En-Route: On Enabling Resource Usage Testing for Autonomous Driving Frameworks

Miguel Alcon*†, Hamid Tabani*, Jaume Abella*, Leonidas Kosmidis*, Francisco J. Cazorla*
*Barcelona Supercomputing Center
†Universitat Politecnica de Catalunya

Abstract—Software resource usage testing, including execution time bounds and memory, is a mandatory validation step during the integration of safety-related real-time systems. However, the inherent complexity of Autonomous Driving (AD) systems challenges current practice for resource usage testing. This paper exposes the difficulties to perform resource usage testing for AD frameworks by analyzing a complex and critical module of an AD framework, and provides some guidelines and practical evidence on how resource usage testing can be effectively performed, thus enabling end users to validate their safety-related real-time AD frameworks.

I. INTRODUCTION

Automotive safety-related systems must undergo a development process with exhaustive verification and validation steps, where each item is proven to adhere to its safety requirements with the degree of rigor dictated by safety standards [11]. In safety-related real-time systems, timing verification for software items has received significant attention during decades with a plethora of techniques aimed at deriving estimates to the Worst-Case Execution Time (WCET) of tasks to verify that specific task schedules meet safety requirements (e.g. the braking system activates the brake before its deadline) [30], [1], [14], [13], [26], [7], [17], [15]. Instead, timing validation has received much less attention. Timing validation focuses on showing that derived timing budgets are not violated. The absence of violations serves as evidence for certification purposes on the timing correctness of the system. Automotive industry resorts to engineering practices based on creating stressing tests and collecting measurements, sometimes with the help of appropriate timing analysis tools that can be used for both timing verification and validation [21]. These techniques rely on the ability to collect information on the execution of the tasks under analysis. This is challenged by forthcoming Autonomous Driving (AD) systems, increasingly considered for adoption by automotive industry. This is so because AD systems build upon overwhelmingly complex software constructs. On one hand, paradoxically, part of the complexity is introduced to ease software development and maintainability. This includes self-managed thread/process creation for specific functionalities, subscription of services through callbacks, and abundant use of objects and pointers shared across different modules to name a few. This is, for instance, the case for Baidu’s Apollo AD framework, the largest AD project with more than 120 OEMs, Tier1, Tier2, AI and tech companies, and car manufacturers [6]. On the other hand, however, complex software constructs create unobvious and dynamic cross-process dependencies that available resource usage assessment tools fail to capture, thus being unable to measure, for instance, the actual execution time and memory requirements of AD software modules in general, and for their functions in particular. Hence, validation teams lack the means to perform their work for AD frameworks.

This paper addresses this challenge by proposing a set of guidelines to collect execution time and memory utilization measurements of AD modules and their components, thus enabling resource usage testing, as mandated in the automotive safety regulation ISO 26262 [11]. In particular, our contributions are the following:

1) An analysis of the difficulties and roadblocks to collect timing and memory utilization measurements of an AD software framework, using Apollo framework in general, and its Perception module in particular, as a representative software module for guiding the discussion.
2) A set of remedies and guidelines to defeat those roadblocks, En-Route, to perform the resource usage testing of AD software in general, and Apollo in particular, with specific focus on timing and memory utilization concerns. En-Route guidelines aim at setting the basis for the development of a full methodology.
3) An assessment of En-Route on Apollo’s Perception module. In particular, we showcase how execution times can be collected at fine granularities despite the complex and dynamic execution constructs of Apollo, and how memory utilization can also be collected and broken down across different Perception software components.

Although the work in this paper is applied to Apollo as an illustrative example, results and conclusions apply to other AD frameworks as well as autonomous systems in domains such as robotics, since challenges posed by Apollo relate to, first, its integration with the Robotics Operating System (ROS) [20], and second, to the use of abstractions to ease software maintainability such as Docker containers. Both such characteristics are common across autonomous system frameworks in general, and AD frameworks in particular (e.g. Autoware [10]).

