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Rocket engines and new generations of high-pressure gas turbines and diesel engines
oftentimes involve atomization, vaporization and combustion of propellants injected at
subcritical temperature into an environment at a pressure larger than that of the corre-
sponding critical points of the individual components of the mixture. This class of tra-
jectories in the thermodynamic space have been referred to as transcritical. As a result,
relatively sharp interfaces may persist in pressure and temperature conditions where they
were not expected to exist. This is particularly relevant in hydrocarbon-fueled mixtures
that display a critical-point elevation property by which the two-phase region extends up
to pressures much larger than the critical pressures of the individual components. As a
consequence, linear thermodynamic trajectories emulating typical injection conditions fre-
quently pass through the two-phase region, thus indicating that the mixture may become
separated there into liquid and vapor phases by an interface. In this study, a set of mod-
ifications to the Navier-Stokes equations for multi-component flows is proposed based on
diffuse-interface theory in order to treat the emergent and vanishing interfaces in the same
flow field. This requires appropriate alterations of the stress tensor and diffusive fluxes
of heat and species. The resulting transport formulation is particularized for binary mix-
tures, as well as collapsed to single-component gradient theory for stationary quasi-planar
vapor-liquid interfaces.

Nomenclature

a, b Equation of state coefficients
c Molar density, mol/m3

D Diffusion coefficient, m2/s
E Specific total energy, J/kg
e Specific internal energy, J/kg
F Helmholtz free energy, J
f Specific Helmholtz free energy, J/kg
G Gibbs free energy, J
h Specific enthalpy, J/kg
J,J Species diffusion fluxes, kg/(s·m2)
N Number of species
n Number of mols
NA Avogadro’s number, 1/mol
P Pressure, bar
q,Q Heat diffusion fluxes, J/(s·m2)
qc Heat conduction flux, J/(s·m2)
R0 Ideal gas constant, J/(K·mol)
s Specific entropy, J/(kg·K)
ṡprod Entropy production rate, J/(K·s·m3)
T Temperature, K

t Time, s
v velocity vector, m/s
v Molar volume, mol/kg
W Molecular weight, kg/mol
X Molar fraction
Y Mass fraction
Z Compressibility factor
η, ζ Shear and bulk viscosities, Pa·s
κ Gradient-energy coefficient, m7/(kg·s2)
λ Thermal conductivity, W/(m·K)
µ̄ Molar chemical potential, J/mol
ρ Density, kg/m3

σ Surface-tension coefficient, N/m
τ ,K Stress tensors, N/m2

ϕ Fugacity coefficient

Subscripts
c Critical point
i, j Species index
NL Non-local quantity
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I. Introduction

The characteristic pressure and temperature of the burnt gases in the combustor of Apollo’s Saturn-V F-1
rocket engines were 77.5 bar and 3572 K. The engine operated a mixture of liquid oxygen (critical pressure
Pc = 50 bar; critical temperature Tc = 155 K) and RP-1 fuel (Pc = 21 bar; Tc = 662 K). The typical injection
temperatures of RP-1 and liquid oxygen were 311 K and 97 K, respectively. The propellants were injected
separately into the combustion chamber through a multi-perforated plate that forced their atomization and
mixing by delivering them as mutually impinging jets.

The F-1 rocket engine is a classical example of a contemporary generation of high-power aero-propulsion
devices that pushed the operating conditions above the critical points of the propellants. The technical
command of such high combustion pressures represented a cornerstone in enabling the large power and
specific impulse necessary for a manned mission to the Moon. However, the extreme operating conditions
brought along several engineering challenges, among which the most critical one for the Apollo Program
proved to be that of combustion instabilities created by the injection configuration.1 Early analyses of this
problem recognized the conceptual difficulties related to describing atomization, vaporization and combustion
of propellants injected at subcritical temperatures into an environment at a pressure larger than that of their
corresponding critical points.2 This class of trajectories in the thermodynamic space have been referred to
as transcritical in more recent literature.3 The deleterious combustion pressure waves present in the first
designs of the F-1 rocket engines were removed by modifying the injection plate with a number of baffles,
since the phenomenon was sensitive to the characteristic distance from the injection plate to the beginning
of the combustion zone. Paradoxically, that distance appears to be a quantity hardly possible to predict
even nowadays with current theoretical and computational models for reasons explained later in this section.

