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Abstract. Shear banding is a widely concerned issue caused by shearing in the field of 
granular geomechanics. At the macroscopic scale, the constitutive models meet difficulties to 
describe how and why the shear band forms within the discrete granular assembly. The 
contact network inside the overall granular assembly helps us to understand the origin of 
some macroscopic features. Between contacting particles, sliding can occur, which is 
associated with the plastic dissipation. This local contact sliding may induce the 
rearrangement of local structures, and then contribute to the macroscopic failure characterized 
by larger patterns, such as shear banding. In this paper, we conduct DEM simulations using a 
dense specimen, and during the loading process an evident shear band appears. Then the 
contact sliding ratio, sliding index, and the relationship between the contact sliding and the 
mesostructural changes are investigated. Main conclusions are: sliding contacts firstly 
distribute randomly within the granular assembly, and will concentrate within the shear band 
after the stress peak; the sliding ratio and the sliding index show different evolution trend and 
distribution properties; sliding contacts are not within the strong contact network when the 
threshold to distinguish the strong and weak network is proper, but will be strongly influenced 
by the force chain buckling; considering the relation between the sliding and the meso loop 
exchanges, the topological dilations are related to the higher probability of contact sliding and 
plastic dissipation.  

 
 
1 INTRODUCTION 

Granular materials are quite common and simple in nature and they have been widely 
utilized as construction materials in the field of civil engineering. Then the mechanical 
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behaviours of granular materials have attracted much attention among engineers and 
researchers. For decades, the shear banding problem in frictional granular materials has been 
concerned, which contains a number of challenges in mathematical description and 
constitutive modelling [1,2]. Many publications incorporate micromechanical features, such 
as contact fabric, particle rolling and contact sliding, to reveal the original mechanism of 
shear banding [3-6]. 

Microscopic features could be related to some macroscopic evolutions in granular 
materials. For example, the stress-force-fabric (SFF) relationship has built the direct links 
between micro contact forces and macro stress quantity [7-11]. Considering the contacts and 
particles at the microscale, the sliding between particles may occur when the Mohr-Coulomb 
criterion is fulfilled. The microscopic failure, or microscopic shear behaviours, should 
contribute to the macroscopic shear failures such as shear banding.  

The discrete numerical simulation has been widely applied in simulating the multiscale 
behaviours of granular media, owing to its simplicity of obtaining the microscopic 
information and the reasonable accordance of macroscopic responses to laboratory tests. 
Classical Discrete Element Method (DEM) has been adopted in investigating the strain 
localization for granular materials [12-14]. Besides, the modified or combined methods for 
DEM are capable to investigate the influences of the irregular shape and particle breakage on 
the shear banding [15,16]. For DEM simulations, the contact sliding is the unique mechanism 
in plastic energy dissipation. How the sliding contacts distribute and evolve should affect the 
mesostructural rearrangements in granular assemblies. Since the strong contact network 
(usually selected using the average normal contact ratio [17,18]) and the mesostructural 
topology (in 2D, loop structures are important [19-21]) are important characterizations in 
granular materials, the relationship between the contact sliding and them should also been 
further considered.  

In this paper, we focus on the micro- and mesoscopic evolutions in granular materials 
during the shear band forming. Investigations are based on the quasi-2D biaxial DEM 
simulations (with a single layer of 3D particles), under the same loading conditions as our 
previous work [22]. The evolution and distribution of the contact sliding ratio and the sliding 
index are considered, and the sliding behaviours within the strong contact network as well as 
the topological changes are explored to identify the specific roles of sliding in shear banding.  

2 DEM SIMULATION AND SHEAR BANDING 

2.1 Parameters and models of DEM  
We use the Discrete Element Method (DEM) proposed by Cundall and Strack [23] for the 

numerical simulations, based on the open-source software YADE [24]. The simple linear 
contact model is adopted, in which the normal and tangential contact forces (𝐹𝐹𝑛𝑛 and 𝐹𝐹𝑡𝑡) are 
computed as follows: 

{𝐹𝐹𝑛𝑛 = 𝑘𝑘𝑛𝑛𝛿𝛿𝑛𝑛,
𝑑𝑑𝐹𝐹𝑡𝑡 = 𝑘𝑘𝑡𝑡𝑑𝑑𝛿𝛿𝑡𝑡, 𝐹𝐹𝑡𝑡 ≤ 𝐹𝐹𝑛𝑛𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

