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Abstract

The study of complex turbulent flows by means of large-eddy simulation

approaches has become increasingly popular in many scientific and engineer-

ing applications. The underlying filtering operation of the approach enables

to significantly reduce the spatial and temporal resolution requirements by

means of representing only large-scale motions. However, the small-scale

stresses and their effects on the resolved flow field are not negligible, and

therefore require additional modeling. As a consequence, the assumptions

made in the closure formulations become potential sources of model-form

uncertainty that can impact the quantities of interest. The objective of this

work, thus, is to perform a model-form sensitivity analysis in large-eddy

simulations of an axisymmetric turbulent jet following an eigenspace-based

strategy recently proposed. The approach relies on introducing perturbations

to the decomposed subgrid-scale stress tensor within a range of physically

plausible values. These correspond to discrepancy in magnitude (trace),

anisotropy (eigenvalues) and orientation (eigenvectors) of the normalized,

small-scale stresses with respect to a given tensor state, such that propaga-

tion of their effects can be assessed. The generality of the framework with

respect to the six degrees of freedom of the small-scale stress tensor makes it
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also suitable for its application within data-driven techniques for improved

subgrid-scale modeling.

Keywords: Large-eddy simulation; Sensitivity analysis; Subgrid-scale

modeling; Turbulent axisymmetric jet; Uncertainty quantification

1. Introduction1

Large-eddy simulation (LES) has become a high-fidelity (HF) reference2

approach for the study of a broad range of complex turbulent flows. Some3

examples include wall-bounded turbulence [1], multiphase flows [2, 3], geo-4

physical fluid dynamics [4, 5], and turbulent combustion [6, 7]. Compared5

with direct numerical simulation (DNS), LES reduces the computational cost6

of solving turbulent flows by applying a low-pass filter to the conservation7

equations. For example, the number of grid points N required in LES of8

free shear layers scales with the Reynolds number as N3 ∼ Re [8], while9

resolving all the turbulent flow motions entails performing DNS of the order10

N3 ∼ Re9/4. The reduction in computational cost, however, is obtained at11

expenses of modeling the effects of the small scales on the resolved flow field12

in terms of subfilter stresses. Consequently, the assumptions introduced in13

the closure formulations become potential sources of model-form uncertainty14

that can affect the quantities of interest (QoI). The most common approach15

for closing the LES transport equations is the Boussinesq’s eddy-viscosity hy-16

pothesis [9]. This type of closures represents the effects of subfilter motions17

on the resolved scales in analogy with the kinetic theory of gases by setting18

the momentum fluxes to be linearly dependent upon the rate of strain of the19

large scales. The imposed alignment between subfilter stresses and strain20

rate tends to qualitatively predict sufficient mean small-scale dissipation in21

homogeneous isotropic turbulence (HIT), but is typically unable to correctly22

mimic subfilter dynamics in more complex turbulent flows [10]. Other ap-23

proaches for subfilter stress modeling are available in the literature [11]. For24

instance, closures based on structural assumptions [12, 13]. One of the most25

2



recognized turbulent closure in this group is the similarity model [13], which26

is based on the assumption of scale invariance, and therefore postulates that27

the subfilter velocity distribution resembles the large-scale flow field. This28

type of models tends to be less dissipative in comparison to eddy-viscosity29

approaches, frequently resulting in lower stability and in the appearance of30

unphysical behaviors. This drawback has led to the development of mixed31

models [14], in which an eddy-viscosity term is added to increase subfilter32

dissipation.33

Numerous studies have been dedicated to identify sources of error result-34

ing from the numerical approximations required to discretely solve the LES35

conservation equations. Some of the most notable works are the seminal36

paper by Ghosal [15] and the detailed error database gathered by Meyers37

et al. [16]. However, even with the widespread utilization of LES in many38

scientific and technological fields, few studies have analyzed model-form in-39

certitude from an uncertainty quantification (UQ) point of view. In general,40

most analyses are based on nonintrusive methodologies applied to simple41

flow configurations and are concerned mainly with sensitivities to LES clo-42

sure parameters, such as model coefficients [17], filter characteristics [18] or43

mesh resolution [19]. A more sophisticated approach is to consider the clo-44

sure parameters uncertain and estimate their effects on the QoIs by forward-45

propagating them as probability distributions. This strategy has been ap-46

plied to Reynolds-averaged Navier-Stokes (RANS) [20] and LES [21] mod-47

els and extended to incorporate simulation data from DNS [22] and utilize48

Bayesian inference techniques [10, 23, 24]. In the case of complex flows, some49

methodologies predict on the basis of an ensemble of solutions obtained using50

different models, such as in earth sciences for weather and ocean forecast-51

ing [25, 26, 27]. Although common practice, all these approaches present52

important impediments to generalization owing to their dependency on the53

underlying structure of the models utilized. In this regard, the present work54

aims to analyze sensitivity to model-form uncertainty in LES of an axisym-55
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metric turbulent jet following a systematic strategy recently presented in56

Jofre et al. [28]. The framework developed is inspired by an approach pre-57

viously introduced in RANS modeling [29, 30, 31]. However, its extension58

to LES required revisiting the underlying assumptions, mathematical deriva-59

tion and physical bounds of the methodology. In short, the approach is60

based on introducing perturbations to the decomposed, small-scale stress61

tensor within a range of physically plausible values. These perturbations62

correspond to discrepancy in magnitude (trace), shape (eigenvalues) and ori-63

entation (eigenvectors) of the normalized, small-scale stresses with respect64

to a given tensor state. The generality of the framework with respect to the65

six degrees of freedom of the small-scale stress tensor also makes it suitable66

for its application within data-driven techniques, like for example approaches67

recently developed to improve RANS predictions [32, 33, 34].68

The axisymmetric, or round, turbulent jet is a canonical fluid flow found69

in many scientific and industrial problems. Jets are common in the natural70

world, for instance, in volcano eruptions, in motion and defense mechanisms71

of animals, in water and steam discharge of geysers, or in convective ther-72

mals in cloud physics, as well as in industrial applications involving mixing,73

heating and cooling, and propulsion, such as fuel injection in combustors,74

cooling of turbine blades, and propulsion of high-speed vessels. Most LES75

calculations of round turbulent jets are based on eddy-viscosity-type models76

or dissipative numerical schemes (e.g., [35, 36, 37, 38, 39]). The general ob-77

servation in such studies is that first-order flow quantities in the axial and78

radial directions are well predicted, as these depend mostly on large-scale79

motions, whereas higher-order statistics, viz. velocity fluctuations and shear80

stresses, are typically not well represented. Therefore, this work systemati-81

cally analyzes the impact of subfilter modeling assumptions on the QoIs to82

characterize underlying a priori and a posteriori differences of LES closure83

models. The paper is organized as follows. First, in Section 2, the LES con-84

servation equations, together with a description of the eddy-viscosity closure85
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group, are introduced. Section 3 summarizes the model-form uncertainty es-86

timation methodology, highlighting the assumptions and choices made during87

the construction of the framework. A comprehensive description of the jet’s88

reference dataset generated for this work is described in Section 4. Next,89

in Section 5, discrepancies between reference and base LES results are an-90

alyzed. The observations are subsequently related to sensitivity in subgrid-91

scale stress model-form uncertainty in Section 6. Finally, conclusions are92

drawn and future work is discussed in Section 7.93

2. Large-eddy simulation equations94

The transport LES equations are derived by applying a low-pass filter,95

G, to the Navier-Stokes equations. The filter decomposes any flow variable96

φ(x, t) into large-, φ, and small-scale, φ′, contributions, i.e., φ = φ+ φ′. The97

filtered part is defined as98

φ(x, t) =

∫
Ω

G(x, ξ, ∆̄)φ(ξ, t) dξ, (1)

with x and ξ position vectors in the domain Ω, and ∆̄ the characteristic99

cut-off length scale of the filter.100

Assuming that differentiation and filtering commute [40, 41], the filtered101

incompressible continuity and Navier-Stokes equations result in102

∂ui
∂xi

= 0, (2)

103

∂ui
∂t

+
∂(uiuj)

∂xj
= −1

ρ

∂p

∂xi
+ ν

∂2ui
∂xj∂xj

, (3)

where ui and p are the velocity vector and pressure variables, and ρ and ν are104

the density and kinematic viscosity of the fluid. This system is undetermined105

since it contains more unknowns (ui, uiuj, p) than equations. Thus, in order106

to advance the solution of the filtered quantities in time, a closure definition107
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for the nonlinear filtered advection term, uiuj, needs to be provided, as well108

as boundary conditions and an initial state for ui and p.109

In a LES framework, Leonard’s decomposition [42] separates uiuj into a110

large-scale part, uiuj, and a subfilter scale (SFS), or turbulent, stress tensor111

part, τij = uiuj − uiuj. As a result, the conservation of filtered momentum112

can be recast in the form113

∂ui
∂t

+
∂(uiuj)