The rest of the paper is organized as follows. Section [I] provides background on the safety-related software development process and on the Apollo AD framework. Section [II] analyzes the difficulties and roadblocks to perform resource usage testing on AD frameworks in general, building on Apollo as an
example. Section IV presents En-Route guidelines for resource usage testing of AD frameworks. En-Route is then evaluated in Section V. Finally, Section VI provides some related work, and Section VII concludes this paper.

II. BACKGROUND

In this section, we provide some background on the development process of automotive systems as stipulated in ISO 26262 safety standard, with emphasis on the software part, as well as on Apollo AD framework [6], [27], [2].

A. Safety-Related Software Development Process

ISO 26262, the main functional safety standard for road vehicles, provides guidance on how to develop automotive safety-related electric and electronic systems. Following the hazard and risk analysis, safety goals are identified as well as safety requirements for the different software items. This process is followed by decomposition of each software item into atomic software and hardware units that need to be implemented without further decomposition. This process also propagates safety requirements to each item following specified decomposition rules. As a result, each item is attached an Automotive Safety Integrity Level (ASIL), ranging from A to D, where D is the most stringent safety level and A the least. Alternatively, some components are not allocated any safety requirement, thus being tagged as Quality Managed (QM), meaning that safety regulations do not impose any requirement on them. All safety-related items (those with some ASIL) undergo a design, verification and validation process, as dictated by ISO 26262, to obtain enough evidence that those items meet their safety requirements to a sufficient extent.

In the case of software, the development process in ISO 26262, see Figure 1 consists of the requirements specification (6-6), software architectural design (6-7), and unit design and implementation (6-8) to reach the actual product. Then, the verification and validation phase starts with software unit testing (6-9), software integration testing (6-10), and software safety requirements verification (6-11). As part of this process, and, in particular, during unit and integration testing, resource usage testing may be performed to assess whether specific software items at different granularities (software units and integrated software) adhere to their requirements. However, those tests may still be limited due to the low level of integration at that stage, and resource usage testing must generally be repeated during the system verification and validation phase.

System-wise, see Figure 2 after the specification and system design, hardware and software product development occurs, where software development is as shown in Figure 1. Software and hardware items are then integrated to form a subsystem and, as indicated before, some testing is performed. At this stage, since the platform is closer to its final state, further testing processes with higher confidence can be performed, for instance, using hardware-in-the-loop environments where a Simulink model feeds the subsystem and its outputs are obtained with a host that validates them either real-time or simply logs them for some offline processing.

The aim of the resource usage test process during integration phases includes the following objectives:

1) Measuring minimum and maximum execution time, where the latter is of particular relevance for real-time systems.

2) Measuring memory requirements, in any type of storage (e.g. Flash memories, DRAM, SRAM, ROM) for code, (static) data, stack and heap.

3) Assess whether the task scheduling allows preserving all safety timing constraints (i.e. all tasks finish by their deadlines).

This information allows the integrator detecting unacceptable resource usage, as well as identifying the particular software component(s) causing excessive usage. For instance, the type of output obtained from these tests may be summarized in

ISO 26262 Part 6, devoted to product development at the software level, already states that “some aspects of the resource usage test can only be evaluated properly when the software integration tests are executed on the target hardware or if the emulator for the target processor supports resource usage tests.”
tables such as that in Figure 3. In particular, for different software items of a hypothetical combustion engine, Figure 3 shows the measured and budgeted (planned) CPU and memory usage (DFLASH, PFLASH, and, RAM) in an Infineon AURIX CPU.

B. Apollo AD Framework

Apollo [6] is an open software autonomous driving platform released by Baidu. It offers its partners the opportunity to develop their own AD systems through on-vehicle and hardware platforms. Regarding its software implementation, Apollo, similarly to most state-of-the-art AD systems, consists of a set of modules [3], [19] (see Figure 4). Each of the modules implements a crucial functionality of autonomous vehicles. The main modules of Apollo are:

- **Perception**: identifies the area surrounding the autonomous vehicle by detecting objects, obstacles, and, traffic signs and it is considered as the most critical and complex module of an AD system. Perception module fuses the output of several types of sensors such as LiDAR, radar, and camera to improve its accuracy.
- **Localization**: estimates where the autonomous vehicle is located, using various information sources such as GPS, LiDAR and IMU. State-of-the-art localization algorithms, including the one in Apollo, are capable of localizing the position of the vehicle at centimeter-level accuracy.
- **Prediction**: anticipates the future motion trajectories of the perceived obstacles.
- **Routing**: tells the autonomous vehicle how to reach its destination via a series of lanes or roads.
- **Planning**: plans the spatiotemporal trajectory for the autonomous vehicle to take.
- **Control**: executes the planned spatiotemporal trajectory by generating control commands such as accelerate, brake, and steering.
- **CanBus**: is the interface that passes control commands to the vehicle hardware. It also passes chassis information to the software system.
- **HD-Map**: is a library that provides ad-hoc structured information regarding the roads.
- **HMI** (Human Machine Interface, or DreamView in Apollo): is a module for viewing the status of the vehicle, testing other modules and controlling the functioning of the vehicle in real-time.
- **Monitor**: is the surveillance system of all the modules in the vehicle, including hardware.
- **Guardian**: is a safety module that performs the function of an Action Center and intervenes should Monitor detect a failure.

For the sake of facilitating the installation and dependencies between numerous libraries, Apollo is provided inside several Docker container images. A container is a standard software unit that packages up code and all its dependencies so the entire application can run in a quick and reliable way from one computing environment to another. A Docker container image is a lightweight, standalone, executable package of software that includes everything needed to run an application: code, runtime, system tools, system libraries and settings.

All modules in Apollo are implemented as *ApolloApps*, whose execution follows the code in figure 5. As it can be seen, Apollo uses three libraries for different purposes:

- The **Google Logging Library** (glog) [24], which implements an application-level logging, and provides logging APIs based on C++-style streams and various helper macros. This library contains the function `google::InitGoogleLogging`, which initializes it.
- The **Google Commandline Flags** (gflags) [23], which implements a C++ command-line flag processing. This library contains the function `google::ParseCommandLineFlags`, which looks for flags in `argv` and parses them.
- The **Robot Operating System (ROS)** [20] is a set of software libraries and tools that help building robot applications. Function `ros::init` is from ROS and it is needed before calling any other `roscpp` (C++ implementation of ROS) functions in a node. Each *ApolloApp* is a ROS node.

To sum up, one module starts with the initialization of glog and ROS, and also loads the parameters from the `argv` and parses them using gflags. These parameters are given to the application through configuration files or as flags in the command line. After that, the module calls the Spin function before finishing its execution. This function initializes one or
The global configuration of input sensors for the Perception module can be represented as a direct acyclic graph (DAG). With this, Apollo offers the possibility of building customized configurations, according to the requirements and the available hardware. These DAGs, along with other parameters of the input sensors, are defined in a configuration file. Apollo has implemented some of these configurations, which are available in the source files. In this work, we consider the DAG configurations shown in Figures 6 and 7, as they are the ones that we could execute with the data (ROS bag files) that Apollo provides.

In these DAGs, nodes correspond to different processes and each of them is responsible for completing a specific task. Arrows indicate data dependencies between nodes of each DAG. For instance, in Figure 7, Fusion requires the output data of Lane post-processing, Camera process, and Radar process.

**Beyond Apollo.** In this paper we study Apollo as a representative and well-known AD framework. There are other well-known AD systems such as Autoware [10] with similar software architecture design, using ROS and Docker containers, thus facing similar challenges to the ones explored in this paper. ROS is a popular operating system for autonomous frameworks, and it is extensively used in Robotics and other domains, due to the interfaces offered to integrate modules either time-triggered or event-triggered, making code maintainability a key feature of ROS. However, such advantage comes at the cost of using abundant pointers, indirections and abstraction layers that lead to significant testing difficulties, as discussed in the rest of the paper. In this paper, we focus on Apollo without lack of generality, and our contributions and findings can be naturally extended to other domains and frameworks.