(1)

where 𝑘𝑘𝑛𝑛, 𝑘𝑘𝑡𝑡 are the normal and tangential stiffness respectively, 𝛿𝛿𝑛𝑛, 𝛿𝛿𝑡𝑡 are the corresponding 
relative displacements in normal and tangential direction, and 𝑡𝑡 is the friction angle which is 
a threshold limiting the relative sliding between particles. Relative sliding behaviour between 
spheres in a contact will take place when the tangential contact force reaches the maximum 
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value, as described by Eq. (1). 
The quasi-2D biaxial test using DEM is carried out to model the mechanical behaviours 

and the shear band formation. The numerical simulation is conducted by using a model 
containing a single layer of 20,000 spheres within a rectangle domain, as shown in Fig. 1. The 
particle sizes obey a uniform distribution with average radii 𝐷𝐷50 = 0.008m  and 𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚/
𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚 = 2. To create the sample, particles are randomly generated within the domain and their 
sizes are growing to reach the final isotropic state under a confining pressure of 100 kPa. The 
gravity is not considered, and the boundaries are set as rigid frictionless walls. The key 
parameters for the contact model: 𝑘𝑘𝑚𝑚/𝐷𝐷𝑠𝑠  is set to 300 MPa, where 𝐷𝐷𝑠𝑠 = 𝑅𝑅1𝑅𝑅2/(𝑅𝑅1 + 𝑅𝑅2); 
𝑘𝑘𝑡𝑡/𝑘𝑘𝑚𝑚 is set to 0.5; the friction angle 𝜙𝜙 is 35∘. 

After confining, the numerical specimen reaches a relative dense state (initial porosity is 
0.161). Then we apply the biaxial loading is applied, as shown in Fig. 1: the compression is 
imposed in the vertical direction (𝜎𝜎22 and 𝜀𝜀22) with a strain rate of the upper and lower walls 
equals to 0.01 /s. In the lateral direction (𝜎𝜎11 and 𝜀𝜀11), the pressure is maintained constant to 
100 kPa. The stress and strain characterization are then described as follows: deviatoric stress 
𝑞𝑞 = 𝜎𝜎22 − 𝜎𝜎11 and volumetric strain 𝜀𝜀𝑣𝑣 = 𝜀𝜀11 + 𝜀𝜀22. 

 
Figure 1: DEM model for biaxial tests 

2.2 Macroscopic responses  
Figure 2 gives the macroscopic evolutions of the deviatoric stress q and the volumetric 

strain εv. Similar to other publications [4,12,13], the deviatoric stress q experiences the 
hardening and the softening phases, while εv manifests a clear tendency of dilation. We select 
States from A to G, to track the evolution of the strain localization pattern and the 
macroscopic stress and strain features. The corresponding incremental deviatoric strain fields 
of the 7 states are shown in Fig. 3, demonstrating the evolution of local strain distribution 
pattern from homogeneity to heterogeneity in space. The Moran’s Index can quantitatively 
capture the heterogeneity evolution, which was detailed explained in our previous work [22].  
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Figure 2: Strain softening process of dense specimen under biaxial test 

(a)                                (b)                                  (c)                     (d) 

 
(e)                                 (f)                                  (g) 

Figure 3: Spatial distributions of the incremental deviatoric strain for different loading states. (a) State A: ε22 = 
0.0; (b) State B: ε22 = 0.0040; (c) State C: ε22 = 0.0095; (d) State D: ε22 = 0.0141; (e) State E: ε22 = 0.0169; (f) 

State F: ε22 = 0.0217; (g) State G: ε22 = 0.0541. 

3 SLIDING CONTACTS AND RELATIVE MESO-STRUCTURES 

3.1 Distribution of sliding contacts 
Based on the framework of DEM, relative sliding behavior between connected spheres will 

take place when the tangential contact force reaches the maximum value, which is limited by 
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both the normal force and the friction angle, as described by Eq. (1). The sliding at one 
contact means the failure or dissipative mechanism at the microscopic scale. The ratio of 
sliding contacts, defined as Sr = Ns/Nc, can describe the proportion of microscopic failure for 
the granular assembly, in which Ns denotes the number of sliding contacts and Nc is the 
number of the total. The evolution of the ratio of sliding contacts is shown in Fig. 4, and Sr is 
divided into two parts (inside and outside the shear band, in these conditions Ns and Nc are 
considered for the corresponding domains) after the State E. At the beginning, the proportion 
of the sliding contacts rises gradually until the State C, which denotes that rearrangements of 
the bulk attains the maximum. After the peak value of the sliding ratio, the probability of 
sliding reduces gradually.  When the single shear band ultimately appears, the sliding ratio 
stabilize, at the level about 0.007. During this period, the magnitudes of sliding ratios inside 
the shear band and outside the shear band manifest differently. The sliding contacts are mostly 
centralized within the shear band area, while only a small proportion of sliding contacts 
appear outside this area, which can be intuitively seen in Fig. 5 for States D and F.  

