " 0 " and " 1 " value is used to designate the OFF and ON state, respectively. The " 0 " denotes the lower level voltage $(0 \mathrm{~V})$, whereas the high level " 1 "corresponds, for example, to 5 V .

The NOT, OR and AND gates, with their inverted versions (NOR and NAND) and the EX-OR gate; are some of the binary functions used in digital electronics (Fig. 4). As for the NOT gate, when the input level is " 0 " the output is " 1 ". On the other hand, the output is " 0 ". This behavior is represented by the following logic expression:

$$
\begin{equation*}
O=\bar{A} \tag{13}
\end{equation*}
$$

where the upper line denotes variable inversion.

Figure 4. Some of the basic binary digital functions: a) the NOT gate; b) The 2-input OR gate; c) The AND; d) The NOR; e) The NAND; f) The EX-OR.

Comb.	\mathbf{A}	\mathbf{B}	NOT	OR	AND	NOR	NAND	OR-E
$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	1	0	0	1	1	0
$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	1	1	0	0	1	1
$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$	0	1	0	0	1	1
$\mathbf{3}$	$\mathbf{1}$	$\mathbf{1}$	0	1	1	0	0	0
Logic function		$O=\bar{A}$	$O=A+B$	$O=A B$	$O=\overline{A+B}$	$O=\overline{A B}$	$O=A \oplus B$	

Table 3. Truth table corresponding to the basic binary functions in Fig. 4.

The circuit in Fig. 5a modifies the inverter circuit so as to turn a led on when the input is $v_{\text {in }}=0 \mathrm{~V}$ and turn it off otherwise ($v_{i n}=5 \mathrm{~V}$). This is the performance:

- When the switch position is $S=A$ (Fig. 5b), the input is $\boldsymbol{v}_{\text {in }}=\mathbf{5 V}\left(V_{C C}\right)$. In this case, the transistor Q works in saturation mode but to make this possible, the value R_{B} cannot be any. That is, if $v_{\mathrm{CE}}=V_{\mathrm{CE}(\mathrm{sat})}$, the collector current is

$$
\begin{equation*}
i_{R C}=i_{C}=\frac{V_{C C}-V_{C E(s a t)}}{R_{C}} \tag{14}
\end{equation*}
$$

Note that in saturation mode, the collector-emitter voltage, $\boldsymbol{v}_{\mathbf{C E}}=\boldsymbol{V}_{\mathbf{C E}(\text { sat })}$, is not enough to turn the led on (or else the value should be $\boldsymbol{v}_{C E}>V_{\gamma_{\text {led }}}=\mathbf{1 . 2 V}$). Therefore, the condition for the transistor to operate in saturation mode is:

$$
\begin{equation*}
i_{R B}>\frac{i_{C}}{h_{F E}}=\frac{V_{C C}-V_{C E(s a t)}}{R_{C} h_{F E}} \tag{15}
\end{equation*}
$$

where $i_{R B}$ is obtained from the input mesh in a way very similar to (2),

$$
\begin{equation*}
i_{R B}=\frac{v_{i n}-V_{B E \gamma}}{R_{B}} . \tag{16}
\end{equation*}
$$

(a)

(b)

(c)

Figure 5. Implementation of a logic NOT gate using a BJT and a LED. a) Electric diagram; b) Operation with $S=A$; c) Operation with $S=B$.

Substituting (16) into (15) and equating R_{B} permits to obtain the design expression of this component so that the BJT can work in the saturation region (and not the active one) when $v_{\text {in }}=5 \mathrm{~V}$:

$$
\begin{equation*}
R_{B}<\frac{V_{\text {in }}-V_{\text {BE } \gamma}}{V_{C C}-V_{C E(\text { sat) }}} R_{C} h_{F E} \square 0.9 R_{C} h_{F E} \tag{17}
\end{equation*}
$$

- On the other hand, for $S=B, v_{I N}=0 V$ (Fig. 5c) the BJT operates in cutoff mode. This is only possible if $v_{\text {in }}<V_{\mathrm{BE} \gamma}$. Since $i_{\mathrm{B}}=i_{C}=0$, the current flows to the led passing through R_{C} and it will be turned ON. In this case,

$$
\begin{equation*}
v_{C E}=R_{L E D} i_{R C}+V_{\gamma l e d} \tag{18}
\end{equation*}
$$

where,

$$
\begin{equation*}
i_{R C}=\frac{V_{C C}-V_{\gamma l e d}}{R_{C}+R_{L E D}} \tag{19}
\end{equation*}
$$

In other words, $i_{R 1}>0$ the led is turned on whenever the supply voltage (habitually 5 V) is set above the led threshold ($V_{C C}>V_{\text {yled }}$). Only in this way, the
condition $v_{C E}=R_{L E D i_{R 1}}+V \gamma_{\text {led }}>V_{C E(\text { sat })}$ can be satisfied to force the BJT operating in the cutoff mode when $S=B$.

Task PRELAB 1. In the Board template provided in Annex 2, draw the circuit connections of the inverter in Fig. 6. Include the oscilloscope connections for measuring both the output $v_{O}=v_{C E}$ and base signal v_{B} when the waveform generator is connected.

- Specify component distribution, wires and instrument connections for taking the corresponding measurements.
- Draw the signals you'll expect to observe on screen for a TTL input ($\boldsymbol{v}_{\boldsymbol{i n}}$) ranging from $\mathbf{0}$ to $\mathbf{5 V}$, and frequency $\boldsymbol{f}=\mathbf{1 H z}$, assuming that CH 1 is Connected to v_{B} and CH 2 to $v_{C E}$
Task LAB1. Mount the circuit of Fig. 6 and use the oscilloscope to observe both the base voltage v_{B} and the output voltage $v_{C E}$.
- 1) Mount the circuit. 2) Configure the waveform generator with a frequency $\boldsymbol{f}=$ $\mathbf{1 H z}$ and connect its TTL output (0 a 5 V) to the circuit. 3) Configure the oscilloscope settings to observe on screen an entire cycle with CH 1 connected at v_{B} and CH2 at $v_{C E} .4$) Represent both signals. Make comments about the results justifying, for example, the logic levels ("0" and " 1 ", respectively) by means of expressions (14) - (19).

3. Electronic Switches.

One of the main utilities of the BJT operating in switching mode (cutoff and saturation) is the electronic switch. Electronic switches are very used for electrically connecting and disconnecting all kind of devices. One example is the BCD^{2} display using 7 leds for monitoring characters and decimal values (Fig. 7).

The 7-segment BCD display consists of seven integrated led diodes (eight, including the decimal point) distributed strategically so as to represent the number " 8 ". Each segment is represented with a letter: "a" "b", "c", "d", "e", "f", "g" and "dp"; and are assembled in a way that each led can be activated independently. Some examples are:

- The number " $\mathbf{8}$ ", activating all segments.
- The number "0", activating: "a", "b", "c", "d", "e" and "f".
- The number "2", activating: "a", "b", "e", "d" and "g".
- The number " 4 ", activating: "b", "c", " f " and "g".

[^8]

Figure 6. Connection diagram corresponding to the inverter circuit (NOT) in Task LAB1

Figure 7. The 7-segment BCD display. a) Aerial view, b) Internal connection for the common cathode configuration (left) and common anode (right)

There are two types of 7-segment BCD displays: common anode and common cathode. In the first type, all diode anodes are internally connected to the $V_{C C}$ terminal. As such, turning a led on requires setting the corresponding terminal to " 0 " by means of a biasing resistor, and connecting the $V_{C C}$ to power. The resistor is necessary to limit the amount of current flowing through the led. In the second type, however, the cathode is the common terminal and is connected to GND, instead. As such, the resistor must be connected in order to set the corresponding pin to " 1 ".

The circuit of Fig. 8 is an example of a BJT-based enabling system for a 7-segment BCD display, in the goal of representing the character related to the ON/OFF position of eight integrated switches in a single package (Fig. 9a). When $S=A$ the input voltage is $v_{I N}=0$, and the transistor will operate in cutoff mode. The collector current will be $i_{C}=$ 0 and all leds will be turned off. When $S=B$, the input will be high ($v_{I N}=5 \mathrm{~V}$). This closes the path to ground and ($i_{C} \neq 0$) through the integrated resistors (9A102G, Fig. 9b) and turns the corresponding led ON. The display is then enabled and will show the character represented by the array of switches.

Figure. 8. Enabling System of a 7-segment BCD display to be implemented in Task LAB2.

Figure. 9. Other mechanical and passive elements of the circuit in Fig. 9. a) DIP8-switch ${ }^{3}$ used in the activation of all leds from the 7-segments BCD display; b) Integrated circuit 9A102G. It contains eight $1 \mathrm{k} \Omega$ resistors with one terminal Connected to a common pin.

Task PRELAB2. Identify the new components in the circuit of Fig. 8. Then, use the Board template to draw the connections you need to develop in order to make the enabling circuit of Fig. 8 work.

- Use the web for looking for information on the 9A102G and LSD5355 integrated circuits. In the case of the 9A102G specify the meaning and the way

[^9]of specifying the common pin. Which type of BCD display is necessary for in Fig. 8: common cathode or common anode?
Task LAB2. Mount the circuit of Fig. 8 and check its behavior

- 1) Mount the circuit on the Bread-Board. Place the components so as to minimize wire connections. 2) With the selector switch at position $S=A$, connect the power supply $\boldsymbol{V}_{C C}=\mathbf{5 V}$. 3) With all switches in the DIP8-switch turned on, change the selector position $(S=B)$. Mark the leds corresponding to the number represented in the display.
- Change the position of switches in order to represent other decimal numbers and characters. Develop three examples, and indicate your selection in the results form specifying the configuration of switches in the table.
- How would you use the waveform generator in order to show the number 8 (including decimal point) with a blinking pattern of 1 -second interval? Specify the configuration of the waveform generator.

4. Latch SET/RESET (Optional section)

In the digital functions introduced in section 3, the logic output is updated by the inputs at the same instant time t. That is, the inputs, and solely the inputs, specify the output of the system. This performance is known as a "memory-less" system.

Digital circuits become interesting when they have memory. That is, they recall their last previous states. This allows, among different things, digital counters, arithmetical accumulators and all forms of circuits that work in a sequential fashion (one function executed after the other) to be implemented. Hence, it is said that this sort of digital systems use "sequential logic".