---

2A bag is a file format in ROS for storing ROS message data. They are typically created by a tool like rosbag, which subscribe to one or more ROS topics, and store the serialized message data in a file as it is received. These bag files can also be played back in ROS to the same topics they were recorded from, or even remapped to new topics.
III. ROADBLOCKS FOR RESOURCE USAGE TESTING ON AD SOFTWARE

Due to the stringent performance requirements of AD platforms, high-performance hardware is deployed to execute specific functionalities fast enough. For instance, input data sensed through a camera, LiDAR or radar, need to be processed at specific rates (e.g., 25 frames per second for camera-based input data). Since heavy parallel computations need to be performed at such high rates, hardware accelerators such as GPUs are needed [16]. This is the case for Apollo in general, and its Perception module in particular [5], whose most heavy computations are offloaded onto a GPU. The use of GPUs is the most common solution for massive computation requirements of such workloads. Therefore, Apollo’s code is executed across CPUs and GPUs. Next, we review the difficulties experienced to perform resource usage tests in both computing components for the Perception module of Apollo as an illustrative example.

A. GPU Resource Usage Tests

We first identified two of the most suitable tools for profiling Perception’s GPU code. Since it is intended to run on NVIDIA GPUs, we use nvprof [18] and NVIDIA Visual Profiler which uses nvprof for visualizing the profiled information.

When attempting to use nvprof to profile Perception, we experienced three issues, as detailed next. **Issue 1: no execution progress.** The first and most challenging problem we have faced with nvprof, which occurred not only for the Perception module but for any Apollo module regardless of whether it uses the GPU or not, is that execution of the module seemed not to make progress at all, waiting in an infinite loop. Initially, we suspected that Perception was running slowly with the profiling tool rather than not making any progress, so we let the Perception module run for 24 hours. However, we observed no progress so we concluded that execution got simply stalled and the problem was not causing, instead, slow progress.

We attempted to find where and why execution got stalled, so we introduced printed messages in different parts of the module, but none of them was printed. Not even the message placed at the earliest possible execution point was printed. At this point, although we lack the means to double-check this hypothesis, we suspect that the problem relates to libraries loaded along with Apollo whose source code is not available and hence, cannot be inspected as we do for Apollo’s open-source code.

As part of the debug process, we came out with some conjectures on whether the source of the stall with nvprof was the fact that CUDA calls occurred through multiple threads or because those threads were launched by a Robotics Operating System (ROS) [29] embedded in Apollo. For that purpose, we developed two programs with those features and profiled them with nvprof. The first program creates several threads so that each of them launches and runs a CUDA kernel. The program is run and tested inside the Docker container to verify that, by using the container it does not affect the profiling process.

The second program, uses ROS with two nodes, a **subscriber** and a **publisher**. The publisher publishes ROS messages and whenever the subscriber receives a message, it creates several threads to launch and execute CUDA kernels. This program is designed to verify that the profiler is able to capture CUDA kernels that are launched through threads within ROS nodes. In both cases, profiling worked properly with no stall at all, so we concluded that those code constructs are not per se the source of Perception’s stall when profiled with nvprof.

Finally, we changed a number of profile options such as **profile-child-processes** or **profile-all-processes** without success. Only when we disabled the option to profile the application from start (**profile-from-start-off**) execution progressed as expected. However, this feature, as indicated by its name, disables profiling, so that, in order to profile Perception, we have to identify the parts of the code that we want to profile. This is, in general, unwanted, since this increases the burden on the user side to identify what parts of the code need being profiled instead of letting the profile tool simply profile the whole module under analysis.

**Issue 2: CUDA kernel identification.** Related with the previous issue, and given that we want to test the resource usage performed by the GPU code, we need to identify those code sections where CUDA kernels are launched. However, this is a cumbersome task since Apollo builds upon a modified version of Caffe [72], a framework intended to manage Artificial Neural Networks, which are the most computing intensive element of Perception. Such framework makes extensive use of the GPU. However, CUDA calls are performed through a number of function calls that increase the difficulties to trace what particular calls are used and where in the code.

**Issue 3: Lack of support for memory usage testing.**
The third issue relates to the lack of support to measure the memory usage performed by the code executed in the GPU. In particular, resource usage testing needs to determine not only end-to-end resource requirements, but also the requirements at finer granularities to help debugging and optimization during the development process. Unfortunately, we have been unable to identify any suitable tool that allows collecting this information for GPU code in an easy manner.