∂xj
= −1

ρ

∂p

∂xi
+ ν

∂2ui
∂xj∂xj

− ∂τij
∂xj

. (4)

The resolved scales of LES, φ, are characterized by the filter applied to the114

conservation equations. In a general context, the filtering and discretization115

operators are different [43]. However, in most cases the spatial discretiza-116

tion is chosen to be specifically the low-pass filter [44], and therefore τij is117

habitually referred to as the subgrid-scale (SGS) tensor.118

2.1. Subgrid-scale models119

The objective of SGS models is to replace the unknown value of τij by120

an approximate representation. In order to clearly differentiate τij from its121

approximation, τSGSij will be used in this paper to refer to the modeled τij.122

Many different models for τSGSij exist, e.g., [12, 13, 14, 11]. However, the123

eddy-viscosity assumption [44] is the most popular closure due to its ro-124

bustness and ease of implementation. This group of models represents the125

deviatoric part of τij as126

τSGSij − τSGSkk

3
δij = −2νSGSSij, (5)

where τkk is the trace of the tensor, δij is the Kronecker delta, νSGS is the127

turbulent viscosity given by a specific model, e.g., [4, 45, 46, 47, 48], and128

Sij = 1/2(∂ui/∂xj + ∂uj/∂xi) is the rate-of-strain tensor of the resolved129

scales. As it can be observed in the equation above, the different eddy-130

viscosity models only differ in the evaluation of νSGS. Therefore, they only131
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account for variability in the magnitude of the tensor, while the anisotropy132

and orientation are directly determined by Sij. In other words, this group of133

models focuses only in one of the six degrees of freedom in τij. For example,134

the Wall-Adapting Local Eddy-Viscosity (WALE) model [46] evaluates the135

turbulent viscosity dynamically as136

νSGS = (Cw∆)2

(
SdijSdij

)3/2(
SijSij

)5/2
+
(
SdijSdij

)5/4
and Sdij =

1

2

(
g2
ij + g2

ji

)
− g2

kk

3
δij,

(6)

with Cw a model coefficient (Cw = 0.325 based on homogeneous isotropic137

turbulence data), ∆ the subgrid characteristic length scale (size of the mesh138

in implicit filtering), and gij = ∂ui/∂xj the velocity gradient tensor of the139

resolved scales.140

An additional parameter requiring modeling is the trace of the tensor,141

τSGSkk , as it has been subtracted from τSGSij in Eq. 5. However, in LES of in-142

compressible flows, the isotropic part, τSGSkk /3, is usually added to the filtered143

pressure, resulting in a modified pressure that the LES solver evolves in time.144

In the case of compressible flows, explicit subgrid-scale models have been pro-145

posed for τSGSkk , like for example the parametrization by Yoshizawa [49]146

τSGSkk = 2CI∆
2
∣∣Sij∣∣2 with

∣∣Sij∣∣ =
(
2SijSij

)1/2
, (7)

where CI is a model coefficient that can be approximated, for instance, as147

proposed by Moin et al. [50], or a different approach by Vreman et al. [51]148

which models τSGSkk as149

τSGSkk = 4Cw∆2
∑
i,j

S
2

ij. (8)

In this work, we follow the second approach, Eq. 8, to model τkk.150
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3. Model-form uncertainty estimation framework151

The strategy to analyze model-form uncertainty in the underlying SGS152

closure model is to introduce controlled perturbations into τSGSij such that153

their impact on the QoIs can be assessed to provide insightful information to154

the SGS modeler/physicist. The methodology is based on the realizability155

conditions of the total filtered kinetic energy and the physics of inter-scale156

energy transfer. The resulting approach is Galilean invariant [52] since per-157

turbations are applied directly to the SGS stress tensor (not the filtered158

velocity field) and consequently they are independent with respect to the159

frame of reference. Complete details of the UQ framework and performance160

results for wall-bounded turbulent flows are presented in Jofre et al. [28]. A161

summarized description is given below for completeness of the present work;162

implementation steps in a LES solver are detailed in the Appendix.163

3.1. Realizability conditions164

The approach utilized in this work is to impose realizability conditions

to uiuj, viz. total filtered kinetic energy is physically plausible, given by the

inequalities1

uαuα ≥ 0 for α ∈ {1, 2, 3}, (9)

uαuβ
2 ≤ uαuα uβuβ for α 6= β, (10)

det(uiuj) ≥ 0 (11)

that guarantee the spectrum of uiuj to be non-negative and real.165

1The summation convention is adopted for Latin, but not for Greek indices.
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3.2. Tensor decomposition166

The nonlinear filtered advection term can be decomposed into factors by167

introducing the normalized anisotropy tensor, aij, as168

aij =
uiuj
ukuk

− 1

3
δij = vinΛnlvjl, (12)

which is symmetric and trace-free, i.e., the eigenvalues sum zero. Its eigen-169

decomposition is given by a matrix of orthonormal eigenvectors, vin, and a170

diagonal matrix of eigenvalues, Λnl, ordered such that λ1 ≥ λ2 ≥ λ3. As a171

result, the anisotropy tensor allows reformulating uiuj in terms of magnitude,172

ukuk, shape, Λnl, and orientation, vin, in the form173

uiuj = ukuk

(
vinΛnlvjl +

1

3
δij

)
. (13)

3.3. Barycentric map174

Three limiting states exist in the case of a positive semi-definite second-175

order tensor: (i) one-component (rod-like) where 2/3 = λ1 > λ2 = λ3 =176

−1/3, (ii) two-component axisymmetric (disk-like) with 1/6 = λ1 = λ2 >177

λ3 = −1/3, and (iii) three-component (isotropic) characterized by λ1 =178

λ2 = λ3 = 0. The anisotropy tensor shapes and their limiting states can be179

visualized, for instance, in terms of the barycentric map [53], which relies on180

the fact that any anisotropy state is a convex combination of the limiting181

states of componentiality. In an Euclidean space, these can be represented182

as the vertices of an equilateral triangle with coordinates x1c = (0, 0), x2c =183

(1, 0), and x3c = (1/2,
√

3/2). A graphical representation of the map and184

the different anisotropy shapes is illustrated in Figure 1. One of the main185

advantages is that it provides a linear relation between anisotropy eigenvalues186

and Euclidean space through the projection187

x = x1c (λ1 − λ2) + 2x2c (λ2 − λ3) + x3c (3λ3 + 1) , (14)
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Figure 1: Barycentric map based on the eigenvalues of a general second-order anisotropy
tensor. (left) Limiting states of componentiality. (right) Tensor shapes visualized with
superquadric glyphs [54] (figure regenerated using open-source software [55]).

which, together with the requirement that the eigenvalues sum zero, is a188

unique invertible linear mapping that can be mathematically expressed as189

xi = BinΛnl. Note that realizability conditions imply that any anisotropy190

state of uiuj lies within the triangle (indicated in Figure 1 by x).191

3.4. Modeled SGS stress tensor perturbation approach192

In a LES context, large scales are directly resolved, whereas model as-193

sumptions are confined to the subgrid scales. Consequently, in order to re-194

strict the injection of perturbations to τSGSij , uiuj needs to be separated into195

resolved and modeled parts as196

uiuj = ukuk

(
aresij + aSGSij +

1

3
δij

)
, (15)

where aresij and aSGSij are the resolved and SGS components of the total197

anisotropy tensor given by198

aresij =
1

ukuk

(
uiuj −

ukuk
3

δij

)
and aSGSij =

1

ukuk

(
τSGSij − τSGSkk

3
δij

)
,

(16)
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with ukuk the resolved part of ukuk. Once the separation between resolved199

and modeled parts is performed, perturbations are defined as200

uiuj
∗ = uiuj + τSGSij

∗
= uiuj + ukuk

∗aSGSij

∗
+
τSGSkk

∗

3
δij, (17)

with ukuk
∗ = ukuk + τSGSkk

∗
and aSGSij

∗
= vSGSin

∗
ΛSGS
nl

∗
vSGSjl

∗
. Thus, per-201

turbations (indicated with ∗) are applied to the subgrid scales only, and202

are specified as a discrepancy of the SGS tensor in terms of magnitude203

(τSGSkk
∗

= τSGSkk + ∆τSGSkk ), shape (diagonal matrix ΛSGS
nl

∗
of perturbed eigen-204

values λ∗l ), and orientation (vSGSij
∗

= qinv
SGS
nj with qin an orthonormal rota-205

tion matrix).206

3.4.1. Modeled SGS stress tensor magnitude perturbation207

Lower and upper bounds for the perturbation of τSGSkk can be obtained208

by considering the sign nature of the quantities composing the trace of the209

nonlinear filtered advection term. Its mathematical expression is210

ukuk = ukuk + τSGSkk , (18)

where ukuk and ukuk are non-negative. The former, ukuk, is non-negative211

due to the restriction made in this work that realizability conditions apply to212

uiuj, whereas the latter, ukuk, is non-negative by construction independently213

of the filter utilized, given its square product expression. In order to respect214

these properties, any possible perturbation of τSGSkk is bounded by ukuk =215

ukuk + τSGSkk ≥ 0 and ukuk = ukuk − τSGSkk ≥ 0. Therefore, the interval of216

magnitude discrepancy written in terms of ∆τSGSkk results in217

−ukuk − τSGSkk ≤ ∆τSGSkk ≤ ukuk − τSGSkk . (19)
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3.4.2. Modeled SGS stress tensor eigenvalue perturbation218