The most basic memory unit in digital circuits is known as the latch (or two-shot multivibrator). One type is the SET/RESET multivibrator (Fig. 9). Its output can be SET $\{Q=1\}$ or RESET $\{Q=0\}$. In general, the output is modified using the $2^{\text {nd }}$ and $3^{\text {rd }}$ combination in Table 4 but, if $S=0$ and $R=0$, it remains unchanged, remembering the value updated in the previous state (see Fig. 10).

Fig. 11 shows the electric diagram of a SET/REST multivibrator implemented with discrete components, including two bipolar transistors. As the NOT gate, both BJT can operate either at cutoff ($I_{C}=0$) or saturation ($V_{\mathrm{CE}} \approx 0$) mode. This is the circuit performance:

- When the power supply V_{CC} is connected, both BJTs (T_{1} and T_{2}) start their conduction cycle, since both base terminals are driven by positive voltages: T_{1} through resistors $R_{2}-R_{6}-R_{7}$; and T_{2} through $R_{1}-R_{5}-R_{8}$. However, not both transistors are identical (because of the tolerances within their manufacturing process caused by different level of impurities in the silicon material), so one transistor will conduct before the other.

(a)

(b)

Figure 9.SET/RESET multivibrator. a) Symbol; b) Implementation using 2-input NOR gates.

Cases	\boldsymbol{S}	\boldsymbol{R}	\boldsymbol{Q}	$!\boldsymbol{Q}$
$\mathbf{1}$	0	0	Q^{*}	$!Q^{*}$
$\mathbf{2}$	0	1	0	1
$\mathbf{3}$	1	0	1	0
$\mathbf{4}$	1	1	X	X

Table 4. Truth table of the SET/RESET multivibrator. Q* and !Q* denote previous output (before a ner update of the SET/RESET terminals is reached. ! Q means inversion of Q. The combination $S=R=1$ is not valid in the SET/RESET multivabrator and is denoted with X .

Figura 10. Behavior example of the SET/RESET multivibrator by means of a time diagram. Note that the output can be either $Q=0$, or $Q=1$ with $S=R=O F F$, depending on the previous state.

Figure 11.Schematics of the SET/RESET multivibrator implemented by means BJTs.
At start up, assume that T_{1} is the first BJT conducting when $S=R=$ OFF. Then, $\boldsymbol{T}_{2}=\mathbf{O F F}$ and $i_{\mathrm{C} 2}=0$. In this case, $V_{!Q}>V_{\mathrm{D} 2}=V_{\gamma}$ and the led D_{2} will be turned ON. The current flow at the base of $T_{1}, i_{\mathrm{B} 1}$ is then expressed as:

$$
\begin{equation*}
i_{B 1}=i_{R 6}-i_{R 7}=\frac{V_{!Q}-V_{B E 1 \gamma}}{R_{2}+R_{6}}-\frac{V_{B E 1 \gamma}}{R_{7}} \tag{20}
\end{equation*}
$$

where $V_{!Q}$ can be obtained from the KCL applied at the collector terminal of T_{2},

$$
\begin{align*}
i_{R 2}= & i_{R 6}+i_{R L 2} \quad \rightarrow \quad \frac{V_{C C}-V_{!Q}}{R_{2}}=\frac{V_{!Q}-V_{B E 1 \gamma}}{R_{6}}+\frac{V_{!Q}-V_{\gamma}}{R_{L 2}} \rightarrow \\
& \rightarrow \quad V_{!Q}=\frac{V_{C C} R_{6} R_{L 2}+V_{B E 1 \gamma} R_{2} R_{L 2}+V_{\gamma} R_{2} R_{6}}{R_{6} R_{L 2}+R_{2} R_{L 2}+R_{2} R_{6}} \tag{21}
\end{align*}
$$

Thus, $i_{\mathrm{B} 1}$ will be large enough to cause the saturation of $T_{1}\left(\boldsymbol{T}_{\mathbf{1}}=\mathbf{O N}\right)$ and, therefore, its collector-emitter voltage will decrease drastically ($v_{\mathrm{Q}}=V_{\mathrm{CE} 1 \text { (sat) }} \approx$ 0.2 V). Since this potential is not enough to drive the base of $T_{2}, V_{\mathrm{BE} 2}=$ $V_{\mathrm{CE} 1 \text { (sat) }} R_{8} /\left(R_{8}+R_{5}\right)<V_{\mathrm{BE} 2} \gamma$, this transistor will work on cutoff mode. These will be the initial conditions of the circuit, the RESET state ($\mathbf{Q}=\mathbf{0}$ and $!\mathrm{Q}=\mathbf{1}$).

- Now, assume that the switch S is activated $(S=O N)$ for a small time period. Then, $i_{\mathrm{B} 2}$ is momentary fixed by R_{3} (green path of Fig. 12a). The value of this variable during this interval is expressed as:

(a)

(b)

Figure 12. Idea del funcionament de la bàscula RS. a) Condició de SET. b) Condició de RESET. El camí marcat en verd indica el camí que causa la la saturació del BJT, mentre que el vermell indica el camí de circulació de corrent per activar els Leds.

$$
\begin{equation*}
i_{B 2}=\frac{V_{C C}-V_{B E 2 \gamma}}{R_{3}+R_{5} / / R_{8}}-\frac{V_{B E 2 \gamma}}{R_{5} / / R_{8}} \tag{22}
\end{equation*}
$$

and is large enough to cause the saturation of $\left(\boldsymbol{T}_{\mathbf{2}}=\mathbf{O N}\right)$. Since $v_{\mathrm{CE} 2}=V_{\mathrm{CE} 2(\text { sat })} \approx$ 0.2 V , this potential will not only be enough to maintain led D_{2} on but will also cutoff $T_{1}\left(\boldsymbol{T}_{\mathbf{1}}=\mathbf{O F F}\right)$. That is, both transistors change their behavior (SET: $\boldsymbol{Q}=\mathbf{1}$ i $!\mathbf{Q}=\mathbf{0}$) and now the led that glows is D_{1}.

The reader can note that this new situation is guaranteed even after the fading of $v_{\mathrm{S}}(t)$ as $i_{\mathrm{B} 2}$ will be given with an expression similar to (20) but with resistors R_{1}, R_{5} and R_{8},

$$
\begin{equation*}
i_{B 2}=i_{R 5}-i_{R 8}=\frac{V_{Q}-V_{B E 2 \gamma}}{R_{1}+R_{5}}-\frac{V_{B E 2 \gamma}}{R_{8}} \tag{23}
\end{equation*}
$$

when $S=R=\mathrm{OFF}$, so the voltage V_{Q} is also analogous to (21). In other words, the new outputs are,

$$
\begin{equation*}
V_{Q}=\frac{V_{C C} R_{5} R_{L 1}+V_{B E 2 \gamma} R_{1} R_{L 1}+V_{\gamma} R_{1} R_{5}}{R_{5} R_{L 1}+R_{1} R_{L 1}+R_{1} R_{5}} ; v_{!Q}=V_{C E 2(s a t)} \square 0 \tag{24}
\end{equation*}
$$

- For returning to the RESET state, the user must activate the switch $R(R=$ ON). Both BJTs will exchange again their operation ($\boldsymbol{T}_{\mathbf{2}}=\mathbf{O F F}$ and $\boldsymbol{T}_{\mathbf{1}}=\mathbf{O N}$) and \boldsymbol{Q} $=\mathbf{0} ;!\mathrm{Q}=\mathbf{1}$ (Fig. 12b). The procedure by which T_{1} is set to ON is analogous to that just explained above for T_{2} and the outputs will be given again by (21).

Task PRELAB 3. Draw the component connections of the SET/RESET multivibrator from Fig. 11 in the Board template provided.

Task LAB 3. Check the correct operation of the SET/RESET multivibrator.

- 1) Mount the circuit. Use the following components:
$\boldsymbol{T}_{\mathbf{1}}=\boldsymbol{T}_{\mathbf{2}}=$ BC547C, $\boldsymbol{R}_{\mathbf{1}}=\boldsymbol{R}_{\mathbf{2}}=1 \mathrm{k}, \boldsymbol{R}_{\mathbf{3}}=\boldsymbol{R}_{4}=1 \mathrm{k} 2, \boldsymbol{R}_{5}=\boldsymbol{R}_{\mathbf{6}}=10 \mathrm{k}, \boldsymbol{R}_{7}=\boldsymbol{R}_{\mathbf{8}}=100 \mathrm{k}$, $\boldsymbol{R}_{\mathrm{LED} 1}=\boldsymbol{R}_{\mathrm{LED} 2}=1 \mathrm{k} 8, \boldsymbol{D}_{\mathbf{1}}=\boldsymbol{D}_{\mathbf{2}}$ of threshold voltage: $V \gamma=1.2 \mathrm{~V}$.
- 2) Connect the power $\boldsymbol{V}_{C C}=\mathbf{5 V}$ and check which led is turned on. 3) Push the RESET button (R) if $D_{1}=\mathrm{ON}$, or push SET (S) if $D_{2}=\mathrm{ON}$). Both leds should change operation mode. 4) Check that pushing again the same button (R or S depending on the initial case) does not alter the operation of leds. 5) Push the other button to return to the initial case.

REMARK: Use wires for implementing the push buttons by connecting one end to $V_{C C}$ and emulate the effect of setting $v_{\mathrm{S}}(t)$ and $v_{\mathrm{R}}(t)$ to " 1 " by connecting momentarily the other end of the wire to R_{3} and R_{4}, respectively.

- Explain a possible utility of the SET/RESET circuit in digital electronics.

Annex 1.- BJT applications operating in the active region

This section considers two typical applications of BJTs operating in the active region. No activities are proposed, since the main goal here is just to show the advantages and the utility of this operating region. The signal amplifier and the current source constitute two of the main general purpose applications of the BJT operating in this mode.

A1.1 Signal amplifier using BJT

One basic application where the BJT is "always" assumed to operate in active mode is called the voltage amplifier (or the signal amplifier). This electronic system is used very often to improve the power of audio and sensor signals. Strictly speaking, its functionality consists in "increasing" the input voltage magnitude in order to provide more power to the output.