B. CPU Resource Usage Tests

We must first identify the tools to use to test the CPU parts of the Perception module (or any other part of any AD framework). In general, AD frameworks use arbitrarily complex programming constructs not suited for regular performance tools for safety-related systems, which are suited for highly-static program constructs, inline with the software development requirements imposed by ISO 26262. However, programming practices for Apollo differ noticeably from those indicated by ISO 26262 and, instead, target different objectives such as performance efficiency, modularity and maintainability, which leads to the use of multiple threads, callbacks, asynchronous processing and the like.

To test such a complex CPU code, we considered initially the use of profiling tools such as Valgrind [29], Google Perfor-
We introduce En-Route, our set of guidelines to enable resource usage tests for AD frameworks. Next, we introduce En-Route guidelines for GPUs and then for CPUs.

A. En-Route for GPUs

En-Route addresses the issues identified in previous section, namely execution progress, CUDA kernel identification, and memory usage testing.

4.1.1 Execution progress

As explained before, we observed execution progress only when we disabled the profile-from-start option of nvprof (with value off). This, however, disables by default any profiling, so we need to introduce calls to cudaProfilerStart and cudaProfilerStop (CUDA Profiler API) in appropriate code locations to profile relevant code sections (i.e. those using the GPU). We have used these calls and assessed that they allow profiling specific sections of the Perception module, obtaining execution time information for all the CUDA kernels and API functions that the module calls within the code region profiled. Figures 9 and 10 show an example of how to use them.

Once profiling has been enabled, another issue appeared: how to stop execution to collect profiling information. Apollo, as any other AD framework, is intended to run continuously. Its execution can be terminated correctly sending a SIGINT signal. This signal triggers a function that stops all processes correctly and finishes their execution. However, when running Apollo profiled with nvprof, the SIGINT signal may be received by nvprof instead of Apollo, thus terminating the profiling process in a way that profiling information is not collected rather than terminating Apollo itself. In order to solve this problem, we came out with a solution that consists of the following steps:

- Set the timeout option of nvprof. Note that AD frameworks perform all their activities in a loop with specific deadlines. Hence, this information can be used to set the timeout to profile the appropriate number of iterations of each functionality.
- Let Apollo run longer than the scheduled timeout before sending a SIGINT signal, which will therefore arrive when nvprof has already finished. At this point, profiling information collected by nvprof has been recorded correctly, thus providing information on execution time of GPU-related code.

4.1.2. CUDA kernel identification

Identifying the code sections where profiling is needed, and so where the CUDA Profiler API needs to be used, is easy in simple programs. However, the Apollo framework has a complex structure, thus challenging the identification of the location of CUDA calls. Apollo builds upon Caffe for its Artificial Neural Networks, and it turns out not to be trivial identifying what particular functions of Caffe need being profiled, which would require inspecting all functions.
Fig. 8: Call tree of the execution of the Perception module.

Fig. 9: Bash command to perform the profiling in selected sections.

```
nvprof -t timeout --profile --from-start off ./foo args
```

Fig. 10: Example of C++ code that selects the section of code to be profiled.

```
#include <cuda_profiler_api.h>

... void foo (...) {
    ...
    cudaProfilerStart();
    // Section you want to profile
    cudaProfilerStop();
    ...
}
```

of all nodes of Perception (or Apollo if we aim at analyzing the whole framework) to identify the Caffe functions to be profiled.

To simplify this process, En-Route imposes the profiling of all functions, thus relieving end users from having to track what functions are used in practice. Since this task would be tedious if applied manually, we have developed a Python script that automates the insertion of the profiling calls, thus easing the work of end users.

4.1.3. Memory Usage Testing

The last issue to solve for GPU code relates to the difficulties to obtain information about the memory usage of the CUDA calls. As explained before, no specific tool provides this feature on its own. Thus, to obtain memory usage information, En-Route builds upon the combination of two tools: the GNU Project Debugger (GDB) and the NVIDIA System Management Interface (nvidia-smi). In particular, our solution requires user intervention to determine the granularity at which memory usage must be assessed, and introduce breakpoints with GDB at the corresponding locations. Then, when running Perception and a breakpoint is reached, we use nvidia-smi to query how much memory is being used in the GPU, thus allowing to measure the amount of memory required at each point of the execution, as well as the amount of memory allocated between two consecutive breakpoints.