 
Figure 4: Evolution of the sliding ratio versus axial strain 

        
(a)                                                             (b)  

Figure 5: Distribution of sliding contacts: (a) State D and (b) State F 
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To better describe the degree of frictional mobilization for all the contacts, not only the 
sliding ones, a sliding index Ip is defined as: 

𝐼𝐼p =    𝐹𝐹𝑡𝑡
𝐹𝐹𝑛𝑛 tan 𝜙𝜙                                                          (2) 

When Ip is near to 1.0, the contact is prone to slide; on the contrary, when Ip is near to 0, the 
contact is regarded as quite stable. Figure 6 shows the evolution of the average sliding index 
during the biaxial loading process, with the separate curves for areas inside and outside the 
shear band after State E. Similar to the evolution of the sliding ratio in Fig. 5, the average Ip 
experiences an increase at the beginning, and then decreases to a steady value during the 
development of the final shear band. The peak value of the sliding index appears at State D, 
which is associated with the stress peak. The Sr peak comes earlier than the Ip peak. Indeed, it 
can be assumed that sliding contacts belong to discrete local failures, without propagating to 
the total area; however, the average Ip is considered for all the contacts within the assembly.  
Therefore, the overall responses of Ip can reflect the evolving tendency of the stress. After the 
peak, Ip declines a little with small discrepancies of the two domains when shear band forms. 

Besides, the distribution of Ip is quite different from the distribution of Sr in space, as 
shown in Fig. 7(a). At State F, there exists a clear single shear band, however, the sliding ratio 
distribution in space does not show any strain localization patterns. Then, we choose another 
parameter, the incremental sliding index dIp between steps. It can be calculated using the 
difference of the sliding index between the current step i and the previous step i-1, i.e. d𝐼𝐼𝑝𝑝 =
𝐼𝐼𝑝𝑝

𝑖𝑖 − 𝐼𝐼𝑝𝑝
𝑖𝑖−1. According to the definition, dIp should fall in the range [-1, 1]. Positive values 

denote that the contact is nearer to the sliding, while negative values means that the contact is 
less possible to slide compared to the previous step. It can be seen that in Fig. 7(b), both large 
and small values of dIp concentrate within the shear band area. That is to say, inside the shear 
band, large changes in contact state are involved, which can induce the quick and temporal 
rearrangements. 

 
Figure 6: Evolution of average sliding index Ip 
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(a)                                                      (b) 

Figure 7: Distributions of sliding index Ip (a) and incremental sliding index dIp (b) within the granular sample at 
State F 

3.2  Sliding contacts and strong contact network 
The contact network within the granular assembly can be divided into the strong and weak 

phase using the contact force threshold [17,18]. In most cases, the average contact force is 
used as the threshold, and the strong contact subnetwork is regarded as the important force 
transmission path. By introducing assumptions such as the linear path and the particle number, 
force chain structures can be selected from the strong contact network [21,25].  

In this paper, we consider the accurate and comprehensive effects of strong contact 
network, and the sets of contacts with forces larger than several given values are considered. 
The cutoff ζ, denoting the ratio to the average normal contact force, is used to identify the set 
Sζ. Then Sζ contains the contacts which undertake forces larger than ζf0, where f0 denotes the 
average contact force within the granular assembly. 

Within the different strong contact networks distinguished by ζ, the sliding ratio diverges. 
Figure 8 show the evolution of sliding ratio Sr versus ζ for the 7 selected states. Almost all the 
curves in Fig. 8 reflect the fact that sliding contacts do not exist in the strong contact network 
when ζ >1.5. That is to say, the contact sliding as the microscopic failure, is excluded from 
the really strong contacts. As for the range ζ <1.0, the sliding ratio of State C owns the highest 
magnitude, which is corresponding to Fig. 4. Considering the unique features of sliding ratio 
of strong contact network of all states, possibly the better threshold for the strong and weak 
phase of the contact network should fall in [1.0f0,1.5f0].  

Liu et al. [22]  have defined the average sliding ratio 𝑆𝑆𝑟𝑟𝑟𝑟 around the particles, and based on 
this concept, they found that contact sliding is not directly relating to the force chain buckling, 
but will be influenced around the force chain buckling area. Since force chains are selected 
within the strong contact network when ζ =1.0, it can be assumed that the contact sliding has 
no intersection with the strong contact network, but the failure within the strong contact 
network may induce the sliding occurring and accumulating.  