The following expression represents the mathematical function corresponding to this operation

$$
\begin{equation*}
v_{\text {out }}(t)=k v_{\text {in }}(t) \tag{1}
\end{equation*}
$$

where $k>1$ is the gain factor of the electronic system, $v_{\text {out }}$ is the output and $v_{\text {in }}$ the input to be amplified. Figure A1 shows the block diagram corresponding to this operation. The slope of the input/output transfer characteristics $v_{\text {out }}-v_{\text {in }}$ (Fig. A2) gives an idea of the gain that is obtained at the output.

One way of implementing the amplifier by means of a BJT consists in changing the source $v_{\text {in }}$ in Fig. 3 by the same signal source $v_{i n}(t)$ and modifying R_{B} to so as to operate in the active region. Unfortunately, the npn BJT can only operate in active mode when $v_{i n}>V_{\mathrm{BE} \gamma}$, so the circuit admits only positive values of $v_{i n}$. This problem can be solved adding a DC voltage in series with $v_{\text {in }}$ so that an offset voltage level and all values from the input $v_{i n}$ can be positive, but this would increase the implementation cost of the amplifier because another DC power supply (or battery) is required.

The BJT amplifier in Fig. 3 develops its functionality and circumvents the offset problem using one single DC voltage source. This basic amplifier is know as the Common Emitter (CE) amplifier. In order to design its components, the analytical process consists of the following three steps:
A. Offset estimation ($V_{\text {OUT }}$) (or transistor biasing):

The output offset is estimated by just considering the DC voltage supply ($V_{C C}$) and disconnecting the remaining independent sources (the AC input, $v_{i n}(t)=0$, in this case). If capacitors exists they are considered as open circuits because when $s=0$, their impedance becomes infinite $\left(Z_{C}(s) \rightarrow \infty\right)$. In fact, the goal of C_{1} is to permit the biasing of the BJT through resistor R_{2} and connect the AC input source to the base junction so that the input signal can be amplified.

Figure A1. Block diagram of the BJT voltage amplifier. The input magnitude $v_{i n}$ is increased by a factor k at the output $v_{\text {out }}$.

Figura A2. Input/output transfer characteristics: $v_{\text {out }}-v_{\text {in }}$ of the voltage amplifier

Figure A3 Common Emitter voltage amplifier using BJT.

When only the DC source is considered the circuit can be simplified to that of Fig. 4a (just use the Thevenin equivalent observed at the base terminal). Assume that the BJT is operating in the active region. The current I_{B} is obtain by means of the KVL expression,

$$
\begin{equation*}
V_{B}-\left(R_{1} / / R_{2}\right) I_{B}-V_{B E \gamma}-R_{E} I_{E}=0 \tag{2}
\end{equation*}
$$

Figure A4. Analytical diagrams of the BJT voltage amplifier. a) DC analysis. b) AC analysis
where $V_{B}=R_{2} V_{C C}\left(R_{1}+R 2\right)$. Since $I_{\mathrm{E}}=I_{\mathrm{B}}+I_{\mathrm{C}}=I_{\mathrm{B}}\left(h_{\mathrm{FE}}+1\right)$, equating I_{B} leads to:

$$
\begin{equation*}
I_{B}=\frac{V_{C C}\left(R_{2} /\left(R_{1}+R_{2}\right)\right)-V_{B E \gamma}}{R_{1} / / R_{2}+R_{E}\left(h_{F E}+1\right)} \tag{3}
\end{equation*}
$$

where the term $R_{\mathrm{E}}\left(h_{\mathrm{FE}}+1\right.$) the input resistance $\left(R_{\text {in(}(\mathrm{BJT})}\right)$ the BJT has in this circuit. If we design the resistors so as to obtain $R_{\text {in(BJT) }} \gg R_{1} / / R_{2}$ (10 times: $R_{\text {in }(\mathrm{BJT})} \approx 10 R_{1} / / R_{2}$), then I_{C} can be approximated and estimated as

$$
\begin{equation*}
I_{C}=h_{F E} I_{B} \square \frac{V_{B}-V_{B E \gamma}}{R_{E}} . \tag{4}
\end{equation*}
$$

In other words, the base DC voltage V_{B} and the resistor R_{E} controls the amount of electric DC current flow in the the collector terminal I_{C}. With this approximation, the base current can be underestimated ($I_{\mathrm{B}} \approx 0$) and the output offset $V_{\text {OUT }}$ is expressed as

$$
\begin{equation*}
V_{O U T}=V_{C C}-R_{C} I_{C}=V_{C C}-R_{C} \frac{V_{B}-V_{B E \gamma}}{R_{E}} \tag{5}
\end{equation*}
$$

B. Voltage gain estimation (k):

The gain factor is obtained by considering just the AC sources (AC) from the circuit and setting the DC supply to zero ($V_{C C}=0$). In this case, electrolytic capacitors are considered short-circuits at relatively higher frequencies ($s=j \omega=j 2 \pi f$ where $f>1 \mathrm{kHz}$) an their impedances can be underestimated, $\left|\mathbf{Z}_{C}(\mathbf{s})\right| \rightarrow \mathbf{0}$. The capacitor C_{1} will then connect the AC source to the base junction of the BJT and the input AC resistance of the amplifier, $R_{\text {in }}$ becomes

$$
\begin{equation*}
R_{i n}=R_{1} / / R_{2} / / R_{i n(B J T)}=R_{1} / / R_{2} / / R_{E}\left(h_{F E}+1\right) \tag{6}
\end{equation*}
$$

Since, $v_{\mathrm{b}}(t)=v_{\text {in }}(t)$ and the base-emitter junction can be considered a biased diode during the full input range, the swing of the base-emitter voltage will be negligible $v_{b e}(t)$ $=0$, so in practical terms it can be assumed that the input voltage falls on $v_{\text {RE }}(t)$.

For this reason, the collector current $i_{c}(t)$ is obtained as

$$
\begin{equation*}
i_{c}(t)=\frac{v_{R E}(t)}{R_{E}}=\frac{v_{i n}(t)}{R_{E}} \tag{7}
\end{equation*}
$$

and the output AC voltage expression, $v_{o}(t)=-v_{R C}(t)=-R_{C} i_{c}(t)$ is obtained as:

$$
\begin{equation*}
v_{\text {out }}(t)=-R_{C} \frac{v_{\text {in }}(t)}{R_{E}} \tag{8}
\end{equation*}
$$

Thus, the voltage gain (k) of the circuit is

$$
\begin{equation*}
k=\frac{v_{\text {out }}(t)}{v_{\text {in }}(t)}=-\frac{R_{C}}{R_{E}} \tag{9}
\end{equation*}
$$

Finally, we can use (5) and (9) to obtain the full DC and AC output, $v_{\text {OUT }}(t)$, by means of the superposition principle

$$
\begin{equation*}
v_{\text {OUT }}(t)=V_{\text {OUT }}+v_{\text {out }}(t)=V_{\text {CC }}-\frac{R_{C}}{R_{E}}\left(V_{B}-V_{\text {BE } \gamma}+v_{\text {in }}(t)\right) \tag{10}
\end{equation*}
$$

C. Estimation of the output swing ($\Delta \boldsymbol{v}_{\text {out }}$):

We define as the output swing to the limitation in dynamic range $\Delta \boldsymbol{v}_{\text {out }}$ existing at the output of the voltage amplifier when the BJT leaves the active region, and which is normally expressed in terms of the maximum peak value that can be obtained at the output without causing signal distortion.

Theoretically, the input $v_{\text {in }}(t)$ there is no limit for both the input and output amplitude. In practice, however, this assumption is not true because the BJT could leave the active region. When this happens, the result at the output is a pulsating signal of considerable distortion in relation to that of the input.

Figure A5 illustrates the root of this problem. At $v_{i n}(t)=0$, the zero reference at the output is fixed by the BJT operating point $Q=\left\{I_{C}, V_{C E}\right\}$. When the input varies, this point moves along a straight line which depends on the design of resistors R_{C} and R_{E}. To this line we refer to as the load line.

The expression representing this line can be determined if both DC and AC analysis are overlapped when obtaining the collector-emitter voltage. On one hand, the contribution of input variations to this variable (Fig. A4b) is obtained by the KVL,

Figure A5. Output swing.. a) Full output voltage $v_{\text {Out }}(t)$ for two different inputs. b) Operating point moving along the load line when an AC input $v_{\text {in }}(t)$ is present. The output $v_{\text {OUT }}(t)$ contains an offset ($V_{\text {OUT }}$). A significant input magnitude $v_{I N}$ may cut the output peak (discontinuous trace).

$$
\begin{equation*}
v_{c e}+\left(R_{C}+R_{E}\right) i_{c}=0 . \tag{11}
\end{equation*}
$$

As such, the AC version of the collector current i_{c} is

$$
\begin{equation*}
\Delta i_{c}=\frac{\Delta v_{c e}}{R_{C}+R_{E}} . \tag{12}
\end{equation*}
$$

where the symbol Δ denotes the variations of i_{C} and $v_{C E}$ respectively.

The dynamic range of $v_{O U T}$ then is determined by specifying the voltage $v_{C E}$ at both ends of the load line (Fig. A5b), one corresponding to the saturation boundary, and the other corresponding to the cutoff boundary. Since the saturation limit is $v_{C E}=V_{C E(s t)}$, the maximum possible output range in half input cycle, $\Delta v_{\mathrm{CE}}=V_{\mathrm{CE}}-V_{\mathrm{CE}(\text { sat) }}$, is

$$
\begin{equation*}
\Delta v_{O U T(s a t)}=\left|R_{C} \Delta i_{C(s a t)}\right|=\frac{R_{C}}{R_{C}+R_{E}}\left(V_{C E}-V_{C E(s a t)}\right) \tag{13}
\end{equation*}
$$

The limit at the other half input cycle is set by the cutoff boundary as

$$
\begin{equation*}
\Delta v_{\text {OUT (tall) }}=\left|R_{C} \Delta i_{C(t a l l)}\right|=R_{C} I_{C} \tag{14}
\end{equation*}
$$

Finally, the full output swing without signal distortion is represented by the minimum of both these two values:

$$
\begin{equation*}
\Delta v_{\text {OUT }}=\min \left\{\Delta \nu_{\text {OUT (tall) }}, \Delta v_{\text {OUTsat })}\right\} \tag{15}
\end{equation*}
$$

In practice, the output is connected to other electronic systems and loads. As such, the DC component may be altered considerably if the collector terminal is not isolated (see expression 10), and the voltage amplifier may change its behavior.