B. En-Route for CPUs

Besides GPT, we have evaluated to what extent Callgrind (a profiling tool from Valgrind) and Perf allow performing resource usage testing for the CPU code of Perception. Callgrind simply did not work with Perception, so we discarded it. Perf, although provided better results than GPT, failed to profile Perception completely providing accurate measurements for all functions. Overall, we found no tool providing appropriate support yet. Thus, there is a business opportunity for software vendors to develop appropriate tools for resource usage testing of complex CPU code.

As part of En-Route, we had to rely on engineering work together with the limited support of tools such as Perf to build the call tree of Perception. Once this information was obtained, it was obvious where to place timers systematically to collect execution times at any desired granularity. Analogously, memory usage could be obtained using Massif tool (part of Valgrind) [28]. In any case, CPU code has low
memory requirements since heavy processing and thus, large sets of data collected from sensors, occur in the GPU in AD frameworks.

Overall, En-Route provides guidelines to address all roadblocks that impede otherwise performing resource usage testing in AD frameworks. However, as discussed before, a number of processes require some degree of user intervention due to the lack of appropriate tools. Yet, those processes which are not automated, are systematic in nature and tools can be developed to perform them. Thus, while being a disadvantage in the current state, the lack of automation of those processes is an opportunity for software vendors to develop and commercialize appropriate tools.

V. EVALUATION

This section applies En-Route guidelines to the Perception module of Apollo. We provide execution time tests at node granularity for the CPU. Then, we provide execution time for GPU kernels. Finally, we provide results of the memory requirements tests.

Measurements have been obtained on top of an NVIDIA Jetson Xavier board intended for automotive systems [22]. It includes an 8-core CPU based on Carmel ARM V8 64-bit architecture, and an NVIDIA GPU with 512 CUDA cores based on the Volta architecture.

A. CPU Execution Time Usage Tests

We have collected execution times for the different nodes in Figures 6 and 7. Note that node execution time in the CPU also includes GPU execution times for those nodes using the GPU. The relative execution time for each node is shown in Figure 11 where each of the two input data setups (LiDAR and camera configurations) is normalized w.r.t. its total execution time. As shown, En-Route allows testing how much each function or node contributes to the total execution time of the module analyzed. In particular, we observe that Fusion has a large contribution to the overall execution time for both input data sets, whereas Radar has a low contribution instead. We also note that there are three nodes in each case that take almost $\frac{1}{3}$ of the total execution time each: Fusion, Lane post-processing and Camera for the camera input set, and Fusion, Traffic Light process and LiDAR for the LiDAR input set.

In order to dig more into this behavior, we analyze the timelines for both input sets. Excerpts of those timelines, obtained with the En-Route guidelines, are shown in Figures 12 and 13 for the 8-9 seconds time frame. Different color depth is used to indicate different jobs of the same task (node).

As shown, the different nodes run concurrently on the CPU and GPU of the NVIDIA Jetson Xavier platform. In particular, the three nodes dominating the execution time for each input set (see Figure 11) run almost continuously starting a new job almost immediately after finishing the previous one. Instead, two other nodes (Radar is one such node in both input sets) do not run most of the time, having some significant time elapsed between the end of one job and the start of the following one. This information can be retrieved since En-Route allows collecting start and end times for each node and function, thus allowing to build both the timelines and the execution time breakdowns.
B. GPU Execution Time Usage Tests

In order to illustrate the results of En-Route to test execution times on the GPU, we report in Table I the execution time of each CUDA kernel for the LiDAR process node. En-Route provides kernel execution times for each individual CUDA kernel of the node. This allows summarizing the data in the way shown in the table, where we report for each CUDA kernel the fraction of time devoted to that kernel w.r.t. the total time devoted to all kernels, the absolute accumulated execution time, the number of kernel calls, as well as the average, minimum and maximum execution time for each kernel. For instance, in the second row we find the results for function *sgemm_32x32x32_NN_vec*, intended to perform matrix multiplications. We see that this function takes 27.08% of the overall execution time spent by the CUDA kernels on the GPU, with a total of 368 calls, taking 411µs on average, for a total of 151ms.

