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Abstract. The problem of numerical solution of the boundary integral equation is con-
sidered for 2D case. Viscous vortex domains (VVD) method is used for flow simulation, so
vorticity is generated on the whole surface line of the airfoil, and there are a lot of vortex
elements close to the airfoil. The aim of the research is to provide high accuracy of numer-
ical solution of the integral equation; at the same time the computational complexity of
the numerical algorithm should be at rather low level. The third-order accuracy numerical
scheme, based on piecewise-quadratic solution representation on the curvilinear panels is
presented, approximate analytic expressions are obtained for the matrix coefficients.

These schemes work perfect in the case of potential flow simulation, when vorticity
is absent and also when vortex elements are placed rather far from the airfoil surface
line. A trivial way to the accuracy improvement for the closely located vortices, which
consists in extremely fine surface line discretization, leads to unacceptably high numerical
complexity of the algorithm. This problem is solved by developing semi-analytical correcti-
on procedure which makes it possible to achieve high accuracy at extremely coarse surface
line discretization. For example, in the model problem of flow simulation around elliptical
airfoil with 2:1 semiaxes ratio only 20 panels are required to achieve the error level less
than 1 % for arbitrary position of the vortex element in the flow.

1 Introduction

Despite the fact that vortex methods are being developed for more than 50 years, there
are a lot of problems to be solved. The most part of the researchers pay their attention to
the problems, connected with vorticity evolution simulation in the flow, whereas vorticity
generation on the streamlined surface is much less investigated area.

1

115



Irina A. Soldatova, Ilia K. Marchevsky and Kseniia S. Kuzmina

Even for 2D flows, which are much easier in comparison to three-dimensinal case due
to orthogonality of vorticity and velocity vectors, the existing numerical schemes for flow
simulation around airfoils sometimes are based on some semi-empirical hypotheses and not
fully proven; their accuracy can be rather poor, that requires very detailed discretization
of the airfoil surface line. However, even detailed and uniform discretization sometimes
doesn’t permit to achieve high accuracy. The source of such problems is connected with
the properties of the mathematical model — the boundary integral equation (BIE). In
well-known modifications of 2D vortex methods the singular BIE is usually considered
with Hilbert-type kernel; the corresponding integrals are understood in Cauchy sense,
and the numerical procedure of its calculation is non-trivial [1, 2]. Moreover, it is not
easy to provide its correct calculation for non-uniform airfoil surface line discretization.

As it is mentioned in [2], it is impossible to develop higher-order numerical scheme with-
out explicit taking into account the curvature of the airfoil surface line. In the present
paper the other approach is developed which makes it possible to consider Fredholm-type
BIE of the 2-nd kind with bounded (or absolutely integrated) kernel [3, 4, 5]. This allows
arbitrary airfoil surface line discretization into panels, taking into account the curvilin-
earity of the airfoil, developing higher-order numerical schemes according to well-known
Galerkin approach. Such schemes work perfect in the case of potential flow simulation,
when vorticity in the flow domain is absent or it presents, but located rather far from the
airfoil.

A successive attempt was made to derive approximate analytical expressions also for
the integrals, arising in the right-hand side coefficients for closely placed vortex elements,
at least for piecewise-constant and piecewise-linear numerical schemes [6, 7, 8], but such
representation of the numerical solution doesn’t permit one to approximate the exact
solution with high accuracy in principally if there are vortex elements in the flow do-
main, placed at the distance smaller than the panel’s length to the airfoil surface line.
A trivial way to the accuracy improvement which consists in extremely fine surface line
discretization, leads to unacceptably high numerical complexity of the numerical algo-
rithm, especially for flow simulation around a system of movable airfoils. In order to solve
this problem, semi-analytical approach can be used which makes it possible to achieve
high accuracy even for extremely coarse surface line discretization. It consists in explicit
addition of the terms, which correspond to the exact solution taking into account the in-
fluence of the vortex elements placed close to the panel, which, in turn, is approximately
considered as the arc of an osculating circle.