One way of isolating the DC component from the AC swing is by introducing a capacitor C_{L} between the collector terminal and the input terminal of the subsequent system. The situation of Fig. A6 is more realistic in this sense, since the resistor R_{L} represents the load connection of another system whose input is meant to be provided by the voltage amplifier.

Using a capacitor C_{L} does not affect the bias point of the amplifier but in AC domain resistor R_{C} is connected in parallel with R_{L}. As such, expressions (9), (13) and (14) must be modified, so the new gain factor (\boldsymbol{k}) and dynamic range $\Delta \boldsymbol{v}_{\text {out }}$ become:

$$
\begin{gather*}
k^{\prime}=\frac{v_{\text {out }}(t)}{v_{\text {in }}(t)}=-\frac{R_{C} / / R_{L}}{R_{E}} \tag{16}\\
\Delta v_{\text {OUT (sat) }}=\frac{\left(R_{C} / / R_{L}\right)\left(V_{C E}-V_{C E(\text { sat })}\right)}{R_{C} / / R_{L}+R_{E}} \tag{18}\\
\Delta v_{\text {OUT (tall) }}=\left(R_{C} / / R_{L}\right) I_{C} \tag{19}
\end{gather*}
$$

Rewriting (16) as:

$$
\begin{equation*}
\frac{v_{\text {out }}(t)}{v_{\text {in }}(t)}=-\frac{R_{C}}{R_{E}} \frac{R_{L}}{R_{C}+R_{L}}=k \frac{R_{L}}{R_{\text {out }}+R_{L}} \tag{20}
\end{equation*}
$$

allows a new and more general model of the voltage amplifier to be inferred (Fig. A7). This new schematic represents its AC behavior but using fewer elements. In here, $R_{\text {out }}=$ R_{C} corresponds to the output resistance and is considered a way of representing the loss of (k) obtained at the output. The same consideration can be taken when evaluating the losses of the input resistance $\boldsymbol{R}_{\text {in }}$ due to the output characteristics of $v_{i n}(t)$.

Figure A6. Voltage amplifier using capacitor DC coupling both at the circuit input and output.

Amplificador de senyal

Figure A7. General overview of the AC behavior of the voltage amplifier. A voltage amplifier can be thought of as "controlled voltage source" with factor k and depending on $v_{i n}$. The input and output resistance, $R_{i n}$ and $R_{\text {out }}$ establish the amount within the amplification stage when the main body is connected to other stages that build up a much more complex electronic system.

A1.2 Electric DC current sources

Although, circuits are generally powered by DC voltage supplies, the role of electric current sources becomes essential in several electronic systems. Circuits implementing integrators, ramp or saw-tooth generators, are some application examples that very often need of this resource to develop its function.

The most simple and intuitive way of implementing a current source is depicted in Figure A8. In this circuit, whenever the resistor R_{L} is quite small in relation to $R(R \gg$ R_{L}) the output current will be quite constant and approximately:

$$
\begin{equation*}
I=v_{I} / R \tag{21}
\end{equation*}
$$

Unfortunately, this circuit requires of large values of v_{I} when operating at significant output current values. Another drawback lies on the fact that the current value cannot be easily programmed (i.e. by means of a potentiometer) within a certain range.

The solution to this problems lies on the use of active components with the ability of setting (or controlling) the electric current at the desired nodes of the circuit, such as the bipolar transistor BJT. In the circuit of Fig. A9, if the input is set such that the condition $V_{\mathrm{I}}>V_{\mathrm{BE} \gamma}$ holds, the emitter voltage is expressed as:

$$
\begin{equation*}
V_{\mathrm{E}}=V_{\mathrm{I}}-V_{\mathrm{BE} \gamma} \tag{22}
\end{equation*}
$$

The emitter current then becomes,

$$
\begin{equation*}
I_{\mathrm{E}}=V_{\mathrm{E}} / R_{\mathrm{E}}=\left(V_{\mathrm{I}}-V_{\mathrm{BE} \gamma}\right) / R_{\mathrm{E}}, \tag{23}
\end{equation*}
$$

But, since $I_{\mathrm{C}} \approx I_{\mathrm{E}}$ for large h_{FE} we obtain:

$$
\begin{equation*}
I_{\mathrm{C}} \approx\left(V_{\mathrm{I}}-V_{\mathrm{BE} \gamma}\right) / R_{\mathrm{E}} \tag{24}
\end{equation*}
$$

The reader can observe that the value I_{C} is constant despite of the variation at V_{C} due to R_{L} (provided that the BJT does not leave the active region: $V_{\mathrm{C}}>V_{\mathrm{E}}+V_{\mathrm{CE}(\text { sat) })}$).

The base voltage V_{I} can be provided in many ways. The voltage divider (Fig. A10a) will suffice whenever the base resistors do not load the base terminal of the BJT (and thus altering its operation). This condition is guaranteed as long as the equivalent resistance (seen from the base terminal) is much lower in relation to the factor $R_{\mathrm{E}}\left(h_{\mathrm{FE}}+1\right)$. A more practical, solution consists in using a biasing zener diode (Fig. 10b), or a series of rectifier diodes (Fig. 10c). In this last case, using a pnp transistors allows the circuit to operate with output loads referred to ground.

(a)

(b)

Figure A8. Electric current source.. a) Symbol and Electric diagram. b) Voltage divider implementation.

Figure A9. BJT-based current source. Operation principle

Figura A10. Three different ways of biasing a BJT for developing a DC current source. a) Voltage divider. b) Zener implementation. c) pnp tBJT and output referred to ground.

Annex 2 - Results form PRELAB

REMARK: You MUST do these activities BEFORE THE LAB SESSION CORRESPONDING TO PRT4

PRELAB 0: Draw the contour package of the bipolar transistor BC547C and identify the pins corresponding to collector, base and emitter terminals, respectively
\square

BJT specification	Value indicated by the manufacturer	Considerations: Comment the measure conditions used by the manufacturer to specify this parameter (test, operating conditions)
$\boldsymbol{h}_{\text {FE }}$		
$\boldsymbol{V}_{\boldsymbol{B E \gamma}}$		
$\mathrm{V}_{\text {CEsat }}$		

Taula A2.1 Specify the information related to the BC547C found in the datasheet.

PRELAB 1. The logic inverter (The NOT gate) using BJT.

○

Represent the waveforms you expect to see of $v_{\mathrm{B}}(t)$ and $v_{\mathrm{CE}}(t)$

PRELAB 2: Electronic switch with 7-segment BCD Display.
Draw the internal connections of the integrated circuit 9A102G and LSD5355

Specify the meaning of the reference 9A102G:

Specify common terminal at the 9A102G IC: \qquad
Configuration used in the 7-segment BCD display: \qquad
(O) (O) (O)

PRELAB 3 (Opcional). SET/RESET multivibrator

Annex 3 -Lab activities

REMARK: You MUST PRINT OUT this form and TAKE
IT WITH YOU the day of the lab session

LAB 1. The inverter logic (NOT Gate) using BJT.

Represent the waveforms of $v_{\mathrm{B}}(t)$ and $v_{\mathrm{CE}}(t)$ from the oscilloscope

Specify the values of $\boldsymbol{v}_{\boldsymbol{B}}$ and $\boldsymbol{v}_{\boldsymbol{C E}}$ both at cutoff and saturation regions

$$
\begin{array}{ll}
\mathrm{V}_{\mathrm{B} \text { (cutoff) }}: & \mathrm{V}_{\mathrm{B}(\text { saturation })}: \\
\mathrm{V}_{\mathrm{CE} \text { (cutoff) }}: & \mathrm{V}_{\mathrm{CE} \text { (saturation) })}[
\end{array}
$$

LAB 2. Electronic switch with 7-segment BCD display

- Display visualization with $\boldsymbol{S}=\boldsymbol{B}$ and $\mathbf{S}_{\mathbf{1}}=\ldots=\mathbf{S}_{\mathbf{8}}=\mathbf{O N}^{4}$

- Visualization with $\boldsymbol{S}=\boldsymbol{B}$ and three random examples

Exemple	S_{1}	$\mathrm{~S}_{2}$	$\mathrm{~S}_{3}$	$\mathrm{~S}_{4}$	$\mathrm{~S}_{5}$	$\mathrm{~S}_{6}$	$\mathrm{~S}_{7}$	$\mathrm{~S}_{8}$
$\mathbf{1}$								
2								
3								

Table A3.1 Specify switch positions in each example. Use ON and OFF to specify whether the switches are OPEN or CLOSED, respectively.

[^10]- Specify the waveform generator configuration for observing the number " 8 " (decimal point included) with a blinking pattern of ONE SECOND.
- SORTIDA: \square TTL
$\square 50 \Omega$.
- FUNCIÓ:
\square Defecte
\square SQUARE \square SINUSTRIANGULAR
- OFFSET:Defecte
\square Valor: \qquad
- AMPLITUD:DefecteValor: \qquad
- FREQÜÈNCIA: \qquad

LAB 3 (Optional). SET/RESET multivibrator

Explain the behavior observed in the SET/RESET multivibrator and specify some use of this circuit in digital electronics:
\qquad

José Antonio Soria Pérez

Lab Activity 5. Analog electronics: The Operational Amplifier (OPAMP)

Main Goal: Knowing the operation principle of the operational amplifier and to understand its utility in analog electronic applications, such as audio amplifiers and signal synthetization systems.

1 Introduction

The operational amplifier (OPAMP) is a voltage amplifier with "extremely" high gain. For example, the popular 741 has a typical gain $k=200,000$, whereas the gain of more expensive integrated circuits with advanced features, such as the reference OP-77 is $k=$ $12,000,000$. Due to such high values, the gain is often expressed in V / mV (or $\mathrm{V} / \mu \mathrm{V}$) and decibels. In the later case, the scale transformation used is

$$
\begin{equation*}
\left.k\right|_{d B}=20 \log _{10}(k) . \tag{1}
\end{equation*}
$$

Thus, the OP-77 has a voltage gain of $12 \mathrm{~V} / \mu \mathrm{V}$, which is also equivalent to 141.6 dBs .
Figure 1 shows the symbol of the OPAMP and the DC power-supply connection to make it work (though most of the times the power-supply is not represented in the diagram in order to minimize schematic cluttering). The inputs, identified by the "-" and "+" symbols are designated inverting and non-inverting, respectively. Their voltages with respect to ground are denoted v_{N} and v_{P}, and the output voltage as v_{O}. The arrowhead form pointing to the right specifies the signal transmission direction from the input to the output. Figure 1b shows the equivalent circuit of a properly powered OPAMP. Though the integrated circuit itself does not have ground pin, the ground symbol represents the common point of the symmetric power supply of Fig. 1a. The model includes a voltage source controlled by v_{D}, of gain factor \boldsymbol{k}, the differential input resistance $\boldsymbol{r}_{\boldsymbol{d}}$ and the output resistance $\boldsymbol{r}_{\boldsymbol{o}}$, respectively.