The study of transcritical dynamics also finds important applications in recent designs of gas turbine
engines for jet propulsion. In particular, current trends in ultra-low emission technologies for aviation
industry are gearing combustors toward lean burn and high pressure ratios. Lean burn aims at decreasing
nitrogen oxides by avoiding their peak production rate at stoichiometry, but requires an intense dilution
and mixing of the fuel with the air entering the combustor. Similarly, high pressure ratios are employed
to increase engine power and reduce emissions of carbon oxides and unburnt hydrocarbons. These pressure
ratios yield combustor pressures of order 45 bar at takeoff, while most jet fuels have critical pressures in
the range 15-22 bar. In this way, transcritical conditions likely develop in the combustor that may have
an impact on the fuel-air mixing characteristics because of the alteration of the classic spray atomization
dynamics expected at lower pressures. However, the extent of these effects remains mostly unknown. Recent
experimental observations of similar aspects have been made within the context of diesel engines by Dahms
and coworkers.4

The challenge for predictive calculations of transcritical phenomena is the complexity of the transitional
character of liquid breakup, dispersion and vaporization as conditions approach the critical point. To under-
stand this, consider first the subcritical limit in which the liquid is injected into a hot gas environment whose
pressure is lower than the critical pressure of the liquid. In this limit, the liquid-to-gas density ratio is large,
and the liquid atomizes following classic dynamics reported in several studies.5 The resulting thickness of
the liquid-gas interface is clearly not in the continuum range and can be taken to be infinitesimally small in
hydrodynamic scales. Additionally, a relatively large amount of energy must be provided by the gas in order
to heat up and vaporize the liquid phase. As a result, the beginning of the vaporization stage is delayed
farther downstream until the liquid has broken up into a sufficiently dilute cloud of droplets.6 However, as
the pressure is increased above the critical point of the liquid, the liquid-gas density ratio decreases because
of an increase in the density of the gas environment. The interface becomes thicker as the liquid receives heat
from the combustor environment and its temperature nears the critical temperature. This is accompanied
by a decrease in surface tension and vaporization enthalpy, in a manner that makes the atomization process
to increasingly resemble one at infinite Weber numbers followed by rapid mixing with the gas environment
without significant energy barrier for vaporization.

Heavy hydrocarbons require increments of temperature of order 300−400 K in order to reach their critical
points. For these fuels, it is conceptually plausible that finite surface-tension and vaporization effects persist
longer in the combustor. However, the problem becomes exceedingly complex in mixtures of hydrocarbons
and typical oxidizers, in that the resulting phase diagram displays critical-point elevation properties that,
depending on the local composition, may lead to locally subcritical conditions even if the pressure is much
larger than the corresponding critical values of the separate components. This may lead to the persistence
of relatively sharp interfaces in pressure and temperature conditions where they were not expected to exist.
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Note that for single-component systems consisting of a liquid atomizing in its own vapor, the description of
the dynamics becomes much simpler, in that there is practically no distinction between the two phases at
pressures above the critical point. Accordingly, the interface disappears, and the surface tension vanishes.
The single-component case, however, is not the one found in most practical applications. Additional factors
that prevent further understanding of transcritical dynamics are the large uncertainties in high-pressure
physical properties of complex mixtures of reactants and combustion products, and the lack of quantitative
experimental diagnostics for model validation in such extreme environments.

This work addresses basic theoretical aspects of flow transport under transcritical conditions. It is
organized as follows. In Section II, a phase diagram for a typical hydrocarbon-fueled system is described
that illustrates the thermodynamic space of solutions at high pressures and describes critical-point elevation
properties. Section III is devoted to a derivation of a set of conservation equations that simultaneously
consider surface-tension effects along with relatively permeable interfaces. Lastly, conclusions are provided
in Section IV . This report builds on recent analyses from Ref.7 by providing different perspectives of the
formulation and additional considerations that may be of practical use in the computation of hydrocarbon-
fueled transcritical flows.