2 The governing equations

Two-dimensional flow of the viscous incompressible media is described by the Navier
— Stokes equations

∇ · V = 0,
∂V

∂t
+ (V · ∇)V = ν∆V −

∇p

ρ
, (1)

where V is the flow velocity field; p is the pressure field; ρ = const and ν are the density
and kinematic viscosity coefficient, respectively.
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For simplicity we consider the flow around immovable airfoil, however all the results
can be applied to more general case of arbitrary movable and deformable airfoil or system
of airfoils. The boundary condition on the airfoil surface line K is the no-slip condition:

V (r, t) = 0, r ∈ K.

The unbounded flow domain is considered, and the perturbation decay conditions are
satisfied on infinity:

V (r) → V ∞, p(r) → p∞, |r| → ∞,

where V ∞ and p∞ are the velocity and pressure in the incident flow.
The most efficient modification of 2D vortex methods is the Viscous Vortex Domains

method (VVD), developed by prof. G.Ya. Dynnikova and described in [10, 11]. The
vorticity is a primary computational variable, and the velocity field can be reconstructed
in the flow domain by using the Biot — Savart law, which can be considered as a particular
case of the Generalized Helmholtz Decomposition (GHD) [3]:

V (r) = V ∞ +
1

2π

∮

K

γ(ξ)× (r − ξ)

|r − ξ|2
dlξ +

1

2π

∫

S

Ω(ξ)× (r − ξ)

|r − ξ|2
dSξ, (2)

where Ω = Ωk is known vorticity distribution in the flow domain S; γ(ξ) = γ(ξ)k
is unknown intensity of the vortex sheet on the airfoil surface line K; k is unit vector
orthogonal to the flow plane.

The GHD, being considered at the airfoil surface line and taking into account the
no-slip boundary condition, makes it possible to write down the BIE with respect to
unknown vortex sheet intensity γ(ξ), ξ ∈ K. It is proven in [3], that in order to solve it,
two approaches can be used:

• the equation can be projected onto outer normal direction, that leads to “tradi-
tional” numerical schemes of vortex methods with singular BIE of the 1-st kind; the
disadvantages of such approach have been mentioned above;

• the equation can be projected onto tangent direction, that allows obtaining the 2-nd
kind integral equation:

∮

K

(r − ξ) · n(r)
2π|r − ξ|2

γ(ξ)dlξ−
γ(r)

2
= −

∫

S

(r − ξ) · n(r)
2π|r − ξ|2

Ω(ξ)dSξ − V∞(r) · τ (r)
︸ ︷︷ ︸

f(r)

, r ∈ K.

(3)
Here n(r) and τ (r) are unit outer normal vector and tangent vector, respectively.

The unique solution of the equation (3) can be selected with help of the additional
condition [1] ∮

K

γ(r)dlr = Γ, (4)

where Γ is given value of the velocity circulation along the airfoil.
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3 Galerkin approach to the boundary integral equation numerical solution

Due to the boundedness (or integrability in the traditional sense) of the kernel of
the BIE (3), the most efficient way to its numerical solution is the use of Galerkin
method [4, 5, 12]. Let us briefly describe its main ideas.

1. We consider, that the airfoil surface line is parameterized with the arc length, then
the equation (3) takes the form

∫ L

0

Q(s, σ)γ(σ)dσ − γ(s)

2
= f(s), s ∈ [0, L], (5)

where L is total length of the surface line.

2. The surface line is split into N parts, traditionally called “panels”, which endings
correspond to arc length parameter values si, i = 0, . . . , N , where s0 = 0, sN = L;
the i-th panel corresponds to s in range [si−1, si].

3. The basis functions family {φq
i (s)}, i = 1, . . . , N , q = 0, . . . , m is introduced; we

assume that the functions φq
i (s) can have non-zero values only at the i-th panel.

The projection functions family {ψp
i (s)} we choose coincide with the basis one.

4. The approximate solution has the following form:

γ(s) =
N∑

i=1

m∑

q=0

γq
i φ

q
i (s), (6)

where the coefficients γq
i are unknown and can be found from the orthogonality

condition of the equation (3) residual to the projection functions:

N∑

j=1

m∑

q=0

γq
j

∫ si

si−1

ψp
i (s)ds

∫ sj

sj−1

Q(s, σ)φq
j(σ)dσ − 1

2

m∑

q=0

γq
i

∫ si

si−1

ψp
i (s)φ

q
i (s)ds =

=

∫ si

si−1

ψp
i (s)f(s)ds, i = 1, . . . , N, p = 0, . . . , m. (7)

The additional condition (4) now has the following form:

N∑

i=1

m∑

p=0

γp
i

∫ si

si−1

φp
i (s)ds = Γ. (8)

Thus, the initial BIE (3) and the unique solution condition (4) are discretized and rep-
resented as linear system (7)-(8). The main difficulty is the calculation of its coefficients.