Figure 2 shows the input-output transfer characteristics ($v_{O}-v_{D}$) of this component. Taking into account that $v_{D}=v_{P}-v_{N}$ corresponds to the differential input voltage, this electronic device is mathematically modelled as

$$
v_{O}=\left\{\begin{array}{lc}
V_{O H} & , \text { for } v_{D}>\frac{V_{O H}}{k} \tag{2}\\
k v_{D} & , \text { for } \frac{V_{O L}}{k} \leq v_{D} \leq \frac{V_{O H}}{k} \\
V_{O L} & , \text { for } v_{D}<\frac{V_{O L}}{k}
\end{array}\right.
$$

(a)

(b)

Figure 1. The OPAMP: a) Symbol and power connection; b) Internal mathematical model. This integrated circuit operates as a voltage amplifier. The values in red indicate component pin for the reference LM741, which is most used in 8-pin integrated circuits.

Figure 2. The OPAMP transfer characteristics $v_{O}-v_{D}$. The horizontal axis has been extended ($\mu \mathrm{V}$ scale) in order to show the linear region in more detail.

The supply voltages set the upper and lower limits, and the output swing of the amplifier $V_{O L}<v_{O}<V_{O H}: V_{O H}=v_{(7)}-V_{\text {Drop-out }}$ i $V_{O L}=v_{(4)}+V_{\text {Drop-out; }}$ with $v_{(7)}$ being the positive supply and $v_{(4)}$ the negative one. The voltage drop information can be obtained from the manufacturer's datasheet, and for the 741 this value is about $V_{\text {Drop-out }}=2 \mathrm{~V}$.

Since the 741 is powered with $\boldsymbol{v}_{(7)}=-\boldsymbol{v}_{(\mathbf{4})}=\boldsymbol{V}_{C C}=\mathbf{1 5 V}$ and the output range is $\Delta \boldsymbol{v}_{\boldsymbol{O}}= \pm \mathbf{1 3 V}$, the input voltage is bound to be very small $\left(\Delta v_{D}=\boldsymbol{\Delta} \boldsymbol{v}_{O} / \boldsymbol{k}= \pm \mathbf{6 5} \mu \mathrm{V}\right)$. For For instance, to sustain $v_{O}=6 \mathrm{~V}$ and unloaded 741 requires $v_{D}=6 / 200,000=30 \mu \mathrm{~V}$.

By connecting external components around an OPAMP, we obtain what we shall henceforth refer to as an OPAMP circuit. Understanding the difference between an OPAMP circuit and the OPAMP itself containing all the circuitry for developing its function is crucial. One example is the noninverting amplifier.

Task PRELAB0. Identify the new components you are going to use in this lab activity: the power transistors and the OPAMP.

- Search the important information regarding the LM741 (or UA741) integrated circuit, the power BJTs: the BD243 and BD244; Find the manufacturer's datasheet of each device and represent their contour package in the box provided. Indicate pin name and distribution.
- Read the electrical characteristics from the OPAMP and specify open-loop voltage gain (k) drop-out and maximum power supply.

2. The noninverting amplifier

The circuit of Fig. 3a consists of an OPAMP and two external resistors: R_{1} and R_{2}. To understand its function, finding the relation between $v_{O U T}$ and $v_{I N}$ is necessary. To this end, the circuit is redrawn as in Fig. 1b, where the OPAMP has been replaced by its equivalent model (Fig. 1a), the internal resistors have been removed ($r_{D} \rightarrow \infty$ and $r_{o} \rightarrow 0$) and the resistive network has been rearranged strategically to emphasize its role in the circuit (Fig. 3b).
$v_{\text {OUT }}$ can be found by means of (2) but expressions for v_{P} and v_{N} must be obtained previously. By inspection, it holds that

$$
\begin{equation*}
v_{P}=v_{I N} \tag{3}
\end{equation*}
$$

On the other hand, using the voltage divider at the output yields

$$
\begin{equation*}
v_{N}=\frac{R_{1}}{R_{1}+R_{2}} v_{\text {OUT }} \tag{3}
\end{equation*}
$$

In fact, the voltage v_{N} represents the fraction (or "sample") of $v_{\text {OUT }}$ that is being fed back to the inverting input in order to be compared with the system input. So the system error, characterized by v_{ε} is

$$
\begin{equation*}
v_{\varepsilon}=v_{D}=v_{P}-v_{N}=v_{I N}-\frac{R_{1}}{R_{1}+R_{2}} v_{\text {OUT }} . \tag{4}
\end{equation*}
$$

Using the relation (2), $v_{O U T}=k v_{D}$ allows the output to be expressed as,

$$
\begin{equation*}
v_{O}=k\left(v_{I N}-\frac{R_{1}}{R_{1}+R_{2}} v_{O U T}\right) \tag{5}
\end{equation*}
$$

Collecting terms and solving the ratio $v_{\text {OUT }} / v_{I N}$ leads to,

(a)

(b)

Figure 3. The noninverting voltage amplifier. a) Schematics; b) Block diagram of the noninverting configuration aimed at correcting the error signal $v_{D}=v_{I N}-v_{N}$ so ther the input can track the sample $v_{P}=$ $v_{\text {OUT }} R_{1} /\left(R_{1}+R_{2}\right)$.

$$
\begin{equation*}
\frac{v_{\text {OUT }}}{v_{I N}}=k^{\prime}=\frac{A}{1+A \beta}=\frac{k}{1+k \frac{R_{1}}{R_{1}+R_{2}}} \tag{6}
\end{equation*}
$$

Where we shall designate $k=A$ and $\beta=R_{1} /\left(R_{1}+R_{2}\right)$. This result reveals that the circuit of Fig. 3 consisting of an OPAMP and a resistor pair is itself another voltage amplifier with different gain. This is not surprising, as the two amplifiers, while sharing the same output $v_{\text {OUT, }}$ have different inputs, namely v_{D} in the case of the OPAMP and $v_{I N}$ for the circuit. To understand this difference, k is referred to as the open-loop gain, and k ' as the closed-loop gain.

- The ideal OPAMP

Considering the simplicity of the analysis corresponding to the the noniverting configuration, and its ideal closed-loop results, we wonder whether there is not a simpler technique to derive similar results in other more complex OPAMP circuits, bypassing most of the tedious algebra.

Such a technique exists and is based on the fact that when the OPAMP is operated with negative feedback, in the limit $k \rightarrow \infty$ its input voltage approaches zero ($v_{D}=v_{\text {OUT }} / \infty=0$). As such, since $v_{D}=v_{P}-v_{N}$ in the limit it holds that,

$$
\begin{equation*}
\lim _{k \rightarrow \infty} v_{N}=v_{P} . \tag{7}
\end{equation*}
$$

This property, referred to as the input constraint makes the input terminals seem as if they were shorted together, though they are not. Additionally, an ideal OPAMP draws no current at its input terminals "+" "- since its differential input resistance is also very large. In other words for voltage purposes the input port seems to be shorted, but for current purposes it seems to be open. Hence the popular designation "virtual short".

Definition 1: When operated with negative feedback, the ideal operational amplifier will output whatever voltage and electric current $\left\{v_{\text {out }}, i_{\text {out }}\right\}$ it takes to drive $v_{D}=0$ (or equivalently to force v_{N} to track v_{P}) but without drawing any current at either input terminal ($i_{N}=i_{P}=0$).

From Fig. 1b it can be seen that is the voltage v_{N} which tracks v_{P} and not the other way round. Otherwise, the OPAMP would be unable to control the system and (7) will never hold. Thus, the OPAMP controls v_{N} via the external feedback network and the output is always within the linear región of Fig. 2, so ideally the voltage gain of the circuit is

$$
\begin{equation*}
\frac{v_{\text {OUT }}}{v_{I N}}=k_{\text {ideal }}^{\prime}=\lim _{A \rightarrow \infty} \frac{A}{1+A \beta} \square \frac{1}{\beta}=1+\frac{R_{2}}{R_{1}} \tag{8}
\end{equation*}
$$

To understand better the functionality of the OPAMP, consider the electric diagram of Fig. 4 , where, by inspection, we have $v_{P}=v_{N}=v_{I N}(t)$. Since the operational drives $v_{\text {OUt }}$ to whatever $v_{N}=v_{P}$ it takes to cause $i_{N}=i_{P}=0$, it holds that $\boldsymbol{i}_{\boldsymbol{R} 1}=\boldsymbol{i}_{\boldsymbol{R} 2}$,

$$
\begin{equation*}
\frac{0-v_{\text {IN }}(t)}{R 1}=\frac{v_{\text {IN }}(t)-v_{\text {OUT }}(t)}{R_{2}} \tag{9}
\end{equation*}
$$

Equating (9) in order top find the ratio $v_{\text {OUT }}(t) / v_{\text {IN }}(t)$ leads to the gain factor,

$$
\begin{equation*}
\frac{v_{\text {OUT }}}{v_{I N}}=1+\frac{R_{2}}{R_{1}} \tag{10}
\end{equation*}
$$

which is equivalent to that of (8). In general, when operated with negative feedback the OPAMP obtains the output fraction trough the path connected from the output to v_{N} (from $v_{\text {OUT }}$ to v_{N}, and from v_{N} to ground). On the other, with positive feedback (path towards v_{P} instead of v_{N}), or no feedback at all, the OPAMP act as a voltage comparator: positive saturation ($V_{O H}$ when $v_{P}>v_{N}$) or negative saturation ($V_{O L}$ when $v_{P}<v_{N}$;).

3. Current driver

Obviously, there are a wide range of applications with th OPAMP using negative feedback. The idea that the output value can be set regardless of the load connected to it makes the OPAMP a good candidate for developing complex electronic systems with multi-stage connection (one stage connected after the other). In Annex 1, the reader can find a summary of applications using a single or several OPAMPS.