52



First A. Author, Second B. Author and Third C. Author 
 

 
 

8 

 
Figure 8: Sliding ratio within the strong contact network distinguished by ζ 

3.3 Sliding contacts and loop transformation 
The overall contact network of the granular assembly can be tessellated into meso loops, 

which are quite convenient to analyze the local deformation features in 2D granular materials 
[26,27]. From step to step, loops may keep constant or transform to other structures. The 
transformations or exchanges between local structures are temporal and complex, which will 
lead to the systematic change of the overall structure.  

Loops within the granular assembly can be categorized by the number of particles of the 
circle. L6, denoting the cell connected by 6 spheres in 2D simulations, has been deeply 
investigated in many publications [12,19,21] for its capability of deformation. In this paper 
we take L6 as an example to explore the topological exchanges, and possible changes for L6 
can be shown in Fig. 10. The change in next step, we call it “Future”, and we name 3 types of 
changes: 

• Future_6C, for unchanged L6 
• Future_6S, for L6 which will decompose to smaller ones 
• Future_6L, for L6 which will change to a larger loop  

The transformations and exchanges of loops are corresponding to the contact loss and gain 
within the contact network. Whether these changing contacts are sliding will indicate the 
plastic energy dissipation. Figure 9 give the average sliding ratio information for L6 with 
different futures respectively. Loops associated with changes, i.e. Future_6L and Future_6S, 
obtain higher sliding ratios than the constant ones during the biaxial loading. Furthermore, 
dilative loops (Future_6L) are more likely to involve a higher probability of sliding contacts 
and dissipating behaviors than the contractive ones (Future_6S) do. 
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Figure 9: Possible changes for L6 loops between steps 

Considering the average sliding ratios of L6 with different futures inside and outside the 
shear band, the dissipative behaviors could diverse, especially for the dilative changes. We 
can see that in Figure 11, loop exchanges within the shear band are associated with larger 
sliding ratios, especially for the dilative changes which reach the magnitude nearly 0.1. Even 
though there exist a few enlargements outside the shear band, the involving dissipation is not 
very obvious in comparison with the constant cells and the shrinkage ones inside the shear 
band. 

Dilative loops at the mesoscopic scale should be related to the macroscopic dilatancy, 
which has been regarded as an irreversible plastic characteristic in soil mechanics [28][29]. 
The sliding ratio evolutions within the meso structures has revealed that the correlation 
between plastic energy dissipation and the dilatancy at the mesoscale. The contact sliding may 
not lead to the contact loss or gain, also the contact loss and gain may not involve plastic 
sliding behaviors. However, the sliding behaviors are easier to break the contacts and form 
larger local structures which lead to the dilatancy. The process should be irreversible, and 
once these kinds of behaviors accumulate and reach a high percentage, the plastic phase of the 
bulk appears. Shear banding is one kind of shear failures that local rearrangements 
concentrate within the localized area, and the dilative exchanges of loops should mainly occur 
within the banding zones. 
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Figure 11: Sliding ratios within L6 for different futures 

 

Figure 12: Sliding ratios of L6 with different futures in different domains 

4 CONCLUSIONS 
By conducting numerical DEM biaxial tests for a dense granular assembly, this paper 

investigates the contact sliding evolution and distribution within the specimen during shear 
banding, and identifies the relationships between the mesostructural changes and the contact 
sliding. Main conclusions are as follows: 

- According to the spatial distribution of incremental shear strains of the dense granular 
assembly, it can be concluded that the heterogeneity develops gradually along the 
biaxial loading, until the final shear band forms. Inside the shear band, the sliding 
contacts, high values of incremental sliding index magnitude and loop exchanges are 
concentrated.  

- Both the sliding ratio and sliding index demonstrate a peak in the evolution curves, 
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which is earlier or close to the macro stress peak. Furthermore the peak of sliding index 
could reflect the macro stress peak. By using different threshold to distinguish the 
strong and weak contact network, it is concluded that sliding contacts are located 
outside strong contact network and the threshold for the strong contact network may be 
1 to 1.5 times average contact force.  

- During the biaxial loading process, the loop type L6 could be constant, dilative or 
contractive in topology. The higher contact sliding ratio is associated with the dilative 
exchanges, which indicates that the plastic dissipation is quite essential to the dilatancy 
at the meso-scale. 

- Thanks to this characterization of the microstructure features inside shear band domain, 
the present study paves the way for a deeper understanding of the micromechanical 
mechanisms responsible for the existence of shear bands in dense granular materials. 
The understanding of the link between contact sliding, mesostructure deformations and 
macroscopic shear banding and softening are now within reach. 
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