This problem is considered in [4, 5, 7, 8] for rectilinear panels, where piecewise-constant
and piecewise-linear basis functions have been used. The first and second order of accuracy
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numerical schemes are developed. However they are suitable only for close to uniform
airfoil discretization, and it is impossible to raise the accuracy by introducing quadratic
basis functions. In order to do it, we should take into account explicitly the curvature
of the airfoil. It can’t be done exactly; in [6, 8] the original technique is developed for
calculation of the matrix coefficients for curvilinear panels, but only for piecewise-constant
and piecewise-linear basis functions. Those approximate formulae are obtained as Taylor
expansions with respect to the panel length Li, and the only terms, proportional to L3

i

are taken into account.
Now we consider 3 families of the basis functions:

• piecewise-constant and piecewise-linear, as in [5, 8]

φ0
i (s ) =

{
1, s ∈ [si−1, si],

0, s /∈ [si−1, si];
φ1
i (s ) =





s(r)− s(ci)

Li
, s ∈ [si−1, si],

0, s /∈ [si−1, si];

• piecewise-quadratic

φ2
i (s ) =




4

(
s(r)− s(ci)

Li

)2

− 1

3
, s ∈ [si−1, si],

0, s /∈ [si−1, si].

Here Li is the length of the i-th panel, ci is its center. Note, that the introduced in such
a way basis functions are orthogonal.

The linear system (7)-(8) now has the following matrix form



A00 +D00 A01 A02 I
A10 A11 +D11 A12 O
A20 A21 A22 +D22 O
L0 O O 0







γ0

γ1

γ2

R


 =




b0

b1

b2

Γ


 ,

where Apq are matrix blocks of N×N size; Dpp are diagonal matrices; bp is the right-hand
side vector parts; γp = (γp

1 , . . . , γ
p
N)

T is vector of unknown coefficients, p = 0, 1, 2; I and
O are the vectors/raws consist of units and zeros, respectively, L0 is a raw consists of
curvilinear panel lengthes; R is regularization variable [1].

The matrix and right-hand side coefficients are calculated as the following integrals:

Apq
ij =

∫

Ki

φp
i (s)ds

(∫

Kj

Q(s, σ)φq
j(σ)dσ

)
, Dpp

ii = −1

2

∫

Ki

φp
i (s)φ

p
i (s)ds,

bpi =

∫

Ki

φp
i (s)f(s)ds, i, j = 1, . . . , N, p, q = 0, 1, 2. (9)

The diagonal coefficients Dpp
ii can be calculated exactly:

D00
ii = −Li

2
, D11

ii = −Li

24
, D11

ii = −2Li

45
.

5
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For the Apq
ij coefficients approximate calculation Taylor expansions technique similar

to [6] is used, but now term of order L4
i also should be taken into account.

We denote the “signed curvature” as κ(s) = (r ′(s) × r ′′(s)) · k, where κ > 0 for the
convex parts of the airfoil surface line; the formulae, similar to Serret — Frenet ones can
be easily obtained for the derivatives of the vectors n(s) and τ (s).

For the diagonal components of the matrices Apq
ii , p, q = 0, 1, 2 we obtain

A00
ii ≈

36L2
iκi + L4

iκ
′′
i

144π
, A01

ii ≈
κ′

iL
3
i

144π
, A02

ii ≈
κ′′

i L
4
i

2160π
,

A10
ii ≈

κ′
iL

3
i

72π
, A11

ii ≈
κ′′

i L
4
i

3456π
, A12

ii ≈ 0, A20
ii ≈

κ′′
i L

4
i

720π
, A21

ii ≈ 0, A22
ii ≈ 0.

Here κi is the signed curvature at the center of the i-th panel, the prime mark denotes
the derivative with respect to the arc length.