II. Phase diagrams and critical-point elevation properties of
hydrocarbon-fueled mixtures

Some insight can be gained into system trajectories leading to transcritical regimes by studying vapor-
liquid equilibrium curves. These correspond to boundaries of the region within which the system separates
into two or more different phases across an interface. The phase diagram illustrates the thermodynamic
space of solutions of the problem, but does not provide any information about the dynamics. For instance,
the liquid-fuel stream and the hot gas environment may be both represented by two different points in the
phase diagram, but the thermodynamic trajectories of the mixture elements are solutions to the conservation
equations and the associated boundary conditions. In this section, mixtures of n-dodecane (Pc,1 = 18 bar,
Tc,1 = 658 K) and nitrogen (Pc,2 = 34 bar, Tc,2 = 126 K) are studied since they are commonly considered
as surrogates of high-pressure fuel/air mixtures for gas turbines and diesel engines.8,9

The details of the computation of phase envelopes will be omitted here as they are a classical subject
treated in reference textbooks.10 In general, vapor-liquid equilibrium curves are obtained by computing so-
lutions of the zeroed second-order variation

∑N
i=1

∑N
j=1(∂2F/∂ni∂nj)T,ρ,nk 6=i,j

∆ni∆nj = 0 of the Helmholtz
free energy F , where ∆ni are non-zero perturbations of moles of species i, ρ is the density, and N is the
number of components of the mixture (N = 2 in this example). Similarly, the calculation of the critical line,
which corresponds to the curve connecting the critical points for different mixture compositions, follows the
methodology introduced in Ref.11 The critical point of multi-component mixtures is the thermodynamic state
at which the bubble point and the dew point converge (which does not necessarily occur at inflection points
of isobars), and therefore corresponds to a stable point at the limit of thermodynamic stability. They are
obtained from the solutions to the equation

∑N
i=1

∑N
j=1

∑N
k=1(∂3F/∂ni∂nj∂nk)T,ρ,n` 6=i,j,k

∆ni∆nj∆nk = 0
for the third-order variation of F .

The equations described above are supplemented with the Peng-Robinson12 equation of state, which is
formally introduced later in Eq. (10). The coefficients a and b of the equation of state depend on the critical
temperatures, critical pressures and acentric factors of the individual mixture components, as well as on the
local temperature and mixture composition. They are obtained by first computing the individual values of
the coefficients for each species, ai and bi, as specified in Ref.,13 which are combined using van der Waals
mixing rules as

a =
N∑
i=1

N∑
j=1

XiXjaij , b =
N∑
i=1

Xibi with aij = (1− ηij)
√
aiaj , (1)

where Xi is the molar fraction of species i, and η1,2 = 0.1561 is a binary interaction parameter fitted to
experimental data in Ref.14

The vapor-liquid equilibrium curves resulting from the computations are shown in Figure 1 in a three-
dimensional space formed by P , T and the mass fraction of n-dodecane Y . The three-dimensional two-
phase region, which is enclosed under the surface enveloping the curves, reaches much larger pressures
than the critical pressure of each component. In practical terms, this is translated into the fact that an
n-dodecane liquid jet flowing into a nitrogen ambient at pressures much larger than Pc,1 = 18 bar may
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Figure 1. Vapor-liquid equilibrium curves (solid lines) for n-dodecane/nitrogen mixtures colored by pressure, with
Y indicating the mass fraction of n-dodecane. Pure-substance boiling lines for nitrogen (dashed red) and n-dodecane
(dashed blue) are shown, along with their corresponding critical points (squares). Experimentally measured critical
points are denoted by triangles.

undergo transcritical trajectories that cross the two-phase region. As a result, such flow may display remnant
effects of surface tension and atomization characteristics similar to lower pressure jets that in principle were
not expected to be observed in these thermodynamic conditions, as shown in experiments in Ref.8 This
critical-point elevation property is also illustrated by the divergence of the the critical line arriving to the
nitrogen side, as observed in Figure 2, which indicates that the two-phase region is unbounded in pressure.
Conversely, the critical line starting at the nitrogen critical point meets a liquid-liquid-gas phase-equilibrium
line (indistinguishable from the nitrogen boiling line in the scales of Figure 2) at an upper critical end point.
The three-phase equilibrium line continues toward lower pressures and temperatures between the boiling
lines of the two pure components, thereby suggesting that the crossing of the three-phase equilibrium region
is only relevant at pressures lower than Pc,2 = 34 bar and across a very narrow range of temperatures around
Tc,2 = 126 K. The phenomena of divergence of the critical line and occurrence of three-phase equilibria are
typical in mixtures classified as class-II/type-III according to the analysis in Ref.15 This group of mixtures,
to which other n-alkane/nitrogen systems also belong, is characterized by individual components with very
different critical temperatures.