C. Memory Usage Tests

Finally, we show the type of results that En-Route provides in terms of memory usage. We obtain memory usage per node or per function, and also the memory requirements over time, as depicted in Figure 14(a) and (b) for the CPU for input data with configurations using LiDAR and camera respectively. As Figure 14(a) shows, CPU memory usage grows up to 1.3 GB in around 100 ms. Such memory usage remains quite constant over time for the remaining 200 ms of execution, but also after that point until the end of the execution. Similarly, as Figure 14(b) shows, CPU memory usage grows up to 300 MB in around 20 ms and remains constant for the rest of the execution.

The main reason that the memory usages for the two configurations are different is related to the design of the AD software. For instance, both LiDAR and camera configurations use neural networks with different architectures and, therefore, have different memory usages.

In both cases, En-Route allows assessing how much memory is used by each different node, thus facilitating the validation process. For instance, we observe that CUDA support requires around 100MB for both configurations (note the different scale of the plots).

D. Summary

Overall, as shown, En-Route allows collecting detailed information in terms of resource usage for complex AD frameworks. We have shown that results allow assessing both, total resource usage as well as resource usage over time, thus enabling a wide variety of assessments for the verification and validation of AD frameworks.

VI. RELATED WORK

Resource usage tests have been often regarded as an engineering problem, being the main challenge how to create stressful tests. Moreover, since those tests are neither needed for the design of the system itself, nor for the validation of the safety requirements, no explicit safety requirements need to be fulfilled by those tests. Still, tool qualification may be required in accordance with ISO 26262 part 8 [11], since those tools are part of the development of safety-related elements. However, the advent of AD frameworks with software constructs far more complex than those used so far in automotive systems, challenge current resource usage testing practice, thus calling for new solutions. This paper tackles this challenge by presenting En-Route, a set of guidelines able to handle the complexity of AD frameworks to perform a wide variety of resource usage tests.

Existing tools for AD frameworks, such as the NVIDIA Visual Profiler and *nvp* [18], pose a number of limitations related to the dynamic behavior of AD frameworks and the fact that they are intended to run continuously, thus never ending the profiling process. Thus, appropriate utilization of these tools is needed, as performed by En-Route.

Tools for CPU profiling, such as *Valgrind*, *Google Performance Tools* (GPT) or *Perf*, pose also a number of limitations to resource usage testing since they also clash with the dynamic behavior of AD frameworks. Thus, new solutions are needed matching the needs of AD frameworks.

The set of guidelines proposed in this paper, En-Route, overcomes these limitations. While we identified that some additional tool support for an enhanced automation of the process would be convenient, the solutions provided in this paper already enable resource usage testing for complex AD frameworks, subject to the qualification of these tools (or