In practice, however, the definition of the ideal OPAMP is only valid within the limitations specified by the manufacturer and, consequently, they may be taken into account in design purposes. For instance, one may be tempted to connect a $\mathbf{8 \Omega}$-speaker at the output, and use the noninverting configuration as an audio amplifier. However, if $\boldsymbol{V}_{\text {out }}=\mathbf{1 0 V}$ the OPAMP must be able to draw 1.25 A , far too much in relation to the maximum 10 mA of the 741 .

Figure 4. Use of the ideal OPAMP definition for estimating the circuit function.
In these situations where a higher current capacity is required, the solution is to place a current driver ${ }^{1}$ between both elements (Fig. 5a). A driver current is an amplifier of voltage gain $K_{V}=v_{\text {OUT }} / \boldsymbol{v}_{\text {IN }} \approx \mathbf{1}$, but with great current sourcing capabilities (ioUT $\gg \boldsymbol{i}_{\text {IN }}$).

Fig. 5b, shows a possible implementation of this operation. It consists of a complementary pair of transistors ($n p n$ and $p n p$) connected in such a way that both cannot be activated simultaneously. When the input is within the range $-\boldsymbol{V}_{\boldsymbol{E B} \gamma} \leq \boldsymbol{v}_{\mathbf{I N}} \leq \boldsymbol{V}_{\mathbf{B E} \gamma}$, both transistors are cut-off, since the potential is not enough to turn the base-emitter junction on, and the output $\boldsymbol{v}_{\text {OUT }}$ will be zero. As $\boldsymbol{v}_{\text {IN }} \geq \boldsymbol{V}_{\mathbf{B E} \gamma}, Q_{N}$ enters the active area and operates as an emitter follower. As such, the output is connected to the input via the base-emitter junction and,

$$
\begin{equation*}
v_{\text {OUT }}(t)=v_{I N}(t)-V_{B E \gamma} \tag{12}
\end{equation*}
$$

The electric current requested by the load will then by provided by the source $V_{C C}$ through Q_{N} and the output will be positive. Meanwhile, the emitter-base junction will be reversedbiased, $\boldsymbol{v}_{\boldsymbol{E B}}=-\boldsymbol{V}_{\boldsymbol{B E} \gamma}\left(\left\langle\boldsymbol{V}_{\boldsymbol{E B} \gamma}\right)\right.$, and Q_{P} will remain in cut-off mode. On the other hand, when $v_{I N} \leq-V_{E B} \gamma$, the transistors Exchange their behavior and Q_{P} will the be active. The output is then connected again to the input through the emitter-base junction of Q_{P}, and it will be negative.

$$
\begin{equation*}
v_{\text {OUT }}(t)=v_{I N}(t)+V_{E B \gamma} \tag{13}
\end{equation*}
$$

As such, the output current will be derived to $-V_{C C}$. This circuit is often said to operate in a push-pull fashion: Q_{N} "pushes" (sources) current into the load when v_{I} is positive, and Q_{P} "pulls" (sinks) current from the load when v_{I} is negative. Fig. 6a shows the transfer characteristics of the current driver. When the input is large enough to cause saturation of Q_{N}, the output reaches its maximum $V_{\text {OUT }}=V_{C C}-V_{C E S A T}$ and, analogously the minimum $\boldsymbol{V}_{\text {OUT }}=-\boldsymbol{V}_{C C}+\boldsymbol{V}_{\boldsymbol{E C S A T}}$ (Fig. 6b) when the input is small so as to saturate Q_{P}. These values define the output swing and is almost fully determined by the power supplies $\Delta \boldsymbol{v}_{\text {OUT }} \approx \pm$ $V_{C C}$.

[^11]

Figure 5. Current driver. a) Symbol, output connection and power source. b) Electric diagram of the pushpull configuration using complementary BJTs.

Figure 6. Transfer characteristics of the current driver. a) $v_{\text {OUT }}-V_{I N}$ plot. b) Output example for a sinusoid input. $v_{\text {IN }}$ - black; $v_{\text {OUT }}$ - red.

The dead band corresponds to the range where both transistors are cut-off and results in the crossover distortion. The effect of this distortion will be pronounced when the input amplitude is very small and results in unpleasant sounds. This problem can be reduced substantially by means of a high-gain OPAMP and taking advantage of the noninverting configuration seen in section 2. In this solution, the driver is placed between the OPAMP and the speaker, with the resistor terminal R_{2} connected at the circuit output, instead of the operational output (Fig. 7a). The $\pm \mathbf{0 . 7 V}\left(V_{B E \gamma}\right)$ dead band is then reduced to almost $\Delta \boldsymbol{v}_{\boldsymbol{i}}=$ $\pm 0.7 \mathrm{~V} / k$.

Nevertheless, the OPAMP must provide an instantaneous transition at $v_{C}, \Delta \boldsymbol{v}_{C}= \pm \mathbf{0 . 7 V}$ (Fig. 7b), and the alternate turning on and off of the transistors will be noticeable due to the Slew-Rate (SR) limitation of the 741, so the distortion will be slightly present, especially at higher frequencies. Since the SR in the 741, defined as

Figure 7. Reducing crossover distortion using OPAMP in the basic audio amplifier. a) Schematics. b) Most representative signal waveforms for a sinusoid input: $\boldsymbol{v}_{\text {IN }}$ (blue), driver input $\boldsymbol{v}_{\boldsymbol{C}}$ (green) and output $\boldsymbol{v}_{\text {OUT }}$ (red).

$$
\begin{equation*}
S R=\left.\frac{d v_{C}}{d t}\right|_{\max } \tag{14}
\end{equation*}
$$

is $\mathrm{SR}=\mathbf{0 . 5 V} / \boldsymbol{\mu s e g}$, for an output swing $\Delta \boldsymbol{v}_{C}= \pm \mathbf{1 5 V}$ the maximum operating frequency

$$
\begin{equation*}
f_{\max }=\frac{S R}{2 \pi \Delta v_{\mathrm{C}}}, \tag{15}
\end{equation*}
$$

results in $f_{\max }=\mathbf{2 . 6 5 K H z}$. Other OPAMPS with advanced features present a slew rate as high as $100 \mathrm{~V} / \mu \mathrm{seg}$.

Finally, despite reducing the current capacity at the driver input by $\boldsymbol{i}_{\boldsymbol{B}} \approx \boldsymbol{i}_{\boldsymbol{L}} /\left(\boldsymbol{h}_{\mathbf{F E}}+\mathbf{1}\right)^{2}$ this value is still even large for the OPAMP, due to the lower gain current factor ($h_{F E}<\mathbf{1 0 0}$) are of the high-power BJTs ${ }^{3}$. To reduce the required base current drive, the Darlington configuration (Fig. 8) is frequently used to replace the $n p n$ transistor ${ }^{4}$. Since,

$$
\begin{equation*}
i_{B N} \square \frac{i_{E 1}}{\left(h_{F E 1}+1\right)}=\frac{i_{L}}{\left(h_{F E 1}+1\right)\left(h_{F E 2}+1\right)}, \tag{16}
\end{equation*}
$$

This configuration is equivalent to a npn BJT with current gain $\boldsymbol{h}_{\boldsymbol{F E}} \approx \boldsymbol{h}_{\text {FE1 }} \boldsymbol{h}_{\text {FE2 }}$, where $h_{F E 1}$ is the current gain for the low-power BJT, typically $\boldsymbol{h}_{\text {FE1 (typ) }} \approx \mathbf{5 0 0}$. As such, for $\boldsymbol{h}_{\text {FE2 }}=$ $\mathbf{1 0 0}$, the full gain factor is $\boldsymbol{h}_{F E} \approx \mathbf{5 0 0 , 0 0 0}$. For this reason, this configuration is popularily known as the "supertransistor", but it has the disadvantage that it doubles the base-emitter voltage: $\boldsymbol{v}_{\boldsymbol{B E}}=\mathbf{2} \mathbf{V}_{\mathbf{B E} \gamma}$.

[^12]

Figura 8. The Darlington configuration pair
The output swings of the Darlington pair and the complementary BJTs are the same: $\Delta \boldsymbol{v}_{\text {out }}$ $\approx \pm \boldsymbol{V}_{C}$. In the Darlington case, since $\boldsymbol{v}_{\text {CEN }}=\boldsymbol{v}_{\text {CE1 }}+\boldsymbol{v}_{\text {BEN }}$ and habitually $\boldsymbol{V}_{\text {CENSAT }}>\boldsymbol{V}_{\text {CE1SAT }}{ }^{5}$, when Q_{N} enters the saturation area Q_{1} will still be in active mode. So the maximum power that can be transferred by the audio amplifier to the load speaker is

$$
\begin{equation*}
P_{\text {Lef }}=\frac{v_{\text {OUTef }}^{2}}{R_{L}}=\frac{V_{O \max }^{2}}{2 R_{L}}=\frac{\left(V_{C C}-V_{C E S A T}\right)^{2}}{2 R_{L}} \tag{17}
\end{equation*}
$$

Task PRELAB1. In the Bread-Board template provided, represent the component connections of the audio amplifier (Fig. 9). Specify the connections of instruments, components, wires and terminals.

- Search information through the Internet about the connection of a log potentiometer.
- Specify power supply configuration for obtaining a symmetric DC voltage and explain how it should be connected to the circuit.
- Draw the circuit in the template. Specify speaker, potentiometer and oscilloscope connections, together with the JACK connector, which is needed to introduce audio signal from the PC.