It should be stressed that the computation of critical points in complex mixtures involves a number of
assumptions and model parameter values that find little justification on physical grounds. For instance, the
mixing rules (1) correspond to an ad-hoc molar weighting of the individual coefficients ai and bi, whose ex-
pressions depend on calibrated interaction parameters and measured critical points of the pure substances.13

However, it is of some interest to note that the resulting divergent trend of the critical line computed from the
vapor-liquid equilibrium agrees well with the values experimentally obtained in Ref.,14 as shown in Figures 1
and 2.

The phase diagram facilitates the understanding of the thermodynamic trajectories involved in the in-
jection of hydrocarbon fuels into high-pressure environments. As an illustration, consider the examples of
linear thermodynamic trajectories followed by mixture elements in the problem of a liquid n-dodecane jet in-
jected in a nitrogen environment at 900 K, which are provided in Figure 3. Two fuel injection temperatures,
corresponding to 363 K (case 1) and 563 K (case 2), are studied, along with three nitrogen-environment
pressures, namely, 50, 100, and 200 bar. The trajectories are superimposed on maximum-temperature curves
bounding the two-phase region at each pressure. Note that the trajectories resulting from integration of the
conservation equations may not be generally linear.16

For all pressure values considered in case 1, the mixture elements start as compressed liquids in the
n-dodecane stream. As heat is supplied from the surrounding gas, the mixture elements enter the two-phase
region where they necessarily separate into liquid and vapor phases by an interface where surface-tension
forces operate. The mixture elements eventually exit the two-phase region and change phase to a supercritical
state while mixing with the surrounding nitrogen gas. On the other hand, in case 2, the intersection with the
two-phase region is completely avoided for the largest pressure value considered in the nitrogen environment.
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Figure 2. Two-dimensional projections of the vapor-liquid equilibrium curves on the temperature-pressure plane for a
n-dodecane/nitrogen system, including description of the diagram for Y = 0.5 (left panel) along with arrays of vapor-
equilibrium curves for different values of Y (right panel). Refer to caption in Figure 1 for the remaining symbols and
lines.

The resulting thermodynamic path involves no sustained separation of the two components through an
interface. In these conditions, atomization and mixing are solely limited by the rate of supercritical mass
diffusion.

Figure 3 demonstrates that the fluid dynamical description of problems where transcritical conditions
are traversed requires the treatment of emerging and vanishing interfaces in the same flow field depending
on the local thermodynamic conditions of the mixture elements as they move across the flow field. A set of
modifications to the Navier-Stokes equations are presented below that attempt to enable this treatment.

III. Conservation equations for transcritical flows

This section describes a general formulation of the conservation equations and associated transport fluxes
based on diffuse-interface theory for multi-component flows. The development begins by outlining the main
characteristics of the theory, and continues with the general conservation equations along with derivations
of the transport fluxes from thermodynamic considerations.

III.A. Non-local thermodynamic effects

The theoretical foundations of the diffuse-interface approach were first established for single-component
systems in thermodynamic equilibrium by van der Waals.17 It was later extended to study binary mixtures
near the critical point by Cahn and Hilliard.18 More recently, the approach has been coupled to the equations
of fluid motion for single-component systems.19 Thermodynamic investigations of transition between two-
and single-phase states using the diffuse-interface approach for inert and chemically reacting multi-component
systems have also provided understanding of the behavior of propellants in high-pressure environments.7,20

The diffuse-interface theory rests upon the fact that the two-phase region within the liquid-vapor equi-
librium curve in the phase diagram is thermodynamically unstable, in that no stable thermodynamic state
exists that describes a spatially homogeneous mixture of liquid and vapor. This is perhaps easily visualized
by bringing a single-component fluid in a closed vessel to its vapor pressure. The substance tends to separate
in two phases of unequal density bounded by a thin transition layer where capillary forces become important.
The general results of the diffuse-interface theory are aimed at describing the mechanics of the transition
layer as well as the fluxes of energy and mass across it. The former correspond to familiar surface-tension
forces emerging from the resistance of the interface to get deformed, while the latter represent vaporization
and diffusive mixing.
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Figure 3. Examples of linear thermodynamic trajectories (solid lines) superimposed on maximum-temperature curves
(dashed colored lines) bounding the two-phase region of n-dodecane/nitrogen mixtures at nitrogen-environment pres-
sures of 50, 100, and 200 bar. Symbols denote the thermodynamic conditions of the nitrogen environment (left-hand-side
square) and n-dodecane stream at 363 K (lower right-hand-side square) and 663 K (upper right-hand-side square). The
diamond symbols represent critical points at the corresponding pressure.

