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Summary. The paper considers the effects of the shear deformations on the load-
displacement response of pressurized thin-walled cylindrical beams of circular shape, subject 
to lateral loads. In order to schematize the nonlinear behavior of partly wrinkled beams under 
simultaneous bending and shear, use is made of some classical structural models which 
account for the inability of the wall material of sustaining compressive stresses. A particular 
attention is posed on the correct determination of the shear stiffness within the wrinkled zones 
of the beam. The system of non linear equations that govern the equilibrium of the inflated 
beams after the onset of the post-critical phase, when wrinkling of the cross-sections still 
remains small or moderate, is suitable to be numerically solved by standard incremental-
iterative algorithms.

1 INTRODUCTION 
A number of efficient structural and continuum models are currently available to describe 

the mechanical response of pressurized beams in bending until their final collapse. Obviously, 
each approach, structural or continuum, has strengths and weaknesses since their validity 
fields as well as their goals are often very different. Structural models1, 2 are more common 
and easier to use compared to the continuous models (either analitical3 or numerical4) but 
cannot provide those local information that very often are necessary and that are obtained 
more quickly with the continuous models. By contrast, analyses that use continuous models 
are always slow and problematic since they require a more precise and detailed description of 
the mechanical problem. For example, it is easy to assign a concentrated lateral load in a 
generic section of the beam while it is extremely difficult to specify an equivalent load 
condition to the continuous model. Things are even more difficult when describing the 
constraints. In many cases the results offered by the two models for the same mechanical 
problem may differ unexpectedly and to be hard to compare each other. 
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Fortunately, a third opportunity is offered by the bridging models5, 6, definable also as 
advanced structural models, by which it is possible to get the required local information, 
usually the averaged values of some quantities, without suffering the complications of the 
continuum models. 

With reference to the cylindrical inflatable beams of circular cross-section in bending, the 
founder of such models is undoubtedly the one proposed by Comer and Levy5 to study the 
mechanical response of a cantilever beam subjected to a concentrated or a uniformly 
distributed lateral load, along the wrinkled phase which precedes the collapse. Because of its 
simplicity and capability of giving the correct response in many practical situations, this 
model has been intensively used in the following by many other authors7, 8 as a starting point 
in order to incorporate some typical properties of the materials used to realize the cylindrical 
wall, in particular, anisotropy or, very often, other special non-linear constitutive laws 
characterizing the tissues composing the structural membranes. 

A point of the above model that, in our opinion, has not yet been sufficiently considered so 
far concerns the effects of the shear deformations, usually disregarded, on the load- 
displacements response of the partly wrinkled inflated beams. Although this simplification be 
legitimate when considering the ordinary slender beams in bending, this argument is no more 
valid for the inflated beams: in fact, because of their peculiar small bending stiffness, to make 
acceptable the values of the lateral displacements under possible transversal loads of 
appreciable magnitude, they need using sizes of the cross-sections no longer negligible 
compared to their span. In addition, this topic becomes particularly important during the 
wrinkled phase since, contrary to the bending stiffness which decreases slowly for increasing 
wrinkling, the shear stiffness of the wrinkled cross-sections diminishes very rapidly. 

For this reason, in this paper, we analyze the kinematical effects of the shear deformations 
arising in inflated cylindrical beams, partly wrinkled, subjected to bending, focusing on the 
still reagents parts of their cross-sections. The system of nonlinear equations governing the 
equilibrium of the inflated beams subject to simultaneous bending and shear appears suitable 
to be numerically solved by standard incremental-iterative algorithms, so that the mechanical 
response of the beams during the loading phase that follows the onset of wrinkling can be 
accurately monitored.

2 THE MECHANICAL MODEL AND THE STATE "0" 
We consider a cylindrical thin-walled beam of circular shape, subjected to an internal 

pressure p. Let r be the radius of its mean surface and t the wall thickness. This may be the 
real value in the case of a very thin shell or an equivalent fictitious one if the wall is made of a 
structural tissue. In any case, we admit the thickness be so small that the wall does not 
possesses any bending or torsional stiffness, so that it may sustain only membrane states of 
stress; moreover, we admit that the material is sufficiently soft when it is contracted, so that 
no compressive stress may be engendered, but at the same time, it is stiff enough in tension to 
avoid appreciable variations of the radius r. 