[^13]

Figura 9. Full schematics of the audio amplifier
Task LAB1. Mount the audio amplifier (Fig. 9) and check its electric operation

- Operation check: 1) Mount the circuit. Try to connect the DC supply directly to the power BJTs and place the capacitors next to them in order to avoid the effects of thermal noise. To start with, do not connect the potentiometer (P) yet and use a $10 \Omega / 5 \mathrm{~W}$ load instead of the speaker $\left(R_{L}\right)$ 2) By means of the $\mathbf{5 0 \Omega}$ output in the waveform generator, configure a $\mathbf{1 V}$-peak sinusoid, set the frequency value to $\boldsymbol{f}=$ $\mathbf{5 0 0 H z}$ and connect the output to the noninverting input of the OPAMP $\left(v_{I N}\right) 3$) Observe the input through CH1 using the BNC-BNC probe and the T connector, and connect CH2* to the load in order to observe the output $v_{\text {OUT }}$. 4) Configure the multimeter for measuring AC voltages (VAC) and measure v_{D}. Connect its terminals as indicated in Fig. 9 5) Measure the closed-loop voltage gain of the amplifier k ' and contrast results ($k^{\prime}=3$) from the theoretical expression (10). 6) In the grid provided, represent the signals $v_{\text {IN }}(t), v_{\text {OUT }}(t)$ and $v_{C}(t)$. Change the position of CH2* at the OPAMP output to observe and plot the third variable and write down the data specified in Table A3.1. Comment the results and justify the value $\boldsymbol{v}_{\boldsymbol{D}}$ obtained with the multimeter.
- 7) Increase the input magnitude top $\mathbf{2 V}$ and repeat the precedent steps. Draw the new waveforms $v_{I N}, v_{\text {OUT }}$ and write down the new value v_{D}. Comment the results.
- 8) Turn all instruments off and now change the 10Ω load by the speaker. Set again a 1V-peak input and turn the instruments on. Check whether a low sound can be heard from the speaker. 9) Modify the amplitude and the frequency f in order to feel the sound differences.
- 10) Finally, turn the instruments off. Change the generator by the soundcard of the PC and use the male-male JACK cord to input audio signals in your circuit. Now, connect the potentiometer P as indicated in Fig. 9. 11) Go to the YouTube website
and search a video with audio. 12) Turn the power supply on and play the video. Check the correct performance of the circuit.

4. Free running multivibrator (square waveform generator) with OPAMP (Optional)

As discussed in section 1, when the OPAMP is operated with positive or negative saturation its output can only take two possible values: either $V_{O H}$ or $V_{O L}$. This type of behavior is known for being a switching (as well as digital) application. Examples of electronic systems using this principle are: voltage comparators, ON/OFF controllers, waveform generators or analog-to-digital (as well as digital-to-analog) converters, all of them wide spread at an industrial level.

In the field of audio applications, another important operation that coexists with signal amplification is the synthesization (or generation) of periodic signals. The most demanded type of generators are the sinusoid oscillators, normally used for constructing "any" kind of waveform pattern in sound applications, as the sinusoid constitutes the basis function for obtaining almost any type of periodical signal ${ }^{6}$. But there are other types of signal generators whose specifications are not so strict. These generators construct signals of pulse characteristics. Among this group, instruments generating square, triangular or even saw-tooth waveforms can be found. To this type of oscillators, normally the term freerunning oscillator (or also relaxation oscillators) is used.

Their operation principle is quite similar to that of the two-shot multivibrator considered in Lab Activity 4, with the main difference that no external trigger is needed to cause a level change at the output (in the SET/RESET changes were caused by external switches). In fact, multivibrators can be grouped in three categories according to Fig. 10:
a) Free-running (or relaxation) oscillator: This multivibrator toggles from " 0 " to " 1 " and vice versa with no need of external commands. This means the two logical values are unstable because they are alternated with the time without user intervention.
b) One-shot multivibrator: One of the two logical levels (either " 0 " or " 1 ") is stable by default. When forced into the other logic state, say via an external command or trigger, it returns automatically to its original value after a certain time interval.
c) Two-shot multivibrator: Both logical levels are stable, and external commands are needed to toggle the output to a given state.

Multivibrators are considered regenerative circuit intended for timming applications and, as such, are normally used in sequential logic circuits. The free-running multivibrator find applications as clock signals while the one-shot multivibrator is used as a timer. On the other hand, latches and flip-flops (D-type, JK-type or RS-type, among others) are typical applications of the two-shot multivibrator.

[^14]

Figure 10. The three multivibrator types and their operation principle: a) Free-running; b)One-shot c) Twoshot.

- Free-running multivibrator with OPAMP

In the free-running multivibrator with OPAMP of Fig. 11a, the capacitor C and the resistor R in the negative feedback, and the resistors R_{1} and R_{2} (positive feedback) form an inverting Trigger Schmitt.

When $\boldsymbol{v}_{(7)}=-\boldsymbol{v}_{(\mathbf{4})}=V_{C C}=\mathbf{1 5 V}$ and assuming symmetric output saturation, $\boldsymbol{V}_{S A T}=+\mathbf{1 3 V}$ and $-V_{S A T}=\mathbf{- 1 3 V}$ since the positive feedback is predominant in this circuit ${ }^{7}$, the thresholds at v_{P} will also be symmetric with $\pm \boldsymbol{V}_{\boldsymbol{T}}= \pm \boldsymbol{V}_{\boldsymbol{S A T}} \boldsymbol{R}_{\mathbf{1}} /\left(\boldsymbol{R}_{\mathbf{1}}+\boldsymbol{R}_{\mathbf{2}}\right)$ and the signal to the inverting input, while the inverting input v_{N} the voltage is determined by the $R C$ network.

At power turn-on $(t=0)$, $v_{\text {OUT }}$ will swing either to $+V_{S A T}$ or $-V_{S A T}$. Assume iy swings to $+V_{S A T}$, so that $v_{P}=+V_{T}$. This will cause the resistor R to charge C towards $+V_{S A T}$, leading to an exponential rise in v_{N} with time constant $\tau=R C$.

As son as v_{N} catches up with $v_{P}=+V_{T}<v_{N}$ at $t=t_{1}$, the output snaps to $-V_{\text {SAT }}$. This will not only snap $v_{P}=-V_{T}$ but it will reverse the sing of the capacitance current. As such, for $t>t_{1}$ the capacitor voltage will decay exponentially towards $-V_{S A T}$ until it caches up with $v_{P}=-$ $V_{T}>v_{N}$ at $t=t_{2}$. At this point, the output will snap again to $+V_{S A T}$ thus repeating the cycle.

It is evident that once powered, the circuit has the ability to start and sustain oscillations: with v_{O} snapping back and forth between $+V_{S A T}$ and $-V_{S A T}$; and v_{N} slewing exponentially from $+V_{T}$ to $-V_{T}$ and vice versa; so the waveform signal becomes square and periodic (Fig. 11b). Thus, it is interesting knowing the oscillation frequency \boldsymbol{f}_{0} which can be found from the period T as $T=1 / f_{0}$.

[^15]

Figure 11. Free-running multivibrator using OPAMP. a) Electric diagram. b) Time signals at the output $v_{\text {OUT }}$ and the inverting input v_{N} (red trace).

Thanks to the symmetry of the saturation levels, the output v_{O} has a duty-cycle, $D=T_{H} / T$ of 50% ($=0.5$), so finding the interval range $\Delta t=t_{2}-t_{1}=T / 2$ is necessary. Using the standard expression corresponding to the capacitor charge/discharge ${ }^{8}$ in this range,

$$
\begin{equation*}
v_{C}\left(t_{2}\right)=v_{N}\left(t_{2}\right)=v_{C}(\infty)+\left[v_{C}\left(t_{1}\right)-v_{C}(\infty)\right] e^{-\frac{\Delta t}{\tau}} \tag{18}
\end{equation*}
$$

where $\boldsymbol{v}_{\boldsymbol{C}}(\infty)=-V_{S A T}$; it holds that for $\Delta t=T / 2, v_{N}\left(t_{1}\right)=+V_{T}, v_{N}\left(t_{2}\right)=-V_{T}$; and $\tau=R C$ we obtain,

$$
\begin{equation*}
\frac{T}{2}=R C \ln \left(\frac{V_{S A T}+V_{T}}{V_{S A T}-V_{T}}\right) . \tag{19}
\end{equation*}
$$

Substituting $V_{T}=V_{S A T} R_{1} /\left(R_{1}+R_{2}\right)$ and equating $f_{0}=1 / T$ it leads to,

$$
\begin{equation*}
f_{0}=\frac{1}{T}=\frac{1}{2 R C \ln \left(1+2 \frac{R_{1}}{R_{2}}\right)} \tag{20}
\end{equation*}
$$

It can be observed that f_{0} depends only on the external components. In particular, it is unaffected by $V_{S A T}$, which is an ill-defined parameter which varies from one OPAMP to another: any variation in $V_{S A T}$ will cause V_{T} to vary in proportion, thus ensuring the same transition time and, hence, the same oscillation frequency. On the other hand, the maximum operating frequency is determined by the OPAMP slew-rate of expression (15).

[^16]Task PRELAB2 (Optional). In the Bread-board template represent the component distribution and wire connections corresponding to the OPAMP-based freerunning multivibrator of Fig. 12 to be implemented in the lab.

Task LAB2 (Optional). Mount the circuit and check the performance of the OPAMP-based free-running multivibrator (Fig. 12).

- 1) Mount the circuit. Connect the DC power-supply and oscilloscope probes as indicated in Fig. 12. Turn the power on and represent the capacitor voltage $\boldsymbol{v}_{\mathrm{C}}$ in CH1; and the output $\boldsymbol{V}_{\text {out }}$ in CH2. 2) Obtain the threshold values: $\pm \boldsymbol{V}_{S A T}, \pm \boldsymbol{V}_{\boldsymbol{T}}$; and measure the oscillation frequency f_{0}. 3) Compare the experimental results with the theoretical values obtained by means of (16).

Task PRELAB3 (Optional). How would you connect the two circuits of this activity (Fig's. 9 and 12, respectively) in order to synthesize and to hear a low sound of $\mathbf{5 0 0 H z}$ through the speaker? Represent the circuit in the box provided and specify component values.

Task Lab3 (Optional). Mount the circuit from PRELAB3 and check its electric operation.

- 1) Mount the circuit. 2) Using the oscilloscope and/or the multimeter represent the waveforms and obtain the data you believe it is important in order to understand circuit behavior.
- Comment results regarding the sound synthesizer.

Figure 12. Mounting diagram corresponding to the free-running multivibrator in the lab.

Annex 1 - OPAMP basic configurations (with negative feedback)

The OPAMP circuits of this section are considered basic. Very often, these circuits are used as stages of very complex analog electronic systems. In here, all configurations use negative feedback operation. Only the connection diagram (without DC supply) and the transfer function of each circuit is specified in Table 1. The analytical process necessary to obtain these functions are left to the reader as an exercise.