Different strategies can be constructed to perturb the eigenvalues of aSGSij219

since the framework utilized allows the perturbations to be defined implicitly220

through the coordinates on the barycentric map as λSGSl
∗

= B−1xSGS
∗
. For221

this study, we choose the uncertainty to be characterized by a direction,222

xt−xSGS, and a magnitude, ‖xt−xSGS‖, both of which can vary in space and223

time. In particular, perturbations within the barycentric map are considered224

toward each of the three corners of the triangle, namely x1c, x2c, and x3c, and225

are defined by means of a relative distance ∆B = ‖xSGS∗−xSGS‖/‖xt−xSGS‖226

toward the target vertex. In mathematical form, the eigenvalue perturbation227

can be expressed through the following translation228

xSGS
∗

= xSGS + ∆B

(
xt − xSGS

)
, (20)

where xSGS, xSGS
∗
, and xt are the coordinates of the base-model prediction,229

new perturbed position and target corner, respectively. Applying the linear230

map B to the new position xSGS
∗
, the perturbed eigenvalues are uniquely231

defined as232

λSGSl

∗
= (1−∆B)λSGSl + ∆Bλ

t
l . (21)

3.4.3. Modeled SGS stress tensor eigenvector perturbation233

The methodology to introduce perturbations into the eigenvectors of aSGSij234

is based on the physical constraints of energy transfer between resolved and235

modeled scales. The starting point is the balance equation for resolved fil-236

tered kinetic energy, Ef = ukuk/2, given as [8]237

∂Ef
∂t

+ uj
∂Ef
∂xj
− ∂

∂xi

[
uj

(
2νSij − τ rij −

1

ρ
p δij

)]
= −εf − Pr. (22)

The terms on the left-hand side represent transport, while the terms on238

the right-hand side correspond to viscous dissipation, εf = 2νSijSij, and239

rate of production of SGS kinetic energy, Pr = −τ rijSij, with τ rij = τij −240
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τkkδij/3 the deviatoric part of the SGS stresses. The latter is of particular241

interest since it represents the transfer of kinetic energy between resolved242

and modeled scales. In three-dimensional (3-D), single-phase turbulence, Pr243

transfers energy from large to small scales in a statistically-averaged sense,244

i.e., forward-scatter. However, it can present positive or negative values245

instantaneously, and therefore it can act as a sink (forward-scatter) or source246

(backscatter) term for Ef [56].247

In the above equation, the transport of SGS stresses, ∂(ujτ
r
ij)/∂xi, and248

Pr require closure through τ rij. However, modeling ∂(ujτ
r
ij)/∂xi is signifi-249

cantly complex as it involves explicit differentiation operations. By contrast,250

the closure of Pr is more amenable since τSGSij is typically closed based on251

single-point information. The value of the inner product Pr = −tr(τ rijSij)252

depends on the alignment between the eigenvectors of τ rij and Sij. Diverse253

alignments between these two tensors can be considered. However, for the254

purpose of enveloping the possible dynamics, the methodology utilized seeks255

the extremal values of this inner product. In the case of τ rij being real and256

Sij real symmetric, the lower and upper bounds are given by the following257

expression [57]258

λ1γ3 + λ2γ2 + λ3γ1 ≤ Pr ≤ λ1γ1 + λ2γ2 + λ3γ3, (23)

with λl and γl the eigenvalues of τ rij and Sij, respectively. The upper bound259

in this inequality corresponds to the situation in which τ rij and Sij share260

the same basis of eigenvectors, while the lower bound is the case in which261

the eigenvector bases are the same except for a permutation between the262

first and third eigenvectors. From a practical perspective, the existence of263

these bounds suggests that only two eigenvector sets need to be considered.264

These can be easily analyzed by setting the perturbed eigenvectors of τSGSij265

to be the eigenvectors of Sij with and without a permutation of its first and266

third eigenvectors. In the case of eddy-viscosity-type SGS models, the rate267

of production of SGS kinetic energy expressed in terms of the eigenvalues of268
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Sij simplifies to269

Pr = 2νSGS
(
γ2

1 + γ2
2 + γ2

3

)
, (24)

which is non-negative if νSGS ≥ 0, and therefore acts as a kinetic energy270

sink (forward-scatter) in Eq. 22. If the orientation of τSGSij is rotated with271

respect to Sij by a permutation of the first and third eigenvectors, the above272

expression is modified to273

Pr = 2νSGS
(
γ2

1 + 4γ1γ3 + γ2
3

)
, (25)

with γ1γ3 ≤ 0 since γ1 + γ2 + γ3 = 0 (incompressible flow) and γ1 ≥ γ2 ≥ γ3.274

As a result, if |γ1|/|γ3| ∼ 1 and νSGS ≥ 0, Pr is non-positive, and consequently275

increases the turbulence intensity by energizing the large eddies from the SGS276

scales (backscatter).277

4. Description of the numerical reference dataset278

The flow studied in this work is based on the round jet experimentally279

studied by Amielh et al. [58]. The experimental data are utilized to validate280

the numerical dataset generated in this work. Numerical results of the flow281

are obtained by means of the unstructured and massively parallel low-Mach-282

number flow solver Nalu [59, 60, 61].283

4.1. Jet configuration and computational setup284

The flow corresponds to an axisymmetric turbulent jet at Re = UjDj/ν =285

21000 based on the axial velocity at the jet exit, Uj = 12 m/s, the jet nozzle286

diameter, Dj = 2.6 · 10−2 m, and the kinematic viscosity of the fluid, ν.287

As schematically illustrated in Figure 2, the jet discharges from a long pipe288

(modeled with periodic boundaries) into a slow coflow, Ue = 9 · 10−1 m/s, of289

the same fluid. Subscripts j and e correspond to the jet flow and external290

coflow, respectively. The ratios between pipe diameter and computational291

domain are De/Dj = 20 and L/Dj = 30. The inlet jet velocity is extracted292
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z
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De
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Figure 2: Axisymmetric turbulent jet at Re = 21000. (left) Sketch of the computational
setup. (center) Instantaneous snapshot of normalized axial velocity uz/ (Uj − Ue) on the
xz-plane. (right) Normalized Reynolds shear-stress 〈u′ru′z〉/(Uj − Ue)

2 on the xz-plane.

from a plane perpendicular to the axis of a periodic turbulent pipe flow with293

momentum flux Mj = 1 · 10−1 N, a uniform velocity profile is utilized for the294

co-flow, and specified-pressure open boundary conditions are imposed at the295

exit and lateral surfaces of the domain. All simulations start from the jet296

discharging into a fluid with initial velocity Ue. The averaging is started once297

a sufficiently long transient period is surpassed, t Uj/L ≈ 10, and statistics298

are collected over a time period of ∆t Uj/Dj ≈ 1000. Additional averaging299

is performed in the azimuthal direction.300

The mesh designed to carefully perform high-fidelity simulations of the301

flow (DNS-like resolution) is based on scaling arguments for free shear flows [62].302

The timescale of the large eddies in a turbulent jet can be estimated as303

tl ∼ Dj/Uj. If it is assumed that the kinetic energy supply rate is propor-304

tional to the inverse of this timescale, the dissipation rate can be approx-305

imated by ε ∼ U3
j /Dj. As a result, the Kolmogorov length scale can be306

estimated as η ≡ (ν3/ε)
1/4 ∼ Dj/Re

3/4. Following this scaling, the compu-307

tational domain is spatially discretized by means of an axisymmetric mesh308

of approximately 200M control volumes with resolutions of ∆/η ∼ O (1) in309
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Figure 3: Radial profiles of grid size (a) and jet diameter (b) to Kolmogorov scale ratios
at different axial positions.

