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Abstract. Vortex methods offer an alternative way for the numerical simulation of problems
regarding incompressible flows. In the present paper, a Vortex Particle Method (VPM) is
combined with a Boundary Element Method for the study of viscous incompressible planar flow
around solid bodies. The method is based on the viscous splitting approach of Chorin [3] for
the Navier-Stokes equations in vorticity-velocity formulation and consists of an advection step
followed by a diffusion step. The evaluation of the advection velocity exploits the Helmholtz-
Hodge Decomposition (HHD), while the no–slip condition is enforced by an indirect boundary
integral equation. In order to deal with the problem of disordered spacial distribution of
particles, caused by the advection along the Lagrangian trajectories [1], in the present method
the particles are redistributed on a Regular Point Distribution (RPD) during the diffusive step.
The RPDs close to the solid bodies are generated through a packing algorithm developed
by [4], thanks to which the use of a mesh generator is avoided. The developed Vortex Particle
Method has been called Diffused Vortex Hydrodynamics (DVH) and it is implemented within
a completely meshless framework, hence, neither advection nor diffusion requires topological
connection of the computational nodes. The DVH has been extensively validated in the past
years (see e.g. [8]) and is used in the present article to study the vorticity evolution past an
inclined elliptical cylinder while increasing the Reynolds number from 200 up to 10,000 in
a 2D framework. The flow evolution is characterized by a periodic behaviour for the lower
Reynolds numbers which is gradually lost to give its the place to a chaotic behaviour.

1 INTRODUCTION

Two dimensional studies of flow past bluff bodies is long researched problem due to the
importance and utility of flow separation, its immediate impact on the forces on the both in
aerodynamic and hydrodynamic applications. While most of the studies are concentrated on
the circular cylinders, applications require the study of a less symmetric geometry in order
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to be more realistic as for is the case of an elliptical cylinder which can exhibit richer flow
characteristics.

Studies of the dynamical characteristics on two dimensional flows past elliptic cylinders
involve mostly works at low Reynolds regimes. The questions addressed at these regimes
include establishing the critical Reynolds for separation to occur and their dependence from
different aspect ratios (see for example [14], [11], [7], [12], [20]). At these Reynolds it is
possible to study the inception of instabilities using analytic or semi-analytic tools as in [10],
[15].

Additionally, a large part of the studies performed concern the near wake characteristics.
On the other hand, also the far wake analysis may reveal important qualities of the flow for
the relevant applications (for example acoustics or sound propagation). Regarding the far
wake wake studies of elliptic cylinders, these also refer to low to moderate Reynolds numbers
(< 1000), for varying both the angle of incidence and the Reynolds number.

In the current work, the goal is to extend the study of the flow past an elliptic cylinder at
incidence to Reynolds between 200 and 10000 and to study the characteristics of the wake using
tools from non linear dynamical systems such as Lyapunov theory. Moreover, the numerical
simulations are performed using a VPM, which allows to study the more realistic unbounded
problem without enforcing any unphysical boundary condition on the computational domain.

Vortex Particle methods are Lagrangian methods for the numerical simulation of unsteady
viscous flow problems (see e.g. [6]) where the fluid is discretized into vortex elements. These
methods have the definite advantage of eliminating the pressure, requiring no CFL condition,
and the implicit fulfillment of the far field conditions.

The Vortex Particle Method described in this work is called Diffused Vortex Hydrodynamics
(DVH), recently developed and tested on numerous benchmark tests (see [16–18], [5] and [8]).
This approach yield an accurate evaluation of both near and far flow fields. In the numerical
simulations considered, high spatial resolutions are used for the near field around the body as
well as for the wake region. Furthermore, computations were carried out for very long time, in
order to achieve stable regime values of average forces and of their oscillating part.

In the present paper, the study of the flow past an ellipse at incidence is discussed. The
Reynolds number is changing from 200 up to 10000, whereas the angle of attack remains
constant at 20◦. The main goal of the paper is to study the effect of the Reynolds on the drag
and lift forces and also to reveal the way in which the periodic behaviour of the solution leads
to the inception of a chaotic regime.

The paper is organized as follows: in section 2 the essential features of the methodology
followed in this work are reported, whereas in section 3 the evolution from periodic to non
periodic of the lift and drag coefficients is investigated for increasing Reynolds numbers.

2 Brief description of DVH algorithm

In this section, the main characteristics of the vortex particle method (DVH) used for
simulations are briefly discussed; further details can be found in [16–18].

The vorticity formulation of the two-dimensional, incompressible Navier-Stokes equations
is used and the evolution of the flow field is solved through an operator splitting.
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By following [2], an advection step and a diffusion step are defined. The advection step is:


Dω
Dt

= 0

Dx
Dt

= u(x, t)
with ∇2u = −∇×ω (1)

where u(x, t) is the velocity field of the material point x at time t and ω = |ω| is the vorticity
modulus. The right equation in (1) is the Poisson equation linking the vorticity with the velocity
field.

The velocity field is decomposed through a HHD in a curl-free (potential) part uφ and a
divergence–free (non potential) part uω. The velocity component due to the free stream u∞ is
also added. The uω component is obtained through the Biot–Savart law in a 2D framework
for an unbounded domain. Indeed this law is a free solution of the Poisson equation (1). The
enforcement of the no-slip boundary condition on ∂DB is performed with the uφ solution using
an Indirect Boundary Element Method (IBEM). The IBEM solution also provide the circulation
density distribution γ used as source term during the diffusion-step.