Circuit name	Connection diagram	Function
Voltage Follower		$\frac{v_{O}}{v_{I}}=1$ $v_{O}=v_{I}$
Noninverting amplifier		$\frac{v_{O}}{v_{I}}=1+\frac{R_{2}}{R_{1}}$
Inverting Amplifier		$\frac{v_{O}}{v_{I N}}=-\frac{R_{2}}{R_{1}}$
Inverting adder Amplifier		$v_{O}=-R_{F} \sum_{i=1}^{N} \frac{v_{i}}{R_{i}}$

Diferential Amplifier		$\begin{aligned} & v_{O}=\left(1+\frac{R_{2}}{R_{1}}\right) \frac{R_{4}}{R_{3}+R_{4}} v_{2}- \\ & -\frac{R_{2}}{R_{1}} v_{1} \end{aligned}$ * If $R_{1}=R_{2}=R_{3}=R_{4}$ $v_{O}=v_{2}-v_{1}$
I/V Converter (T network)		$v_{O}=-k R i_{I}$ where $k=1+\frac{R_{2}}{R_{1}}+\frac{R_{2}}{R}$
Howland's current source		$\begin{aligned} & \quad i_{O}=\left(\frac{R_{4} R_{1}-R_{2} R_{3}}{R_{1} R_{2} R_{3}}\right)+ \\ & \quad+\frac{v_{I}}{R_{1}} \\ & * \\ & \text { if } R_{4} / R_{3}=R_{2} / R_{1} \\ & i_{O}=\frac{v_{I}}{R_{1}} \end{aligned}$
Derivator		$v_{O}(t)=-R C \frac{d v_{I}(t)}{d t}$ $\frac{v_{O}(s)}{v_{I}(s)}=-R C s$
Integrator		$\begin{aligned} & v_{O}(t)=-\frac{1}{R C} \int_{0}^{t} v_{I}(t) d t+ \\ & +v_{c}\left(t_{0}\right) \\ & \frac{v_{O}(s)}{v_{I}(s)}=-\frac{1}{R C s}+\frac{v_{c}\left(t_{0}\right)}{s} \end{aligned}$ Habitually $\boldsymbol{t}_{\mathbf{0}}=\mathbf{0}$

Instrumentation Amplifier (2 OPAMPS)		$\begin{gathered} v_{O}=A_{d}\left(v_{2}-v_{1}\right) \\ A_{d}=\left(1+\frac{R_{2}}{R_{1}}+2 \frac{R_{2}}{R_{1}}\right) \end{gathered}$
Instrumentation Amplifier (3 OPAMPS)		$\begin{gathered} v_{O}=A_{d}\left(v_{2}-v_{1}\right) \\ A_{d}=\left(1+2 \frac{R_{3}}{R_{G}}\right) \frac{R_{2}}{R_{1}} \end{gathered}$
Negative Impedance Converter (NIC)		$R_{E Q}=-\frac{R_{1}}{R_{2}} R$ * If $R_{1}=R_{2}$ $R_{E Q}=-R$

Taula 1. Diverses configuracions bàsiques amb un o varis operacionals, i la seva funció de transferència

Annex 2 - Results form PRELAB

REMARK: You MUST these activities BEFORE THE LAB SESSION CORRESPONDING TO PRT5

PRELAB 0: Draw the contour package packages corresponding to the LM741; the BD243 and BD244.

Paràmetre	LM741	Observacions: Coment manufacturer observations
\boldsymbol{k}		
Δv_{O}		
$\mathbf{V}_{C C}$		
$S R$		

Taula A2.1 Anoti la informació relativa al BC547C que ha trobat al full de característiques

PRELAB1. Audio amplifier with OPAMP

Represente the contour package of the potentiometer and specify pin function
\square

Specify connection and configuration of the DC-power supply so as to obtain a symmetric power DC-voltage of $\pm 15 \mathrm{~V}$

Represent the component connections of the audio amplifier

PRELAB2(Optional): OPAMP free-running multivibrator

Represent the component connections of the OPAMP-based free-running multivibrator

PRELAB3 (Optional): Sound synthesizer

Represent the electric diagram corresponding to the sound synthesizer
\square

Annex 3 - Lab activities
REMARK: You MUST PRINT OUT and TAKE IT WITH YOU the day of the lab session

LAB1. Audio amplifier.

Represent the waveforms $v_{\text {IN }}(t)$ and $v_{\text {OUT }}(t)\left(1 \mathrm{~V}\right.$-peak $\left.v_{\text {IN }}\right)$

Represent the waveforms $v_{I N}(t)$ and $v_{\mathrm{C}}(t)\left(1 \mathrm{~V}\right.$-peak $\left.v_{I N}\right)$

Summary of results:

Variable elèctrica	Teoric	Laboratori	Variable elèctrica	Teoric	Laboratori
V_{C}			$\boldsymbol{v}_{\boldsymbol{D}}(\mathrm{AC})$		
VOUT			$\Delta V_{C}($ Zona morta)		
\boldsymbol{k}^{\prime}		$\boldsymbol{P}_{\boldsymbol{L}}$			

Table A3.1. Results of the audio amplifier

Represent the waveforms $v_{I N}(t)$ and $v_{\mathrm{C}}(t)\left(2 \mathrm{~V}\right.$-peak $\left.v_{I N}\right)$

Your comments about the performance of the audio amplifier:
\qquad
\qquad
\qquad

LAB 2. (Optional): OPAMP-based free-running multivibrator

Represent the waveforms $v_{C}(t)$ and $v_{\text {OUT }}(t)$

\qquad
f_{O} (theoretical): $\quad f_{\mathrm{O}}(\mathrm{lab}):$ \qquad

LAB 3 (Opcional): Sintetitzador de so

Represent thecircuit signals you believe are important

Your comments about the performance of the audio synthesizer circuit:
\qquad
\qquad
\qquad
\qquad

[^0]: ${ }^{1}$ Some multi-meters only provide the 'rms' value of sinusoids, since this value is easily obtained correcting the output peak by a factor of 0.707 , which requires less resources. Hence, manufactures refer to the "true rms" implementation when their instrument contains the required circuitry to develop (2). It has to be mentioned, however, that the usefulness of this value relies on the basis of repetitive signals, which is a necessary condition in order to give a steady value of this measure through the display.
 ${ }^{2} T$ is automatically fixed by the device. In DC mode, this value corresponds to a time interval of fixed width along which the average value is estimated. As such, it can be seen as the refreshment time of the display. In AC mode, the multi-meter uses a sophisticated system to detect the periodicity of signals and, then, it configures T accordingly. See the manufacturer user's guide for more information on this topic.

[^1]: ${ }^{3}$ A similar criterion applies to the voltmeter, which takes as positive all drops caused by electric currents ENTERING the red terminal, and negative otherwise.

[^2]: ${ }^{4}$ For "periodical" we mean signals with a constant repetitive pattern along the time.
 ${ }^{5}$ For simplicity, this type is not considered in this activity since it deals with other parameters corresponding to the TTL output, and which are out of the scope of this tutorial.
 ${ }^{6}$ BNC stands for Bayonet Neill-Concelman after its inventors. This is a very popular closing mechanism (similar to a bayonet) characterized for being of fast connection and having great noise immunity.

[^3]: ${ }^{7}$ For simplicity, not all the oscilloscope functions will be explained either. See the oscilloscope manual available on the Atenea Campus.
 ${ }^{8}$ The digital oscilloscope works in REAL-TIME. This means that voltage data is sampled CONTINUOUSLY from the input terminals. Since the buffer memory is finite, and the screen is not wide enough either, the user must specify the INITIAL portion of representation. This is, precisely, the goal of the TRIGGER mechanism, which also attempt to stabilize the periodic signals on screen.

[^4]: ${ }^{1} V_{R R M}$ stands for Maximum Repetitive Reverse Voltage and is the maximum voltage the diode can take, from cathode to anode, when it is reverse biased. That is $I_{D}=0 \mathrm{~A}$.

[^5]: ${ }^{2}$ In general, the low-power DC supplies are those providing a maximum output current $I_{O}=I_{D(\mathrm{av})}<\mathbf{2 A}$.

[^6]: ${ }^{3}$ From now on, assume that the three outputs of the transformer are connected to the Board terminals.

[^7]: ${ }^{1}$ From now on we will use these terms to refer to this type of electronic semiconductor

[^8]: ${ }^{2}$ BCD stands for Binary-Coded Decimal and serves to designate the conversion of a decimal number to a binary code. In the 7 -segment BCD display, however, this differs from this definition, as an additional conversion is necessary: decimal-to-binary and binary-to-BCD, respectively. There are integrated circuits, such as the 74LS47, which develops this last functionality in a transparent way to the user.

[^9]: ${ }^{3}$ DIP - Dual In-line Package

[^10]: ${ }^{4}$ Mark the segments you believe will glow after setting the specified configuration.

[^11]: ${ }^{1}$ In the field of electronics, the terme driver is used to coin the action of transferint a signal between two circuits (or stages) that cannot be directly connected, due to electrical compatibility. Hence the term driver.

[^12]: ${ }^{2}$ For simplicity of the analysis, we assumí $i_{L} \gg i_{R 2}$.
 ${ }^{3}$ Generally, a power BJT provides high capacity current at the collector terminal ($\mathrm{I}_{\mathrm{C}}>1 \mathrm{~A}$) but in turn reduces drastically its current gain $h_{F E}$ in relation to small signal low-power BJTs.
 ${ }^{4}$ Analogously the Darlington pair can be also adopted in pnp transistors

[^13]: ${ }^{5}$ The $V_{\text {CESAT }}$ of high power BJTs is also slightly superior to that of small signal transistors, between 1 or 2 volts, approximately.

[^14]: ${ }^{6}$ By using the Fourier Series, it can be shown that any periodical signal (no matter what the waveform is) can be expressed as a compostion of sinusoid wit diferent amplitude, frequency and phase shift.

[^15]: ${ }^{7}$ One may think that this circuit uses negative feedback, because of the $R C$ network, and that the concept of ideal OPAMP can be therefore applied. However, when another branch is present in the positive path, and in the absence of external input sources (as it is the case of this cexampl), the positive feedback prevails over the negative feedback and will force the OPAMP to operate in saturation mode, working as a voltage comparator.

[^16]: ${ }^{8}$ See the document of PRT2, where the step response of the $R C$ network was considered, in order to understand expression (11) in the interval $\Delta t=t_{2}-t_{1}$