the cylindrical region 0 < r/Dj < 5. As shown in Figure 3, this assumption310

has been verified a posteriori by extracting the Kolmogorov scale, η, directly311

from the numerical data and comparing its value to the grid size, ∆, and jet312

diameter, Dj, along radial profiles at axial positions z/Dj = 1, 5, 10, 20; (i)313

the ratio ∆/η is O (1) for all profiles and presents a rapid variation in the314

region r/r1/2 ≈ 1, and (ii) the separation of flow scales Dj/η is maximum at315

the jet axis with ratios of O
(
Re3/4

)
.316

4.2. Characterization of the flow317

Visualizations of an instantaneous axial velocity snapshot and Reynolds318

shear-stress obtained from the numerical dataset are depicted in Figure 2.319

The velocity difference between the jet and co-flow generates a highly un-320

stable, thin shear layer. This shear layer continuously grows downstream321

as a result of Kelvin-Helmholtz flow instabilities that eventually lead to the322

generation of strong turbulent fluctuations. The resulting highly turbulent323

shear flow entrains ambient fluid into the jet and enhances the flow mixing.324

Consequently, the shear layer spreads in the radial direction and the jet ve-325

locity decreases. The spreading of the shear layer reduces the potential core326

of the jet, i.e., central region with an almost uniform velocity, which disap-327

pears when shear layers from all sides merge. The entrainment and mixing328
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continues downstream the potential core region where the axial velocity dis-329

tribution continuously flattens following a bell-shaped profile and becomes330

self-similar for z/Dj > 30.331

In the next section, focus will be placed on analyzing the differences be-332

tween τij calculated from filtering the numerical dataset to directly evaluate333

τ̄ij, and utilizing the WALE SGS model, τSGSij , at different axial and radial334

positions. Of particular interest is the jet’s half-width radial position r1/2, de-335

fined as
(
〈uz
(
r1/2, 0, z

)
〉 − Ue

)
/ (〈uz (0, 0, z)〉 − Ue) = 1/2, as it characterizes336

the region of the flow exhibiting maximum production of turbulent kinetic337

energy, P ≡ −〈u′iu′j〉∂〈ui〉/∂xj; this term quantifies the transfer of kinetic338

energy from the mean flow to the fluctuating velocity field as a result of the339

interaction between the mean velocity gradients, ∂〈ui〉/∂xj, and Reynolds340

stresses, Rij = 〈u′iu′j〉. For the flow studied in this work, P is positive, and341

therefore acts as a source in the transport equation for the turbulent kinetic342

energy (TKE), k ≡ 1/2〈u′ku′k〉. As shown in Figure 4, P peaks in the region343

defined by r/r1/2 ≈ 1 for the two different axial positions. The peak in the344

radial profiles of k displays a similar trend in the near-field region of the jet,345

viz. z/Dj = 5, but it broadens to smaller r/r1/2 away from the nozzle as a346

result of a decay in P combined with increased turbulence mixing. In par-347

ticular, only the symmetric part of the mean velocity gradient tensor, 〈Sij〉,348

and, in the case of incompressible flow, the anisotropic part of the Reynolds349

stresses, aij = Rij − 2kδij/3, affect production, i.e., P = −aij〈Sij〉. The350

maximum value of this inner product for this type of flow is found in the351

region r/r1/2 ≈ 1 as represented on the barycentric map depicted in Figure 4352

for a radial profile at z/Dj = 1. The location of maximum P corresponds to353

Reynolds stresses presenting axisymmetric expansion. This stress topology354

is indicative of a region of high strain/dissipation that is undergoing com-355

pression in one direction and extension in the other two as it is characteristic356

in shear layers [63].357
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Figure 4: (a) Radial profiles of turbulent kinetic energy production and distribution at
different axial positions. (b) Radial profile of Reynolds stresses at z/Dj = 1 represented
on the barycentric map.

4.3. Comparison against experimental data358

Comparison of first- and second-order flow statistics between experimen-359

tal and reference numerical results are shown in Figure 5. Complete agree-360

ment is observed for the mean axial velocity along the jet axis and for radial361

profiles at axial positions z/Dj = 5, 10, 20. These mean quantities charac-362

terize the potential core decay and spread angle of the jet, and therefore are363

function of the shear layer evolution. In terms of Reynolds normal, 〈u′z〉 and364

〈u′r〉, and shear, 〈u′ru′z〉, stresses, the agreement is extremely good except for365

the radial and shear stresses at z/Dj = 5, 20 where minor differences are366

observed for r/r1/2 ≈ 1 that may fall within the experiment uncertainty (not367

documented in Amielh et al. [58]). It is important to notice the significant368

anisotropy exhibited by the Reynolds stresses as shown by the shear stresses369

and the increase in deviation of normal stresses away from the nozzle. Sim-370

ilar to the first-order quantities, the turbulent kinetic energy is completely371

well predicted by the numerical dataset at the different axial positions, which372

indicates very good agreement of the isotropic part of the Reynolds stresses373

with the experiment and provides additional confidence on the accuracy of374

the normal stresses obtained. These results demonstrate that the numerical375
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simulation is able to accurately capture the main physical mechanisms re-376

sponsible for the instability of the shear layer and the subsequent entrainment377

and mixing processes characteristic of free shear flows.378

5. Discrepancy between reference and LES results379

The first step of estimating model-form uncertainty is to characterize380

discrepancies between τij evaluated from filtering the numerical dataset to381

directly calculate, τ̄ij, and τSGSij based on the WALE SGS model. The τ̄ij =382

uiuj − uiuj data are obtained by filtering five instantaneous velocity field383

snapshots at different flow through times (FTT), defined as FTT ∼ L/Uj,384

of the numerical dataset described in Section 4. The filtering operation is385

carried out by means of a second-order Gaussian filter defined as [64]386

φ = φ+
∆̄2

24

∂2φ

∂x2
i

+O(∆̄4). (26)

Data for the WALE-SGS-modeled τSGSij are computed (i) a priori from the387

filtered snapshots in Sections 5.2, 5.3, and 5.4, and (ii) a posteriori by per-388

forming LES on the computational setup described in Section 4 on a mesh of389

approximately 3M control volumes and with a resolution with respect to the390

DNS-like mesh of ∆LES/∆DNS ∼ 4 in Section 5.1. Similar to the filtered data,391

five instantaneous velocity field snapshots at different FTTs are utilized for392

the a priori analysis. The filter width in Eq. 26 is set to an equivalent LES393

mesh resolution of ∆̄/∆LES ∼ 1. The ratio of averaged turbulent viscosity,394

νSGS, obtained from the LES a posteriori calculation to kinematic viscos-395

ity, ν, is depicted in Figure 6 showing that the regions of the flow in which396

the SGS model is more active correspond to the shear layers with values397

〈νSGS〉/ν ∼ 3÷ 5.398

5.1. Comparison of LES against the numerical reference dataset399

Prior to presenting the differences between filtered and modeled tensors400

from reference data, Figure 7 summarizes the accuracy of the LES compared401
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with that of the DNS-like numerical dataset in terms of first- and second-402

order statistics. The extension of the potential core and axisymmetric decay403

in the interaction region is underpredicted as shown by the mean axial veloc-404

ity along the jet axis (2 < z/Dj < 22) and the corresponding radial profiles405

(Figure 7(a,b)). This underprediction is connected to large deviatoric stresses406

near the jet nozzle (z/Dj ≤ 5) indicative of a rapid development of the shear407

layer (Figure 7(e)) as a result of flow instabilities growing too fast. Far down-408

stream in the fully developed region (z/Dj > 25), where turbulent mixing409

prevails, the axial velocity recovers to match the reference data, while the410

shear stresses become underestimated owing to the prematurely development411

of the shear layer. The flow in the outer layer region, which is dominated412

by large-scale entrainment motions, is well predicted as shown by the radial413

profiles above r/r1/2 ≈ 1 collapsing with the reference dataset. The normal414

stresses, and their aggregate representation through the turbulent kinetic415

energy, follow the same trend as the mean and shear stress statistics, viz.416

overprediction near the jet nozzle (z/Dj ≤ 5) and underestimation in the417

developed flow region (z/Dj ≥ 10) for r/r1/2 < 2, whereas significantly good418

agreement with the reference results for the outer layer region is shown.419

5.2. Correlation coefficient discrepancy420

The conventional procedure to analyze discrepancy between filtered and421

modeled τij is to calculate the correlation coefficient between the two tensors422

by means of the normalized inner product [12]423

C
(
τ̄ij, τ

SGS
ij

)
= 〈τ̄ijτSGSij 〉/

(
〈τ̄ij τ̄ij〉1/2〈τSGSij τSGSij 〉1/2

)
, (27)

which is C = 1 for perfectly correlated tensors and C = 0 otherwise. The424

correlation coefficients at axial positions z/Dj ≈ 1, 5, 20 and radial distances425

r/r1/2 ≈ 0, 1, 2 are listed in Table 1. In general, correlation improves down-426

stream in the axial direction as turbulent mixing becomes more dominant.427

For a given axial position, the model performs best in the outer layer followed428
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C
(
τ̄ij, τ