For non-diagonal coefficients, which calculation requires integration over different pan-
els (i �= j), we introduce auxiliary vector dij = ci − cj, which connects centers of the
corresponding panels, unit tangent vector τ i at the center of the i-th panel, and the
angles α and β between the vectors τ i, τ j and dij, respectively (Fig. 1).

Figure 1: Two curvilinear panels, vector dij and the angles α and β

The resulting formulae have the following form:

A00
ij ≈

LiLj

48πd3

[
2
(
L2
j sin(α + 2β) + 12d2 sinα + L2

i sin 3α
)
+

+ d
(
L2
jκj cos(α + β) + L2

i

(
dκ′

i cosα− κi(3 cos 2α + dκi sinα)
))]

,

A01
ij ≈

LiL
2
j sin(α + β)

24πd2
, A02

ij ≈
LiL

3
j

(
dκj cos(α + β) + 2 sin(α+ 2β)

)

180πd3
,

A10
ij ≈

L2
iLj cosα

(
dκi − 2 sinα

)

24πd2
, A11

ij ≈
L2

iL
2
j

(
dκi cos(α + β)− 2 sin(2α + β)

)

288πd3
,

A20
ij ≈

L3
iLj

180πd3

[
2 sin 3α− d

(
κi(3 cos 2α + dκi sinα)− dκ′

i cosα
)]
,

A12
ij ≈ 0, A21

ij ≈ 0, A22
ij ≈ 0.

Here κi is the curvature at the center of the i-th panel, the prime mark denotes the
derivative with respect to the arc length; d is the length of the vector dij.

6

120



Irina A. Soldatova, Ilia K. Marchevsky and Kseniia S. Kuzmina

In case of smooth airfoil the following approximate formulae can be used for the matrix
coefficients which calculation requires integration over the neighboring panels (|i−j| = 1):

A00
ij ≈

LiLj

288π

[
72κij ± 12

(
Lj − 2Li

)
κ′

ij +
(
6L2

i − 3LiLj + 2L2
j

)
κ′′

ij

]
,

A01
ij ≈

LiL
2
j

(
4κ′

ij ±
(
Lj − Li

)
κ′′

ij

)

576π
, A10

ij ≈
L2

iLj

(
8κ′

ij ±
(
Lj − 3Li

)
κ′′

ij

)

576π
,

A02
ij ≈

LiL
3
jκ

′′
ij

2160π
, A11

ij ≈
L2
iL

2
jκ

′′
ij

3456π
, A20

ij ≈
L3
iLjκ

′′
ij

720π
, A12

ij ≈ A21
ij ≈ A22

ij ≈ 0.

Here κij denotes the signed curvature of the airfoil at the common point of the neighboring
panels; the prime, as earlier, means the derivative with respect to the arc length; sign
“+” is used for j = i+ 1, and “−” for j = i− 1.

Note, that in case of the airfoil with sharp edges [9], the formulae for rectilinear panels
derived in [7, 8] are more suitable for the matrix coefficients corresponding to the panels
which are adjacent to the angle points. Those formulae don’t permit to take into account
the curvilinearity of the panels, however, they are exact for rectilinear panels.

Let us consider firstly the potential flow when there is no vorticity in the flow domain
and the right-hand side of the equation (5) has form f(s) = −V ∞ · τ (s). In this case the
right-hand side components of (3) can be calculated as following:

b0i ≈ −(V ∞ · τ i)Li +
1

24

(
(V ∞ · ni)κ

′
i + (V ∞ · τ i)κ

2
i

)
L3
i ,

b1i ≈
1

12
(V ∞ · ni)κiL

2
i , b2i ≈

1

90

(
(V ∞ · ni)κ

′
i + (V ∞ · τ i)κ

2
i

)
L3
i .

The described approach provides the 1st, 2nd and 3rd order of accuracy for the piecewise-
constant, linear and quadratic solution representation, respectively. In the Table 1 the
number of panels is shown, which is required to achieve the accuracy 10−3 (for unit incident
flow velocity, angle of incidence π/6).