The description of the structure of the transition layer requires consideration of non-local thermodynamic
potentials, where the non-locality is represented by gradients of selected variables. Additional considerations
based on the second principle of thermodynamics typically preclude non-locality to be expressed only in
terms of composition or density gradients (e.g., see Ref.21 for details on the mathematical justification).
The analysis is facilitated when the degree of non-locality is assumed to be small, with the characteristic
length of the composition gradients being large compared to intermolecular distances, which typically limits
the theory to situations when the interface is relatively thick compared to the molecular mean free path, as
in conditions near and above the critical point. In this limit, the disturbances of the local thermodynamic
state are proportional to the square of the composition gradients in the first approximation.18 For instance,
the non-local corrections to the specific values of Helmholtz free energy f , internal energy e and entropy s
are

fNL = f +
1
2ρ

N∑
i=1

N∑
j=1

κij∇ρi∇ρj , eNL = e+
1
2ρ

N∑
i=1

N∑
j=1

κeij∇ρi∇ρj ,

sNL = s+
1
2ρ

N∑
i=1

N∑
j=1

κsij∇ρi∇ρj , (2)

where ρ is the mixture density, ρi is the partial density of species i, and N is the number of species.
Additionally, κij , κeij and κsij are gradient-energy coefficients, which can be computed directly as a function of
collision parameters from kinetic-theory considerations of interactions between molecules in regions subjected
to macroscopic density gradients (e.g., see Ref.22 and Chapter 1 in Ref.23).

Since the gradient-energy coefficients κij are related to the interface thickness and surface tension, their
precise characterization is central to the predictions of the diffuse-interface theory. However, appropriate
formulations of this parameters are lacking, and most investigations utilize relations of the type κij =√
κiiκjj = κji for the cross-influence coefficients i 6= j, along with empirical correlations for the individual

coefficients κii such as24

ln
(

κii

aibi
2/3

N
8/3
A

)
= κ0,i + κ1,i ln

(
1− T

Tc,i

)
+ κ2,i

[
ln
(

1− T

Tc,i

)]2

(3)
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for T/Tc,i ≤ 0.95, where Tc,i is the critical temperature value, and NA is the Avogadro’s number. In Eq. (3),
the correlation coefficients κ0,i, κ1,i and κ2,i are usually calibrated based on experimental measurements of
surface tension, while the parameters ai and bi correspond to coefficients of the equation of state, as described
in Section II. Note that models such as Eq. (3) typically yield κii = 0 above the critical temperature of
the corresponding species, as suggested by the fact that the surface tension vanishes for single-component
systems above the critical point. For instance, in the n-dodecane/nitrogen system described in Section II,
the relevant gradient-energy coefficient becomes that of the n-dodecane, κ1,1, since the temperature in the
flow is larger than the critical temperature of nitrogen everywhere (i.e., κ2,2 = κ1,2 = κ2,1 = 0).

Exact expressions relating the gradient-energy coefficients κij , κeij and κsij can be easily derived by
substituting the relations (2) into the definition of the local Helmholtz free energy, f = e − Ts, with
s = −(∂f/∂T )ρ,ni

, thereby yielding

κeij = κij + T

(
∂κij
∂T

)
ρ,nk

and κsij = −
(
∂κij
∂T

)
ρ,nk

. (4)

The consideration of non-local thermodynamic potentials, as in Eqs. (2)-(4), leads to the emergence of
interface-related transport fluxes and mechanical stresses in the conservation equations as described below.