SGS
ij

)
r/r1/2 ≈ 0 r/r1/2 ≈ 1 r/r1/2 ≈ 2

z/Dj ≈ 1 0.34 0.38 0.68
z/Dj ≈ 5 0.37 0.56 0.71
z/Dj ≈ 20 0.43 0.64 0.73

Table 1: Correlation coefficient between τ̄ij and τSGS
ij at different axial and radial positions.

by the shear layer and worst in the centerline. The correlation coefficient pro-429

vides a quantitative measure of the performance of the model. However, this430

measurement is very broad as it does not detail the rationale of the underly-431

ing differences.432

5.3. Eigenspace-based discrepancy433

The tensor eigendecompostion introduced in Section 3.2 offers a compli-434

mentary approach to the correlation coefficient. The discrepancy measure-435

ment is less compact since it does not provide a single scalar value, but it is436

potentially more informative as it allows one to separately analyze the dif-437

ferences in terms of magnitude, shape and orientation. This methodology is438

utilized next to further characterize the differences between τ̄ij and τSGSij .439

Focus is placed first on comparing the magnitude of the tensors as de-440

picted in Figure 8 and summarized in Table 2. The plots correspond to441

probability density functions (PDF) of normalized τkk/ (Uj − Ue)2 at differ-442

ent axial and radial positions. In general, for a given z/Dj, the mean of τkk443

is slightly larger at the shear layer than at the centerline of the jet. This444

trend is consistent for both reference and modeled tensors. However, the445

mean of the modeled tensor magnitude is increasingly underpredicted with446

respect to the reference as z/Dj increases. The variance of τkk follows a sim-447

ilar behaviour. It is larger at r/r1/2 ≈ 1 than at r/r1/2 ≈ 0 and tends to be448

smaller for the modeled τij. The mode of the reference PDF is significantly449

well predicted by the model for z/Dj ≈ 1 and for z/Dj ≈ 5 at r/r1/2 ≈ 0,450

while consistently underpredicted in the other locations by an approximate451

factor of 2, viz. the model tends to predict τkk values in a smaller range on452
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the left tail of the distributions.453

The difference in anisotropy is analyzed next on the basis of the PDFs454

shown on the barycentric map for τ̄ij and τSGSij in Figures 9 and 10, respec-455

tively. From the τ̄ij perspective, the anisotropy of τij in the centerline region456

remarkably evolves from the purely one-component limit at z/Dj ≈ 1 to a457

wide PDF between axisymmetric expansion and the two-component limit at458

z/Dj ≈ 5, 10; the initial one-component shape is imposed by the walls of459

the pipe from which the jet discharges. This trend is similarly observed for460

r/r1/2 ≈ 1, but less accentuated as the distribution at z/Dj ≈ 1 is more461

stretched. A completely different behavior is depicted for r/r1/2 ≈ 2. The462

mode of the PDF is initially located along the central region of the two-463

component limit, and with increasing z/Dj it shifts toward a narrow dis-464

tribution starting at the two-component vertex and following approximately465

the line of plane strain. The picture for τSGSij is notably different. At the466

centerline region, the shape of τSGSij is spread over the central and bottom467

regions of the barycentric map and it does not differ substantially between468

axial locations. The same anisotropy distribution is revealed for r/r1/2 ≈ 1469

at z/Dj ≈ 5, 20. For the remaining locations, the mode of the PDFs is found470

at the axisymmetric contraction limit close to the three-component vertex.471

The distributions are narrow and stretched along the axisymmetric contrac-472

tion limit for z/Dj ≈ 1, whereas they spread toward the central region of the473

barycentric map for z/Dj ≈ 5, 20. Further differences between filtered and474

modeled results can be extracted by considering the mean trajectories of τij475

anisotropy in the axial direction at radial distances r/r1/2 ≈ 0, 1 represented476

in Figure 11. At the jet axis, r/r1/2 ≈ 0, τ̄ij is completely one-component477

close to the nozzle, whereas it transitions, following an accelerating convex478

profile, to the central region of the barycentric map as z/Dj increases. The479

behavior of τSGSij is substantially different as it starts from the central re-480

gion of the triangle and becomes more spherical with increasing z/Dj and481

displaying an almost vertical decelerating trajectory. At the jet’s half-width482
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τ̄kk | τSGSkk Mean Variance Mode
z/Dj ≈ 1, r/r1/2 ≈ 0 4.4 · 10−4 | 4.1 · 10−4 5.5 · 10−7 | 2.5 · 10−7 1.3 · 10−4 | 1.0 · 10−4

z/Dj ≈ 1, r/r1/2 ≈ 1 4.5 · 10−2 | 2.9 · 10−2 3.3 · 10−5 | 1.7 · 10−5 6.5 · 10−6 | 2.0 · 10−6

z/Dj ≈ 5, r/r1/2 ≈ 0 1.7 · 10−2 | 1.1 · 10−2 3.5 · 10−6 | 9.6 · 10−7 1.0 · 10−3 | 4.3 · 10−4

z/Dj ≈ 5, r/r1/2 ≈ 1 4.1 · 10−2 | 1.7 · 10−2 9.4 · 10−6 | 1.6 · 10−6 1.2 · 10−3 | 9.9 · 10−4

z/Dj ≈ 20, r/r1/2 ≈ 0 5.1 · 10−3 | 1.7 · 10−3 1.3 · 10−7 | 1.3 · 10−8 1.8 · 10−4 | 1.1 · 10−4

z/Dj ≈ 20, r/r1/2 ≈ 1 7.7 · 10−3 | 2.2 · 10−3 3.6 · 10−7 | 4.0 · 10−8 4.9 · 10−4 | 9.0 · 10−5

Table 2: PDF statistics of τkk/ (Uj − Ue)
2

(left: τ̄kk, right: τSGS
kk ) at different axial and

radial positions.

distance, r/r1/2 ≈ 1, τ̄ij presents a similar initial and final states than at483

the jet axis, however, in this case the curve presents a convex shape. For484

τSGSij , the behavior is completely different as it starts at the axisymmetric485

contraction limit. Interestingly, the curve ends at the central region of the486

map where it becomes similar to the τ̄ij anisotropy for z/Dj ≥ 20.487

Finally, the orientation of the tensors is analyzed by considering the eigen-488

vector associated with the first eigenvalue of the eigendecomposition. The489

results (not shown) reveal a virtually perfect agreement between reference490

and modeled τij eigenvectors since the orientation is directly imposed in the491

axial direction by the large scales of the jet. An interesting problem connected492

to this work would be the study of tensor alignments in a jet in crossflow493

(JICF) where the rapid tilting of the flow may impose sizable challenges to494

the SGS model from an orientation standpoint.495

5.4. Production of SGS kinetic energy discrepancy496

As discussed in Section 3.4.3, the anisotropy and orientation imposed on497

τSGSij in eddy-viscosity-type models force Pr to act as a sink of filtered kinetic498

energy. The dynamic approach [45] relaxes this constraint by allowing νSGS499

to take negative values in particular regions of the flow on the basis of the500

Germano identity [65] and a test-filtering operation. This methodology en-501

ables Pr to take negative values locally, and therefore it relatively accounts for502

backscatter effects. In terms of kinetic energy transport, as shown in Eq. 25,503
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the negative sign of νSGS can be directly interpreted from an eigenspace per-504

spective as a permutation between the first and third eigenvectors of the505

SGS stress tensor; namely, τSGSij and Sij share the same eigenvalues and are506

rotated with respect to the first and third principal directions. In the case507

of utilizing the WALE SGS model, νSGS is dynamically calculated on the508

basis of the invariants of the velocity gradient tensor (recovering, for exam-509

ple, cubic behavior at walls [66]), however, defined always nonnegative by510

construction.511

The discrepancy between normalized reference and modeled Pr/
[
(Uj − Ue)3 /Dj

]
512

at different axial and radial positions is depicted in Figure 12 and summa-513

rized in Table 3. An important observation is that the filtered numerical514

dataset exhibits significant amounts of backscatter (points of the PDF with515

Pr < 0) as indicated by the negative values of the PDF modes. This effect is516

not captured by the modeled Pr because of the aforementioned limitations517

of eddy-viscosity-type models as shown by the nonnegative distributions. In518

general, the mean of Pr is larger at r/r1/2 ≈ 1 than at r/r1/2 ≈ 0 and de-519

creases with increasing z/Dj. This trend is consistent for both reference and520

modeled results. However, the mean PSGSr tends to be overestimated by a521

factor between 2 and 5 with respect to the filtered values. The spread of522

the reference and modeled Pr PDFs is qualitatively similar (except for the523

negative part). Nonetheless, the overall discrepancy in terms of Pr is not ex-524