Table 1: Number of panels required to achieve the accuracy 10−3 for elliptical airfoils

rectilinear panels curvilinear panels

uniform discretization

semiaxes piecewise- piecewise- piecewise- piecewise-

ratio constant linear linear quadratic

2:1 9 600 244 136 52

5:1 13 400 760 360 196

10:1 24 000 2 000 900 640

non-uniform discretization

2:1 7 800 132 104 36

5:1 8 700 152 144 60

10:1 9 000 186 184 80

Note, that it seems to be reasonable to use non-uniform discretization of the airfoil
(length of the panels are inversely proportional to the square root of the curvature) since it
permits to reduce number of panels significantly; usage of the piecewise-quadratic solution
representation for curvilinear panels makes it possible to reduce additionally number of
panels by 2.5–3 times.

7
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4 Vortex elements influence accounting by numerical solution correction

In practice there are a lot of vortex elements in the flow, which simulate vorticity
distribution. However, due to the linearity of the governing integral equation (5), the
influences of separate vortices can be taken into account independently, so here we consider
a model problem, when there is only one vortex element. In this case the only difference in
numerical scheme is the form of the right-hand side term f(s), for which the corresponding
coefficients bpi of the linear system can be calculated either numerically (e.g., by using
Gaussian quadrature formulae), of approximately analytically [6]. In the Fig. 2, the
results are shown for the cases, when the vortex element is placed at the distance, which
corresponds to 10 %, 25 %, 50 % and 100 % of the panel length (uniform discretization
of the elliptical airfoil with 2:1 semiaxes ratio, split into 20 panels is considered).

L1 L2 L3 L4 L5
s

-2.7
-2.4
-2.1
-1.8
-1.5
-1.2γ

L1 L2 L3 L4 L5
s

-2.7
-2.4
-2.1
-1.8
-1.5
-1.2γ

a b

L1 L2 L3 L4 L5
s

-2.7
-2.4
-2.1
-1.8
-1.5
-1.2γ

L1 L2 L3 L4 L5
s

-2.7
-2.4
-2.1
-1.8
-1.5
-1.2γ

c d

Figure 2: Exact solution (black solid line), piecewise-linear (blue dashed) and piecewise-quadratic (red

solid) solutions for the vortex sheet intensity in presence of the vortex at the distance of 10 %, 25 %,

50 % and 100 % of panel size (a, b, c, d, respectively)
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It is seen, that it is possible to obtain more or less correct numerical solution only for
vortex elements, placed rather far from the airfoil surface line, i.e., at the distance which is
not smaller than 50 % of the panel size. In practice, however, the typical distance from the
vortex elements, which simulate the boundary layer, to the airfoil surface line has order
of 10−6 . . . 10−5 (with respect to the chord). It means, that the required number of panels
should have order of 105; for smaller number of panels it is impossible to reconstruct it
correctly.

However, this issue can be overcome by implementing the correction procedure.
Note that for the vortex placed at the arbitrary point of the flow domain, the exact

solution for the vortex sheet intensity is known for circular airfoil. It has the following
form [4]

γ̃(s) = Γg

(
r(s)− rg

2π|r(s)− rg|2
−

r(s)− rm

2π|r(s)− rm|2
+

r(s)− rc

2π|r(s)− rc|2

)
· n(s), (10)

where r(s) is the point on the circle of radius R, n(s) in outer unit normal vector for
the circle, rg is position of the vortex, rc is center of the circle, rm is the position of the
mirrored vortex,

rm = rc +
R2

|rg − rc|2
.

Now for the vortex, placed in neighborhood of the k-th panel we suppose that this
panel can be approximately replaced with the osculating circle of radius Rk = κ−1

k , then
we are able to take into account the influence of this vortex semi-analytically by explicit
introducing to the numerical solution the term, similar to (10):

γ(s) =
N∑

i=1

m∑

q=0

γq
i ϕ

q
i (s) +

kf∑

k=kb

γ̃k(s)ϕ
0
k(s). (11)

Here

γ̃k(s) = Γg

(
r(s)− rg

2π|r(s)− rg|2
−

r(s)− rm
k

2π|r(s)− rm
k |2

+
r(s)− rc

k

2π|r(s)− rc
k|2

)
· nk(s)

is additional term, which determines the influence of the system of mirrored vortices with
respect to the k-th panel, rm

k is the position of the vortex, mirrored with respect to the
k-th panel, rc

k is the center of the osculating circle, nk(s) unit outer normal vector for
the osculating circle; kb . . . kf is the range of panel numbers, for which the correction
procedure is implemented. It can be easily shown, that the expression for γ̃k(s) can be
simplified:

γ̃k(s) = Γg

(
r(s)− rg

)
· nk(s)

π|r(s)− rg|2
.