III.B. Conservation equations

The description of thin interfaces and their dynamics in conjunction with the outer fluid motion in a single
Eulerian field requires non-trivial extensions of the Navier-Stokes conservation equations. In principle, the
derivation of these modifications from molecular considerations and first principles is a difficult task due
to the lack of a clear physical understanding of the molecular structure of fluids across the critical point.
In this study, a phenomenological approach is followed based on a linear augmentation of the deviatoric
part of the stress tensor, τ , and the heat and species diffusion fluxes, q and Ji, with the corresponding
interfacial transport terms K, Q and Ji derived from the diffuse-interface theory. These, as shown below,
can be made to satisfy certain conditions of entropy maximization that are in accord with the second law of
thermodynamics. The resulting conservation equations for mass, momentum, species and total energy are

∂ρ

∂t
+∇ · (ρv) = 0, (5)

∂ (ρv)
∂t

+∇ · (ρv ⊗ v) = −∇PNL +∇ · (τ + K) , (6)

∂ (ρYi)
∂t

+∇ · (ρvYi) = −∇ · (Ji + Ji) , i = 1, ..., N, (7)

∂ (ρE)
∂t

+∇ · (ρvE) = −∇ · (PNLv)−∇ · (q + Q) +∇ · [(τ + K) · v] , (8)

which describe the continuum dynamics of a multi-phase, multi-component fluid of N species that moves at a
mass-averaged velocity v and has a local density ρ and total energy E, and which may contain thin interfaces
separating different phases. In this formulation, Yi is the mass fraction of species i, q = qc +

∑N
i=1 hiJi is

the sum of the heat conduction and the energy flux by inter-diffusion, hi is the partial specific enthalpy, and
PNL a non-local thermodynamic pressure defined as

PNL = P − 1
2

N∑
i=1

N∑
j=1

κij∇ρi∇ρj . (9)

The convenience of redefining pressure as in Eq. (9), will become clear in Section III.C. In Eq. (9) the local
thermodynamic pressure P can be obtained, for instance, from the cubic equation of state12

P =
R0T

v − b
− a

v2 + 2bv − b2
, (10)

whose utilization is beneficial at the high pressures considered here. In the notation, v = W/ρ is the molar
volume, with W = (

∑
i=1 Yi/Wi)−1 the mean molecular weight. The coefficients a and b, which correspond

to mixture-averaged versions of the pure-substance ones ai and bi as in Eq. (1), account for real-gas effects
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such as finite packing and increased intermolecular interactions at large densities and pressures. It should be
stressed that the choice of Eq. (10) is not central to the diffuse-interface formalism insofar as it reproduces
the multivalued character of the mixture density in conditions of phase change. Note that several other
equations of state are available in the literature that have similar characteristics.25,26

Chemical conversion sources have been excluded for simplicity from Eq. (7). Gas-phase combustion
reactions tend to occur far from interfaces and in regions where the local mass fraction of fuel vapor is
sufficiently small to warrant stoichiometric proportions. However, this approximation may not be appropriate
if thermal decomposition of the liquid fuel plays an important role in modifying the interface properties.

In the species conservation equation (7), the different N components of the mixture are described by
their corresponding mass fractions irrespectively of their phase state. Note that this is in contrast with
traditional treatments of dispersed multi-phase flows, where the gas and liquid mass fractions are described
by their corresponding conservation equations. In the diffuse-interface formulation, the phases are separated
by interfaces in thermodynamic conditions corresponding to the two-phase region. In those situations,
the interfacial stress tensor K in the momentum equation (6) provides information about the dynamical
equilibrium of the separating interface, while the fluxes Q and Ji modify the transport of heat and mass
across the interface accordingly. The high-pressure characteristics of the transport fluxes are described in
detail in Section III.C.

A complete description of the mixture state requires specification of the analytical form of the thermo-
dynamic potentials. At high pressures, increasing departures from the ideal-gas theory are observed, and
consequently, derivation of more complex expressions are necessary. A common approach to express high-
pressure real-gas thermodynamic potentials is to decompose them into the sum of their ideal-gas counterparts
(denoted below by the superscript 0) and departure functions that measure deviations with respect to the
ideal-gas behavior.28 For instance, the departure function for the molar enthalpy is

h̄− h̄0 =
∫ T

T 0
C0
p dT +

∫ P

0

[
v − T

(
∂v

∂T

)
P

]
dP, (11)

where h̄0 and C0
p are the ideal-gas reference molar values of enthalpy and constant-pressure heat capacity,

with T 0 = 298.15 K. Subsequently, the molar internal energy can be obtained from the enthalpy definition
as

ē = h̄− Pv. (12)

These expressions are valid for any equation of state. Exact forms of the departure functions for multi-species
mixtures can be found in Ref.29 for the Peng-Robinson equation of state.