ceedingly large for the flow studied in this work. This is not typically the case525

in multiphysics flow problems in which small-scale phenomena impose sig-526

nificant misalignment between τij and Sij, such as in combustion flames [67]527

and two-phase interfaces [68].528

6. Sensitivity analysis of model-form uncertainties529

The model-form uncertainty estimation framework developed also enables530

researchers to perform systematic sensitivity studies. Based on the discrep-531

ancies analyzed in Section 5, the impact of magnitude and shape model-form532
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P̄r | PSGSr Mean Variance Mode
z/Dj ≈ 1, r/r1/2 ≈ 0 1.2 · 10−4 | 5.6 · 10−4 1.3 · 10−7 | 2.2 · 10−6 −2.9 · 10−4 | 1.6 · 10−6

z/Dj ≈ 1, r/r1/2 ≈ 1 3.1 · 10−3 | 1.5 · 10−2 9.4 · 10−5 | 1.8 · 10−3 −3.2 · 10−2 | 1.6 · 10−5

z/Dj ≈ 5, r/r1/2 ≈ 0 9.3 · 10−4 | 2.0 · 10−3 8.7 · 10−6 | 1.6 · 10−5 −4.2 · 10−3 | 8.8 · 10−6

z/Dj ≈ 5, r/r1/2 ≈ 1 1.9 · 10−3 | 2.9 · 10−3 1.8 · 10−5 | 2.4 · 10−5 −1.8 · 10−2 | 2.3 · 10−3

z/Dj ≈ 20, r/r1/2 ≈ 0 7.9 · 10−5 | 7.5 · 10−5 3.9 · 10−8 | 1.0 · 10−8 −6.3 · 10−4 | 4.2 · 10−6

z/Dj ≈ 20, r/r1/2 ≈ 1 6.1 · 10−5 | 6.8 · 10−5 3.0 · 10−8 | 3.1 · 10−8 −1.3 · 10−3 | 2.1 · 10−5

Table 3: PDF statistics of Pr/
[
(Uj − Ue)

3
/Dj

]
(left: P̄r, right: PSGS

r ) at different axial

and radial positions.

uncertainties on the QoIs are examined. These two uncertainties consider533

three of the six degrees of freedom of τij and are independently related to534

Pr through νSGS in the case of eddy-viscosity-type closures (magnitude) and535

the sum of λi − γi products (anisotropy) as shown in Eqs. 24 and 25. Upon536

selection of the WALE SGS closure as the base model, propagation of in-537

certitude in the magnitude of τSGSij is studied by augmenting and decreasing538

τkk as proposed by the maximum and minimum limits of the perturbation539

defined in Eq. 19. As illustrated in Figure 13, model-form uncertainty in540

the spectrum of τSGSij is analyzed by perturbing the eigenvalues of the base541

model tensor toward the three vertices of the barycentric map with relative542

distance ∆B = 5%. Complete implementation details on how to apply the543

UQ framework in a general LES solver are provided in the Appenidx. The544

shaded regions in Figures 14-18 depict the envelope of predictions resulting545

from the perturbation UQ estimation; i.e., minimim and maximum bounds of546

the predictions provided by the ensemble set of 6 calculations (base WALE547

model, ∆τSGSkk ≤ 0 and ∆τSGSkk ≥ 0 magnitude perturbations, anisotropy548

perturbations toward vertexes x1c, x2c and x3c). In general, the uncertainty549

estimates adaptively envelope the reference data for most of the profiles, dis-550

playing wider regions at points where the base model significantly deviates551

from the reference solution. Details of the results for the different QoIs are552

discussed below.553
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6.1. Time-averaged flow quantities554

Results of uncertainty estimates for mean axial velocity profiles are de-555

picted in Figure 14. The shaded regions, representative of the uncertainty556

perturbation solutions, clearly envelope the reference data along the jet axis557

and radial profiles at different axial positions. Moreover, the width of the en-558

velopes broadens in regions where discrepancy between the WALE model and559

reference data predictions increases, i.e., z/Dj > 5 and r/r1/2 < 2, whereas it560

narrows away from the axis where the turbulence activity is lower. For these561

plots, the upper and lower bounds correspond to the solutions obtained by562

reducing the trace of the tensor and by perturbing the eigenvalues toward563

vertex x1c of the barycentric map, respectively. The performance of the per-564

turbation UQ framework, in terms of enveloping the reference data, is similar565

for the normal and shear stresses, and the aggregate turbulent kinetic energy,566

shown in Figures 15-18, except for z/Dj ≈ 1, in which the numerical dataset567

is not covered by the space of perturbed solutions for 1 < r/r1/2 < 2. In568

this region, the flow field is significantly dominated by the inflow boundary569

conditions, with the SGS model not playing an important role. A com-570

mon observation for the uncertainty estimates of the second-order statistics571

is that the width of the shaded areas slightly increases with z/Dj. In ad-572

dition, the bounds of the envelopes display a general change of trend: the573

upper and lower bounds for r/r1/2 < 1 result from augmenting the trace574

and forcing the SGS stresses to be more rod-like, while perturbing toward575

a rod-like shape and reducing the magnitude provide the upper and lower576

bounds for r/r1/2 > 1. In general, the first- and second-order QoIs stud-577

ied are sensitive to reducing the magnitude and increasing the anisotropy of578

τSGSij in one direction. On the contrary, they are strongly independent to the579

other perturbations considered: increase of tensor magnitude and anisotropy580

perturbation toward two- and three-component vertices of the barycentric581

map.582

A detailed analysis of the impact of τSGSij model-form uncertainty on583
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the Reynolds shear-stress and turbulent kinetic energy is presented in Fig-584

ures 19 and 20, where the axial and radial distributions of these quantities on585

the x-z azimuthal plane is depicted for the (a) numerical reference dataset,586

(b) WALE SGS model, (c) WALE SGS model with ∆τSGSkk ≤ 0 magnitude587

perturbation, and (d) WALE SGS model with anisotropy perturbation to-588

ward vertex x1c. In comparison to the reference solution, the WALE SGS589

model overpredicts the thickness of the shear layer and the magnitude of the590

stresses approximately by 2× in the region 1 < z/Dj < 10, resulting in a591

shorter potential core, while it performs similarly to the reference dataset592

away from the nozzle, z/Dj > 10, where the turbulent flow becomes more593

isotropic. In the case of reducing the trace of τSGSij , the effects are roughly594

inversed; viz. shear stresses are overpredicted for z/dj < 1, whereas both595

the intensity (slightly) and thickness of the shear layer are underestimated596

in 1 < z/Dj < 10. Similarly to the WALE SGS model, perturbation of τSGSij597

toward a more rod-like shape results in a moderate overestimation of the598

magnitude of the Reynolds shear-stress in the region 1 < z/Dj < 10 and the599

thickness of the shear layer for all z/Dj. In terms of turbulent kinetic en-600

ergy, the WALE SGS model produces results displaying faster mixing with a601

shorter potential core than the reference as it can be seen by the larger spread602

of TKE in the region 1 < z/Dj < 10. On the contrary, reducing the trace of603

τSGSij provides a solution similar to the numerical dataset for z/Dj > 1, but604

presenting smaller values of TKE in the axis of the jet which is indicative of605

a longer survival of the potential core. Perturbing the shape of τSGSij toward606

the one-component limit produces a potential core similar to the reference607

dataset and with comparable TKE layer thickness for z/Dj < 1, but pre-608

senting increased entrainment in the region 1 < z/Dj < 10 as observed by609

the larger extension of the TKE band on the external side.610

The rationality behind the perturbations responsible for the upper and611

lower bounds of the second-order statistics can be related to filtered kinetic612

energy arguments. The WALE model tends to generally underpredict the613
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numerical dataset. Therefore, the WALE model solutions can already be614

interpreted as a lower bound, since decreasing the magnitude of the tensor615

provides even lower predictions. Per contra, perturbations to the shape of the616

tensor toward the one-component vertex of the barycentric map generates,617

in general, the upper bound of the uncertainty estimation envelopes. This618

large sensitivity to anisotropy perturbation is consistent with the discrepancy619

observed by comparing Figures 9 and 10. The reference dataset depicts τij620

anisotropies in the one-component vertex region for r/r1/2 ≈ 0, 1, while the621

WALE model predicts shapes in the central region of the triangle and toward622

the axisymmetric contraction limit. Consequently, applying perturbations in623

the one-component vertex direction forces the WALE model to produce SGS624

stresses more aligned with the reference dataset observations which result in625

an upper bound. In terms of production of SGS kinetic energy, the following626

mathematical expression is obtained for the UQ framework based on an eddy-627

viscosity model without eigenvector perturbation628

P∗r = 2νSGS
τSGSkk

∗

τSGSkk

(λ∗1γ1 + λ∗2γ2 + λ∗3γ3) . (28)