For such solution representation, the above described Galerkin approach remains ap-
plicable, but instead of the system (7) now we obtain the following linear system

9
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N∑

j=1

m∑

q=0

γq
j

∫ si

si−1

ψp
i (s)ds

∫ sj

sj−1

Q(s, σ)φq
j(σ)dσ − 1

2

m∑

q=0

γq
i

∫ si

si−1

ψp
i (s)φ

q
i (s)ds =

= −
kf∑

k=kb,
k �=i

∫ si

si−1

ψp
i (s)ds

∫ sk

sk−1

Q(s, σ)γ̃k(σ)dσ +

kf∑

k=kb,
k �=i

∫ si

si−1

ψp
i (s)fg(s)ds+

+

∫ si

si−1

ψp
i (s)fv(s)ds, i = 1, . . . , N, p = 0, . . . , m, (12)

where it is denoted

fv(s) = V ∞ · τ (s), fg(s) =
Γg

(
r(s)− rg

)
· n(s)

2π
∣∣r(s)− rg

∣∣2 .

The system (12) can be written down in the matrix form:



A00 +D00 A01 A02 I
A10 A11 +D11 A12 O
A20 A21 A22 +D22 O
L0 O O 0







γ0

γ1

γ2

R


 =




b0v + b0g + b0γ
b1v + b1g + b1γ
b2v + b2g + b2γ

Γw


 ,

where the left-hand side remains the same as earlier (without correction), the coefficients
bpv are connected with the incident flow influence, bpg — with influence of the vortices
in the flow domain, which is taken account straightforwardly without correction; bpγ —
additional terms, arising due to the correction procedure:

bpv,i =

∫ si

si−1

ψp
i (s)fv(s)ds, bpg,i =

kf∑

k=kb,
k �=i

∫ si

si−1

ψp
i (s)fg(s)ds,

bpγ,i = −
kf∑

k=kb,
k �=i

∫ si

si−1

ψp
i (s)ds

∫ sk

sk−1

Q(s, σ)γ̃k(σ)dσ, i, j = 1, . . . , N, p, q = 0, 1, 2.

For the last component of the right-hand side vector the following expression is obtained:

Γw = Γ−
kf∑

k=kb

∫ sk

sk−1

γ̃kds.

For computation of all the integrals, arising in the right-hand side, Gaussian quadra-
tures can be used, as well as approximate analytical expressions.

In the Fig. 3 the results of computations for the model problem, considered in the
previous section, but with implemented correction procedure, are shown. The correction
is performed not only for the panel, closest to the vortex, but also for the neighboring
panels on both sides. Note, that the correction procedure preserves the accuracy order
of the initial scheme. Moreover, it provides the more accurate results, the closer vortex
element is located to the airfoil. It seems reasonable to use correction technique for the
vortices placed at the distance of not more, than 75 % of the panel length.
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Figure 3: Exact solution (black solid line), piecewise-linear (blue dashed) and piecewise-quadratic (red

solid) solutions for the vortex sheet intensity in presence of the vortex at the distance of 10 %, 25 %,

50 % and 100 % of panel size (a, b, c, d, respectively) after implementation of the correction procedure

5 CONCLUSIONS

In the present paper the numerical scheme of the third order of accuracy is developed
by using the Galerkin approach, which takes into account the curvature of the surface
line of the airfoil and piecewise-quadratic solution representation. This scheme makes
it possible to deal with non-uniform discretization, moreover, considering panel lengths
inverse proportional to the square root of the curvature permits to reduce number of
panels significantly.

In order to take into account the influence of the vortex wake, simulated with separate
vortices, the correction procedure is developed, which permits to consider arbitrary panel
length with correct representation of the influence of closely placed vortices. Numerical
experiments prove the properties of the developed scheme and the correction procedure.
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