Similar considerations apply for the molar chemical potential

µ̄i =
(
∂G

∂ni

)
T,P,nj 6=i

(13)

defined as the partial molar of the Gibbs free energy G. The corresponding decomposition is given by

µ̄i = µ̄0
i + R0T lnϕi, (14)

where µ̄0
i (T, P ) is the ideal-gas counterpart. In Eq. (14), the departure function involves the dimensionless

fugacity coefficient ϕi = fi/(XiP ), which represents the ratio of the fugacity fi to the partial pressure. In
particular, for the Peng-Robinson equation of state, the logarithm of the fugacity coefficient becomes

lnϕi =
bi
b

(Z − 1)− ln (Z −B)− A

2
√

2B

[
2
∑N
j=1Xiaij

a
− bi
b

]
ln

[
Z +

(
1 +
√

2
)
B

Z +
(
1−
√

2
)
B

]
, (15)

where A = aP/(R0T )2, B = bP/(R0T ), and the coefficients a and b are given by Eq. (1). Addition-
ally, Z = Pv/(R0T ) is the compressibility factor, which quantifies the departures from the reference value
Z = 1 corresponding to the ideal-gas equation of state. Figure 4 shows the fugacity coefficients for an n-
dodecane/nitrogen mixture at high pressure. While departures from ideality are largest at low temperatures,
the chemical potential resembles that of the ideal gas for sufficiently large temperatures (e.g., above 900 K).
Similar trends hold up to pressures of order 103 bar.

The transport coefficients also undergo large variations across the phase diagram at high pressures. The
transition from liquid-like to gas-like characteristics prevent the utilization of simple expressions for the
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Figure 4. Logarithm of the n-dodecane (left panel) and nitrogen (right panel) fugacity coefficients as a function of
temperature and fuel mass fraction for an n-dodecane/nitrogen mixture at P = 100 bar.

evaluation of mixture’s viscosity, thermal conductivity and diffusion coefficients. Instead, the method in
Ref.27 is typically used to evaluate viscosity and thermal conductivity as function of T and ρ, whereas
diffusion coefficients can be calculated, for example, following the expressions given in Chapter 11 in Ref.28

for high-pressure conditions. These coefficients, however, are currently subject to large uncertainties.

III.C. Transport fluxes

The system of conservation equations (5)-(8) requires closure expressions for τ , K, qc, Q, Ji, and Ji. This
is achieved through the method of irreversible thermodynamics by specifying constitutive relations such
that the entropy production is non-negative. This methodology requires that one finds the conservation
equation of entropy guided by the fact that the source terms are written as a sum of products of fluxes and
thermodynamic forces.31 The formulation is greatly simplified when κij does not depend on temperature,
in such a way that κeij = κij and κsij = 0, as implied by Eq. (4). In view of the experimental correlation
(3), this is an approximation that has an unclear physical justification but has however been used in the
literature22,30 and will also be followed here. Starting from the second principle of thermodynamics for a
multi-component system

Tds = de+ Pd(1/ρ)−
N∑
i=1

(µ̄i/Wi)dYi, (16)

and substituting the relations (2), the equation

TdsNL = deNL + PNLd(1/ρ)−
N∑
i=1

(µ̄i/Wi)dYi −
N∑
i=1

ψi · d(∇ρi)/ρ (17)

is obtained, where

ψi =
N∑
j=1

κij∇ρj (18)

is an auxiliary variable. A transport equation for the specific entropy sNL can be derived by taking the ma-
terial derivative of Eq. (17) and substituting the conservation equations (5)-(8) into the resulting expression,
which yields

ρ
DsNL

Dt
+∇ ·

{
1
T

[
qc + Q−

N∑
i=1

{ψi [ρi∇ · v +∇ · (Ji + Ji)]− T s̃iJi + µ̃iJi}
]}

= ṡprod, (19)
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where s̃i = si + (∇ ·ψi)/T and µ̃i = µi −∇ ·ψi are generalized versions of the partial specific entropy and
specific chemical potential, respectively, and ṡprod is an entropy source given by

ṡprod =
1
T

[
τ + K−

N∑
i=1

(ρi∇ ·ψiI −∇ρi ⊗ψi)