Therefore, if the trace of the tensor is reduced, i.e., τSGSkk
∗
< τSGSkk , P∗r =629

2νSGSτ
SGS
kk

∗
/τSGSkk (γ2

1 + γ2
2 + γ2

3) decreases, and consequently the flow field630

contains more filtered kinetic energy as a result of smaller forward-scatter631

rates, which eventually leads to a slower decay of the potential core. An632

opposite effect is obtained when applying the perturbation toward the one-633

component vertex since P∗r = 2νSGS (λ∗1γ1 + λ∗2γ2 + λ∗3γ3) tends to augment634

due to the larger magnitude of the first eigenvalue relative to the other635

anisotropy states. This increase in P∗r drains more rapidly kinetic energy636

from the large to the SGS scales, slightly laminarizing the flow and acceler-637

ating the disintegration of the potential core.638
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6.2. Instantaneous flow quantities639

The conclusions extracted from time-averaged statistics are also observed640

from instantaneous flow quantities. These can be inferred, for instance, from641

Figures 21-23 which show several snapshots of normalized xy-plane and z re-642

solved vorticity, i.e.,
(
ω2
x + ω2

y

)1/2
/ [(Uj − Ue) /Dj] and ωz/ [(Uj − Ue) /Dj],643

and rz resolved rate-of-strain, Srz/ [(Uj − Ue) /Dj], at axial cross sections644

z/Dj = 1, 5, 10 for the reference numerical dataset, WALE SGS model,645

WALE SGS model with ∆τSGSkk ≤ 0 magnitude perturbation, and WALE646

SGS model with anisotropy perturbation toward vertex x1c.647

The initial circular shear layer increasingly develops larger wrinkles as648

the flow moves downstream. As shown by the reference dataset in Figures 21649

and 22, these corrugations result in vorticity generation that spreads perpen-650

dicularly to the jet axis and mixes with the surrounding flow while reducing651

its magnitude. In comparison to the reference vorticity distribution, the652

WALE SGS model and anisotropy perturbation toward one-component (es-653

pecially) predict fewer larger vortical structures, whereas reducing the trace654

of τSGSij results in an increase of number of vortexes presenting smaller sizes655

and enhanced mixing. In the case of the WALE SGS model, these features656

are especially noticeable for z/Dj = 1, while are clearly observable at all657

distances for the case of perturbing toward one-component. In other words,658

decreasing the magnitude of the SGS stresses propitiates the creation of small659

scales resulting from an increased fragmentation of the vortex rings created660

at the shear layer of the jet. This phenomenon leads to a shorter potential661

core as a result of increased flow mixing.662

Equivalent trends are recognized in Figure 23 for the normalized, resolved663

rz rate-of-strain. As displayed by the numerical reference, the radial defor-664

mation rate of the flow generally reduces in time as it moves downstream in665

the axial direction, viz. dominance of negative-valued regions. This charac-666

teristic is well captured by the three LES exhibited. However, they present667

large differences in terms of magnitude and spatial distribution. Similarly668
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to resolved vorticity, slightly perturbing τSGSij toward one-component has a669

significant impact on the deformation rate of the large scales. Particularly,670

Srz becomes more negatively dominated and continuous along the circular671

region of the jet’s shear layer, indicating that the flow undergoes lesser de-672

formation in the radial direction downstream the nozzle which propitiates a673

longer survival of the potential core by means of a diminished shear layer.674

The contrary is observed when reducing the magnitude of the SGS stresses.675

In that case, Srz presents larger amounts of positive regions combined with676

higher levels of fragmentation, especially downstream in the axial direction.677

7. Conclusions678

An eigensensitivity analysis of SGS model-form uncertainty has been per-679

formed on a LES of a round turbulent jet. Experimental and numerical ref-680

erence data have been utilized to validate the observations of the study in681

terms of averaged and rms axial and radial velocities, shear stresses and tur-682

bulent kinetic energy. The numerical reference dataset has been generated683

by carrying out highly accurate (DNS-like resolution) simulations based on684

the setup of the reference experiment. Focus has been placed on QoIs at the685

jet’s centerline and half-width for different axial distances, as these corre-686

spond to regions of the flow characterizing the potential core and exhibiting687

maximum production of turbulent kinetic energy, respectively. Complete688

agreement between the reference datasets has been obtained for first- and689

(virtually) second-order flow statistics.690

Differences in statistics between the numerical reference solution and a691

LES based on the eddy-viscosity WALE SGS model have been observed for692

the averaged axial velocity along the jet axis in the interaction region and,693

more significantly, for second-order flow quantities in r/r1/2 < 1. A priori694

eigendecomposition analyses of differences between reference and modeled695

SGS stress tensors in terms of magnitude, shape and orientation have shown696

potential sources of discrepancy. Three main observations have been ex-697
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tracted: (i) in general, the magnitude of the modeled tensor tends to be698

slightly underpredicted with respect to the reference SGS stresses, (ii) the699

correlation between tensors in terms of anisotropy is outstandingly low as700

the reference tensor tends to lie close to the one-component vertex and two-701

component limit of the barycentric map while the PDF of the modeled ten-702

sor is concentrated in the central region and axisymmetric contraction limit,703

(iii) the alignment of the principal directions in the reference and modeled704

tensors presents notable agreement. Consequently, from a general LES mod-705

eling point of view, the discrepancies identified in this work indicate that706

improved eddy-viscosity-type SGS models for shear-dominated flows, rather707

than focusing on modifying the turbulent viscosity, should consider modeling708

approaches in which SGS anisotropy is better represented.709

On the basis of the a priori discrepancy observations, the impact of mag-710

nitude and anisotropy model-form uncertainty on different QoIs have been711

a posteriori analyzed. In terms of time-averaged flow quantities, the gen-712

eral observation is that the uncertainty estimates adaptively envelope the713

reference data, displaying wider regions at points where the base model sig-714

nificantly deviates from the reference solution. The reduction of SGS stresses’715

magnitude and perturbation toward one-component anisotropy provide the716

larger impacts on flow statistics. Perturbations to the shape of the ten-717

sor present, in general, larger relative impact than reducing, or augmenting,718

the magnitude of the tensor; similar order deviations are observed for both719

types of discrepancies, but the perturbations related to shape discrepancy720

are relatively small (5%) compared with the O (1) magnitude perturbations.721

A common observation for the uncertainty estimates is that the width of722

the envelopes slightly increases with axial distance, indicating that model-723

form uncertainty is characterized by a cumulative behaviour in free shear724

flows. The effect of SGS stresses discrepancy on flow quantities has been725

analyzed also by means of qualitative visualizations of instantaneous, spa-726

tial vorticity and rate-of-strain distributions. In comparison to the reference727
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vorticity, the base model and anisotropy perturbation toward one-component728

predict fewer larger vortical structures, whereas reducing the trace of the SGS729

stresses results in an increase of number of vortexes presenting smaller sizes730

and enhanced mixing. Equivalent trends are observed for the rate-of-strain731

since slightly perturbing the SGS stresses toward one-component results in732

negatively dominated and continuous rate-of-strain structures along the cir-733

cular region of the jet’s shear layer, indicating that the flow undergoes lesser734

deformation in the radial direction downstream the nozzle which propitiates735

a longer survival of the potential core by means of a diminished shear layer.736

The contrary is observed when reducing the magnitude of the SGS stresses.737

In a more general perspective, the UQ framework presented to charac-738

terize model-form sensitivity to SGS stress modeling has been shown to be739

an effective approach for the efficient and systematic exploration/study of740

complex flow phenomena by means of predictive LES. Ongoing work is fo-741

cused on eigensensitivity analyses of SGS model-form uncertainty in variable-742

density free shear flows. Additionally, studies of the impact on the QoIs of743

mixed uncertainties involving, for example, SGS model-form and aleatoric744

incertitude on turbulent jets in crossflow are being conducted. Future work745

will concentrate on developing transport equations for the parameters of the746

methodology such that injection of incertitude is restricted to regions of the747

flow where the SGS models are expected to provide less accurate predictions.748
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Appendix A: Framework implementation overview764