With reference to a rectangular coordinate system (O, x, y, z), in the initial configuration, 
chosen as reference, the axis of the cylinder lies along the z-axis. The origin of the reference 
system is placed at the centroid of one of its bases. 
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For what concerns the kinematical aspects, we assume that the hypotheses of small 
displacements/rotations and small deformations hold; moreover, we assume that during the 
considered loading phase the internal pressure be sufficient to maintains circular the shape of 
the cross-sections. Finally, the usual Navier-Bernoulli hypothesis on the plane sections holds 
for all the cross-sections of the cylinder, whether they belong to taut or partly wrinkled 
regions. With regard to the constitutive law, we assume the material be linear elastic, 
homogeneous and isotropic when it is subject to elongations. In case of contraction, instead, 
the material does not react in any way. 

Before the application of any external load, the inflated beam lies in its "0" state. Here, if 
we admit the effects of the dead load may be neglected, the state of stress within the wall is 
uniform and characterized by the principal stresses

trpc /1 == σσ  and trpl 2/2 == σσ , (1)

where σc denotes the circumferential stress and σl the axial one. The distribution of the axial 
stress is represented in Fig. 1a. 

3 THE UNWRINKLED PHASE 
For small or moderate values of the bending moment M, the neutral axis n – n does not 
intersect the cross-section, so the state of stress appears as in Figure 1b. 

Figure 1: Stress distributions: a) at the state 0, b) during the unwrinkled phase, c) at the onset of wrinkling. 

Because of the Navier-Bernoulli hypothesis, the normal stress at point P(r,θ) is 

2)cos1(2)cos1()( θσθσθσ −++= iez      for    πθ ≤≤0 ,  (2)

where θ denotes the angular position of the point P and σi and σe denote the unknown normal 
stresses at the intrados and at the extrados of the cylinder, respectively. 
In the absence of axial force, N = 0, the equilibrium of the beam along the z-axis 
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gives the first static equivalence relation 

trpei /=+σσ , (4)

while the rotational equilibrium about the x-axis 

Mdtrz =−∫
π

θθπθσ
0

2 )cos()(2 , (5) 

leads to the second static equivalence relation 

Mtrei =− 2)( 2πσσ . (6)

Putting together (4) and (6), we have 
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At the onset of wrinkling σe = 0, thus 2/3rpMM w π==  and trpw
i /== σσ . 

As long as w
i σσ ≤  the cross-section remains in the active state (taut), its moment of 

inertia is trJ x
3π=  and the following linear constitutive law holds between the local elastic 

curvature E
xk  and the bending moment M
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where E is the Young's modulus of the material. 
The Jourawski formula gives the expressions for the shear stress )(θτ z  and the 

corresponding shearing strain )(θγ z  at point P(r,θ)

tr
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z π
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yz

z π
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where G is the shear modulus of the material. Finally, by means of the Clapeyron theorem, we 
derive the sought expression for the characteristic shearing strain of the cross-section 

AG

T

trG

T yy
y

2
==

π
γ , (10)

where trA π2=  is the area of the complete section and 2=yχ is the shear factor. 

4 THE WRINKLED PHASE 
When M > Mw, the neutral axis n – n intersects the cross-section, so the mechanical 

behavior of the cylindrical beam changes considerably; in fact, since the membrane is unable 
to sustain compressive stresses, from a structural point of view this is equivalent to admit a 
loss of resisting material. Thus, for increasing M, the active zone of the cross section reduces 
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progressively to that represented by a thicker line in Figure 2. We denote with 02θ  the 
angular amplitude of the wrinkled zone. 

Figure 2: stress distributions along the wrinkled phase. 

Since 0=eσ  and w
i σσ > , the normal stress at point P(r,θ) now becomes 
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Figure 3: Law of variation of σi(θ0). 

It is interesting to consider the law of variation of w
i σθσ /)( 0  illustrated in the Figure 3. We 

observe how, just after the onset of wrinkling, i.e., when the values of θ0 are still small or 
moderate, 4/0 0 πθ <≤ , σi(θ0) remains almost constant, trpw

i /)( 0 =≅ σθσ ; conversely, 
when θ0 approaches π, σi(θ0) is not limited. In other words, the global equilibrium imposes 
locally the presence of a concentrated force. 