The latter consists in the diffusion of the vorticity due to the viscosity which is a phenomenon
governed by the linear heat equation:



∂tω = ν∇2ω, x ∈ D

ν
∂ω

∂n
= −γ̇, x ∈ ∂DB

(2)

where γ is the circulation density on ∂DB which, as stated above, is exploited to enforce the
no-slip condition on the solid boundary (for details see [9])

In order to discretize the above PDEs, the vorticity field is discretized by a collection of Nv
discrete vortices as:

ω(x, t) =
Nv∑
j=1

Γ j(t)Wε(x−x j(t)), (3)

where Γ j is the circulation of the j-th particle and Wε is the kernel function, which is a smoothed
Dirac function with parameter ε > 0.

3 Flow past ellipse with angle of attack α = 20◦ for different Reynolds numbers

The geometry considered for this test case is an ellipse set at incidence α = 20◦, with a
Reynolds number spanning from 200 to 10000. The axes ratio is b/a = 0.4, a and b being
the major and minor axes respectively; in order to be consistent with the usual definition for
an airfoil, the Reynolds number is defined as Re = Ua/ν, where U is the modulus of the free
stream velocity and ν is the kinematic viscosity.

From the vorticity fields (see figure 2), a very smooth arrangement of the wake dipoles is
evident for Re up to 3000, whereas it appears definitely chaotic for higher Reynolds numbers
(figure 3).

This behaviour is in agreement with [19], where, by changing the Reynolds number at fixed
incidence, the vorticity wake pattern changes with the Reynolds number becoming even more
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Figure 1: Ellipse geometry. a, b are the major and minor axes, respectively, and α is the angle
of attack

chaotic with its increasing. Accordingly, the lift time histories (in figure 4) are very regular for
Re ≤ 3000 and the Fourier transforms (in figure 5) show one greater evident peak corresponding
to the Strouhal shedding frequency; at Re = 4000 subharmonic modulations are manifested in
the time signal and reflected in the Fourier spectrum where peaks at lower intensity appear
almost symmetrically respect to the dominant one. From Re = 5000 to Re = 10000 the spectra
become continuous without the evidence of a single dominant peak and similarly the wakes do
not exhibit an ordered arrangement of the vorticity cores anymore.

Regarding the time-averaged values of CL and CD, the figure 6 shows the variation of the
force coefficients with the Reynolds number.

For 200 ≤ Re ≤ 1000, the ellipse manifests a drag force greater than the lift, while a sudden
increase of the lift force is evident for Re up to 4000. For Re= 5000 the lift drops down, although
it rise up again for Re = 6000 and then lowers with the increasing of the Reynolds number. The
figure 7 shows the maximum Lyapunov exponents variation with the Reynolds number. The
exponents are calculated for every lift time history according the Wolf algorithm [21]. The
Lyapunov exponent of a dynamical system is a quantity characterizing the rate of separation of
infinitesimally close trajectories, so that it represents a measure of the sensitivity of the system
to become unstable under certain initial conditions. Positive values of the exponent may indicate
an evolution of the system toward a chaotic behaviour, although it does not represent a sufficient
condition (see for example [13]). From 200 to 3000, coherently with the vorticity wake field
and with the Fourier transforms, the Lyapunov exponents are very low, meaning that the system
is in a equilibrium condition. At Re = 4000 the exponents start to increase and at Re = 5000
assume the greatest value, when the system moves toward a chaotic condition. After Re = 5000
the exponents lower with the increasing of the Reynolds number. In figure 8, the phase portraits
diagram CL − ĊL are shown and coloured with an intensity increasing with the time. A single
and sharp orbit is visible for Re up to 4000, where a large number of orbits appears.
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Figure 2: Vorticity fields for the flow past an ellipse from Re = 200 to Re = 3000.
Dimensionless vorticity ωa/U scales from -2 (blue) to 2 (red).
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Figure 3: Vorticity fields for the flow past an ellipse from Re = 4000 to Re = 10000.
Dimensionless vorticity ωa/U scales from -2 (blue) to 2 (red).
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Figure 4: Time history of the lift coefficients for the Reynolds numbers simulated.
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Figure 5: Fourier coefficients for the lift time history for the Reynolds numbers under study
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Figure 6: Time averaged Lift C̄L and Drag C̄D coefficients versus Re number. The error bars
corresponding to standard deviations are also indicated.

The chaotic time histories of the lift force for Re ≥ 5000, portrayed in figure 4, are
immediately related to the impossibility for the system to find a stable limit cycle. As shown
in figure 7, from Re = 5000 the system passes toward a chaotic state that persists for higher
Reynolds numbers.

Figure 7: Maximum Lyapunov exponents of the lift coefficients, for each Reynolds number
studied.

4 Conclusion and perspectives

In the present work, the flow past an ellipse at 20◦ is investigated for varying Reynolds
number. The vorticity wake field, as well as the lift force are analysed. In particular, the
Fourier transform and the CL − ĊL maps are sketched and exploited for the analysis of the
system stability. The maximum Lyapunov exponents of the lift force are also calculated and
their behaviour with the Reynolds number has been reported. In order to get a better insight
on the dynamical system, a wider number of simulations must be performed, clustering them
within the interval 4000−5000, where the chaotic behaviour take place. Moreover, the effect of
the thickness of the ellipse at fixed Reynolds number may be interesting and should be analysed
in the extended version of the present paper.
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Figure 8: CL− ĊL maps for the Reynold numbers simulated.
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