The uncertainty quantification framework described in this work is de-765

veloped with the objective of being suitable to LES solvers in complex ge-766

ometries. A general example would be, for instance, the unstructured and767

massively parallel Nalu open-source code [59, 69] utilized in the numerical768

experiments section. For this purpose, an implementation overview of the769

framework is described below.770

Similar to the calculation of the turbulent viscosity in eddy-viscosity-type771

models, introduction of the perturbations is performed locally at each time772

step. Therefore, the framework is inherently parallel and easy to implement773

on 3-D unstructured meshes. For a general combination of perturbations,774

four main steps are required.775

The first step is to construct aSGSij from the base-model definition. For776

example, in the case of eddy-viscosity models, ukuk and −2νSGSSij need to777

be calculated. The latter is directly accessible in most LES solvers as νSGS778

is typically evaluated from expressions involving Sij. The former, however,779

is less commonly available since it requires modeling τSGSkk .780

Step number two is to perform the spectral decomposition of aSGSij . Many781

efficient and robust methods exist for 3×3 symmetric matrices. For instance,782

optimized algorithms can be found in [70]. Once the eigendecomposition783

is obtained, the eigenvalues and the corresponding eigenvectors need to be784

sorted such that λSGS1 ≥ λSGS2 ≥ λSGS3 is satisfied.785
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The following step, number three, is to apply perturbations (individual786

or a combination) to aSGSij within the framework described in Sec. 3. Next, the787

perturbed decomposition is reassembled to generate aSGSij
∗

= vSGSin
∗
ΛSGS
nl

∗
vSGSjl

∗
.788

Finally, in step number four, aSGSij
∗

is multiplied by ukuk
∗, and the di-789

vergence of the resulting tensor, ukuk
∗aSGSij

∗
, is introduced into the LES790

equations. Notice that791

uiuj
∗ = uiuj + τSGSij

∗
= uiuj + ukuk

∗aSGSij

∗
+
τSGSkk

∗

3
δij. (29)

Therefore, instead of augmenting the molecular viscosity, ν, with the turbu-792

lent viscosity, νSGS, as it is typical in most LES solvers, the SGS term in793

this framework is treated independently from the viscous stresses since the794

eigenvalues and eigenvectors of Sij and aSGSij
∗

are generally different after795

the perturbations are applied. The isotropic term τSGSkk
∗
/3 should be com-796

puted and integrated into the equations for compressible flows, while it can797

be absorbed into the filtered pressure when considering incompressible flow.798
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Figure 5: Comparison of the numerical dataset against experimental data by Amielh et
al. [58]. (a) Mean axial velocity along the jet axis. (b) Radial profiles of mean axial
velocity at several axial positions. (c) Radial profiles of rms axial velocity at different
axial positions. (d) Radial profiles of rms radial velocity at different axial positions. (e)
Radial profiles of Reynolds shear stress at different axial positions. (f) Radial profiles of
turbulent kinetic energy at different axial positions.
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Figure 6: Ratio of averaged turbulent viscosity, νSGS , to kinematic viscosity, ν. (left)
Radial profiles at different axial positions. (right) Visualization on the xz-plane.
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Figure 7: Comparison of WALE SGS model results against the numerical dataset. (a)
Mean axial velocity along the jet axis. (b) Radial profiles of mean axial velocity at several
axial positions. (c) Radial profiles of rms axial velocity at different axial positions. (d)
Radial profiles of rms radial velocity at different axial positions. (e) Radial profiles of
Reynolds shear-stress at different axial positions. (f) Radial profiles of turbulent kinetic
energy at different axial positions.
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Figure 8: PDF of filtered and modeled τkk normalized by (Uj − Ue)
2

at different axial
and radial positions. Rows: (top) z/Dj ≈ 1, (center) z/Dj ≈ 5, (bottom) z/Dj ≈ 20.
Columns: (left) r/r1/2 ≈ 0, (right) r/r1/2 ≈ 1.
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Figure 9: PDF of τ ij anisotropy represented on the barycentric map at different axial
and radial positions. Rows: (top) z/Dj ≈ 1, (center) z/Dj ≈ 5, (bottom) z/Dj ≈ 20.
Columns: (left) r/r1/2 ≈ 0, (center) r/r1/2 ≈ 1, (right) r/r1/2 ≈ 2.
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Figure 10: PDF of WALE τSGS
ij anisotropy represented on the barycentric map at different

axial and radial positions. Rows: (top) z/Dj ≈ 1, (center) z/Dj ≈ 5, (bottom) z/Dj ≈ 20.
Columns: (left) r/r1/2 ≈ 0, (center) r/r1/2 ≈ 1, (right) r/r1/2 ≈ 2.

Figure 11: Trajectories on the barycentric map of mean τij anisotropy in the axial direction
at radial positions r/r1/2 ≈ 0 (a) and r/r1/2 ≈ 1 (b).
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Figure 12: PDF of filtered and modeled Pr normalized by (Uj − Ue)
3
/Dj at different axial

and radial positions. Rows: (top) z/Dj ≈ 1, (center) z/Dj ≈ 5, (bottom) z/Dj ≈ 20.
Columns: (left) r/r1/2 ≈ 0, (right) r/r1/2 ≈ 1.
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Figure 13: Sequential illustration of the eigenvalue perturbation procedure. The resolved,
xres, and SGS base-model, xSGS , parts provide an initial location x within the triangle
(left). A perturbation of magnitude ∆B toward x2c is applied to xSGS (center). The new
location of the SGS part, xSGS∗, indirectly modifies the coordinates of x, resulting in a
perturbed state x∗ (right).

Figure 14: Comparison of WALE SGS uncertainty estimates against the numerical dataset.
(a) Mean axial velocity along jet axis. (b) Radial profiles of mean axial velocity at several
axial positions.
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Figure 15: Comparison of WALE SGS uncertainty estimates against the numerical dataset.
Radial profiles of rms axial velocity at axial positions: (a) z/Dj ≈ 1, (b) z/Dj ≈ 5, (c)
z/Dj ≈ 10, (d) z/Dj ≈ 20.
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Figure 16: Comparison of WALE SGS uncertainty estimates against the numerical dataset.
Radial profiles of rms radial velocity at axial positions: (a) z/Dj ≈ 1, (b) z/Dj ≈ 5, (c)
z/Dj ≈ 10, (d) z/Dj ≈ 20.
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Figure 17: Comparison of WALE SGS uncertainty estimates against the numerical dataset.
Radial profiles of Reynolds shear stress at axial positions: (a) z/Dj ≈ 1, (b) z/Dj ≈ 5,
(c) z/Dj ≈ 10, (d) z/Dj ≈ 20.
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Figure 18: Comparison of WALE SGS uncertainty estimates against the numerical dataset.
Radial profiles of turbulent kinetic energy at axial positions: (a) z/Dj ≈ 1, (b) z/Dj ≈ 5,
(c) z/Dj ≈ 10, (d) z/Dj ≈ 20.
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Figure 19: Normalized Reynolds shear-stress, 〈u′ru′z〉/(Uj − Ue)
2, visualized on the xz-

plane. (a) Reference numerical dataset. (b) WALE SGS model. (c) WALE SGS model
with ∆τSGS

kk ≤ 0 magnitude perturbation. (d) WALE SGS model with anisotropy pertur-
bation toward vertex x1c.

Figure 20: Normalized, resolved turbulent kinetic energy, (2k/3)
1/2

/(Uj −Ue), visualized
on the xz-plane. (a) Reference numerical dataset. (b) WALE SGS model. (c) WALE SGS
model with ∆τSGS

kk ≤ 0 magnitude perturbation. (d) WALE SGS model with anisotropy
perturbation toward vertex x1c.
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Figure 21: Instantaneous normalized, resolved xy-plane vorticity,(
ω2
x + ω2

y

)1/2
/ [(Uj − Ue) /Dj ], visualized at different axial distances. Rows: (top)

z/Dj = 1, (center) z/Dj = 5, (bottom) z/Dj = 10. Columns: (left to right) reference
numerical dataset, WALE SGS model, WALE SGS model with ∆τSGS

kk ≤ 0 magnitude
perturbation, WALE SGS model with anisotropy perturbation toward vertex x1c.
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Figure 22: Instantaneous normalized, resolved z vorticity, ωz/ [(Uj − Ue) /Dj ], visualized
at different axial distances. Rows: (top) z/Dj = 1, (center) z/Dj = 5, (bottom) z/Dj =
10. Columns: (left to right) reference numerical dataset, WALE SGS model, WALE
SGS model with ∆τSGS

kk ≤ 0 magnitude perturbation, WALE SGS model with anisotropy
perturbation toward vertex x1c.
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Figure 23: Instantaneous normalized, resolved rz rate-of-strain, Srz/ [(Uj − Ue) /Dj ], vi-
sualized at different axial distances. Rows: (top) z/Dj = 1, (center) z/Dj = 5, (bottom)
z/Dj = 10. Columns: (left to right) reference numerical dataset, WALE SGS model,
WALE SGS model with ∆τSGS

kk ≤ 0 magnitude perturbation, WALE SGS model with
anisotropy perturbation toward vertex x1c.
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