<table>
<thead>
<tr>
<th>Time (%)</th>
<th>Time</th>
<th>Calls</th>
<th>Avg</th>
<th>Min</th>
<th>Max</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>27.08</td>
<td>151.14ms</td>
<td>368</td>
<td>410.72µs</td>
<td>32.25µs</td>
<td>1.5219ms</td>
<td><em>sgemm_32x32x32_NN_vec</em></td>
</tr>
<tr>
<td>19.17</td>
<td>107.01ms</td>
<td>437</td>
<td>244.87µs</td>
<td>8.4160µs</td>
<td>1.1276ms</td>
<td>void caffe::im2col_gpu_kernel</td>
</tr>
<tr>
<td>13.16</td>
<td>73.46ms</td>
<td>653</td>
<td>112.51µs</td>
<td>864µs</td>
<td>1.9801ms</td>
<td>[CUDA memcpy HtoD]</td>
</tr>
<tr>
<td>9.99</td>
<td>55.76ms</td>
<td>115</td>
<td>484.92µs</td>
<td>242.70µs</td>
<td>1.2116ms</td>
<td>[CUDA memcpy DtoH]</td>
</tr>
<tr>
<td>9.26</td>
<td>51.66ms</td>
<td>115</td>
<td>449.23µs</td>
<td>41.730µs</td>
<td>895.69µs</td>
<td>void caffe::col2im_gpu_kernel</td>
</tr>
<tr>
<td>5.84</td>
<td>32.58ms</td>
<td>575</td>
<td>56.66µs</td>
<td>2.8160µs</td>
<td>245.80µs</td>
<td>void gemmk1 kernel</td>
</tr>
<tr>
<td>4.63</td>
<td>25.85ms</td>
<td>552</td>
<td>46.83µs</td>
<td>2.0800µs</td>
<td>217.77µs</td>
<td>void caffe::ReLUForward</td>
</tr>
<tr>
<td>4.14</td>
<td>23.11ms</td>
<td>115</td>
<td>200.97µs</td>
<td>63.395µs</td>
<td>354.90µs</td>
<td><em>sgemm_128x128x8_TN_vec</em></td>
</tr>
<tr>
<td>3.47</td>
<td>19.38ms</td>
<td>92</td>
<td>210.71µs</td>
<td>125.13µs</td>
<td>346.09µs</td>
<td><em>maxwell_sgemm_128x64_raggedMn_nn_splitK</em></td>
</tr>
<tr>
<td>1.56</td>
<td>8.724ms</td>
<td>184</td>
<td>47.416µs</td>
<td>6.3420µs</td>
<td>124.04µs</td>
<td>void caffe::Concat</td>
</tr>
<tr>
<td>0.95</td>
<td>5.287ms</td>
<td>184</td>
<td>28.736µs</td>
<td>12.320µs</td>
<td>78.563µs</td>
<td>void caffe::Slice</td>
</tr>
<tr>
<td>0.68</td>
<td>3.809ms</td>
<td>69</td>
<td>55.129µs</td>
<td>24.929µs</td>
<td>114.66µs</td>
<td>void caffe::SigmoidForward</td>
</tr>
<tr>
<td>0.05</td>
<td>299.37µs</td>
<td>23</td>
<td>13.016µs</td>
<td>12.640µs</td>
<td>13.985µs</td>
<td>void caffe::mul_kernel</td>
</tr>
<tr>
<td>0.02</td>
<td>103.38µs</td>
<td>157</td>
<td>658ns</td>
<td>370ns</td>
<td>1.3520µs</td>
<td>[CUDA memset]</td>
</tr>
</tbody>
</table>

**TABLE I**: CUDA kernels executed by LiDAR process Sub-node.
equivalent ones) to fully adhere to the requirements of a safety-related development.

VII. CONCLUSIONS

Resource usage tests are a requirement for safety-related automotive systems, as indicated in ISO 26262. The advent of AD frameworks challenges current practice to perform those tests due to the complexity of those software frameworks and the hardware platforms that need to be used, which include CPUs and GPUs.

In this paper, we present En-Route, a set of remedies and guidelines to enable resource usage testing on complex AD frameworks. We assess En-Route with the Apollo AD framework, a popular commercial AD framework, illustrating the main difficulties to use existing tools and how those difficulties can be defeated, leading to a wide variety of results for execution time and memory requirements. In particular, those results allow breaking down resource usage across functions and assessing usage over time, thus facilitating the duties of system integrators to validate that resource usage is within expected bounds. While En-Route is applied on Apollo, findings of this applied research work can be naturally extended to other AD frameworks (e.g., Autoware) or analogous frameworks in other domains (e.g., in the robotics domain).

ACKNOWLEDGEMENTS

This work has been partially supported by the Spanish Ministry of Economy and Competitiveness (MINECO) under grant TIN2015-65316-P, the UP2DATE European Union’s Horizon 2020 (H2020) research and innovation programme under grant agreement No 871465, and the HiPEAC Network of Excellence. MINECO partially supported Jaume Abella under Ramon y Cajal postdoctoral fellowship (RYC-2013-14717) and Leonidas Kosmidis under Juan de la Cierva-Formación postdoctoral fellowship (FJCI-2017-34095).

REFERENCES