The rotational equilibrium about the x-axis 
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which, by means of (12), furnishes 
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Once M is assigned, this equation gives the sought value of )(0 Mθ . 
If we take the limit of the above expression for πθ →0 , we obtain 

wu MrpMM 2)(lim 3
00

=== → πθπθ , (17)

the ultimate bending moment that an inflated cylindrical beam of radius r subject to internal 
pressure p may sustain if the material of the membrane were able to resist at the intrados to 
the concentrated axial force 2

max rpT π= . 
Since wMrp =2/3π , from (16) we obtain 
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an expression that permits to recover )( 0θM once the angular amplitude 02θ  of the wrinkle 
zone is known. A graph of wMMm /)( 0 =θ is given in the next Figure 4. 

We notice how a good approximation for )( 0θm within the interval (0, π) is given by the 
simpler function 

2
cos3)( 0

0
θθµ −=≅

wM

M , (19)

from which we obtain the value 

)23arccos(0
wMM−=θ , (20)
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of the angle which individualizes the position of  neutral axis n – n. 
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Figure 4: Law of variation of M(θ0)/M
w. 

By analogy with (8), the local curvature of a wrinkled section is 
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from which we obtain the expression of the fictitious moment of inertia of a wrinkled section 

π
θθθπθ 000

0
cossin)( +−= x

w JJ , (22)

able to simultaneously account for the two different static schemes that a wrinkled section 
uses to resist to an assigned bending moment: the first one is that of a couple deriving from 
two eccentric axial forces, and the second, of minor importance on a quantitative basis, of 
pure bending. In effect, the real moment of inertia of a wrinkled section is 
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where x' is the axis parallel to the x-axis but containing the centroid of the wrinkled section. A 
plot of both the ratios x

w JJ /)( 0θ  and xx JJ /)( 0' θ  is given in the following Figure 5. From 
this it is evident how the real moment of inertia decreases quite rapidly even for small values 
of 0θ , so that the capacity of a wrinkled cross-section to resist trough pure bending is soon 
frustrated. This feature is important also with regard to the shear deformations since the 
shearing force is resisted only through the unwrinkled zone. 
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Figure 5: Law of variation of the moment of inertia of a wrinkled cross-section: 
( wJ fictitious, 'xJ  effective). 

The assessment of the shear deformations within a wrinkled zone is more involved with 
respect to that of a taut zone since now M and )(0 Mθ  both depend on z. As a consequence, 
the expressions of the shear stress ),( 0θθτ z  and the shearing strain ),( 0θθγ z  at point P(r,θ) as 
well as for the characteristic shear strain )( 0θγ y  of the overall cross-section are much more 
complicated and will be given in an incoming paper. Here, for the sake of simplicity, we 
consider the frequent case of distributed loads of small magnitude. Within this assumption, 
since the shear force Ty is small, the bending moment M changes slowly along the z-axis, so 
we may disregard the variation of the angular amplitude )(0 Mθ . 

Thus, we may make use once again of the Jourawski formula which gives the following 
expressions for the shear stress )(θτ w

z  and the corresponding shearing strain )(θγ w
z at the 
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Finally, by means of the Clapeyron theorem, we derive the sought expression for the 
characteristic shearing strain of a partly wrinkled cross-section 
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where trA π2=  is still the area of the complete section and )( 0θχ y is the shear factor of the 
wrinkled cross-section whose expression is 
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whose graph is represented in the Figure 6. 

Figure 6: Law of variation of the shear factor of a wrinkled cross-section. 

The graph gives a clear indication of the decreasing rate of the shear stiffness of a pressurized 
beam for increasing wrinkling.

CONCLUSIONS 
In this paper, we analyzed the effects of the shear deformations on the load-displacement 

response of inflated cylindrical beams in bending. A particular attention was posed on the 
equilibrium state (stress-strain) within the partly wrinkled zones of the beam. 

The analysis was performed by means of some classical structural models which account 
for the inability of the material of the cylindrical wall of sustaining compressive stresses. 

The obtained system of nonlinear equations governing the equilibrium of the inflated 
beams appears suitable to be numerically solved by standard incremental-iterative algorithms, 
so the mechanical response of these beams after the onset of wrinkling can be accurately 
monitored. 
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