]
: ∇v

+

[
qc + Q−

N∑
i=1

{ψi [ρi∇ · v +∇ · (Ji + Ji)]− T s̃i (Ji + Ji) + hiJi}
]
· ∇
(

1
T

)

− 1
T

N∑
i=1

(Ji + Ji) · ∇µ̃i, (20)

with I the identity matrix. In the derivation of Eq. (20), use of the thermodynamic relation Tsi = hi − µi
and of the vector identity

ψi ·
D

Dt
(∇ρi) = ψi · ∇

(
Dρi
Dt

)
− (∇ρi ⊗ψi) : ∇v (21)

have been made. Similarly, the gradient of the specific chemical potential in the last term of Eq. (20) can be
expanded as ∇µ̃i = ∇T µ̃i−{si+[∂ (∇ ·ψi) /∂T ]P,nj

}∇T , where the reciprocity relation (∂µi/∂T )P,nj = −si
has been used, with the subindex T indicating variations at constant temperature. Upon substituting this
relation along with the species diffusion-flux conservation

∑N
i=1 (Ji + Ji) = 0 into Eq. (20), the entropy

source becomes

ṡprod =
1
T

[
τ + K−

N∑
i=1

(ρi∇ ·ψiI −∇ρi ⊗ψi)

]
: ∇v

+

[
qc + Q−

N∑
i=1

{ψi [ρi∇ · v +∇ · (Ji + Ji)]− χi (Ji + Ji) + hiJi}
]
· ∇
(

1
T

)

+
N−1∑
i=1

(Ji + Ji) ·
[
−∇T (µ̃i − µ̃N )

(
1
T

)]
, (22)

where χi = ∇ ·ψi − T [∂ (∇ ·ψi) /∂T ]P,nj
is an auxiliary variable.

The entropy source (22) consists of three terms represented by each one of the lines. They represent
entropy production by three different sources: flow gradients, temperature gradients, and gradients of the
chemical potential at constant temperature. Following the methodology of Onsager32 (see also Landau &
Lifshitz31), the terms K, Q and Ji can be computed as follows. Each term of the entropy source can be
represented as a product of a flux φi and a thermodynamic force Fi as ṡprod =

∑N
i=1 φi · Fi. In the case of

dissipative systems, the second law of thermodynamics requires the entropy production to be non-negative,
ṡprod ≥ 0. As a consequence, the final forms of the unknown fluxes φi must be such that they satisfy this
thermodynamic requirement. One possible approach to warrant this is to assume linear relations between
fluxes and forces as φi =

∑N
k=1 LikFk, where Lik are phenomenological coefficients that are reciprocal,

Lik = Lki, and positive diagonal, Lii > 0.
The number of couplings between the different types of fluxes is reduced by means of the Curie princi-

ple,33 which states that the fluxes and thermodynamic forces of different tensorial character do not couple.
This principle implies that the viscous stresses depend exclusively on ∇v, while the expressions of the
diffusive fluxes of heat and species are only function of the gradients of temperature and chemical poten-
tial. For instance, in the case of Newtonian fluids, the expression for the viscous stresses corresponds to
τ = η

(
∇v +∇vT

)
+ (ζ − 2η/3)(∇ · v)I where η and ζ are the shear and bulk viscosities, respectively.

Accordingly, the viscous dissipation τ : ∇v is always a positive source of entropy in Eq. (22).
The interfacial stress K is assumed to be an elastically restoring one, in such a way that the first term

in Eq. (22) yields zero-production of entropy for interface-related terms. As a result, the interfacial stress
tensor becomes

K =
N∑
i=1

(ρi∇ ·ψiI −∇ρi ⊗ψi) . (23)
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Although the surface tension does not appear explicitly in Eq. (23), its effects are accounted for in the density
gradients. For a quasi-planar interface, an effective surface-tension coefficient can be defined as

σ =
N∑
i=1

N∑
j=1

∫ +∞

−∞
κij

dρi
dξ

dρj
dξ

dξ, (24)

which, in view of Eq. (2), is proportional to the excess of free energy contained in the interface, where ξ is
the coordinate normal to the interface.24

The interfacial heat flux is cast into the form

Q =
N∑
i=1

{ψi [ρi∇ · v +∇ · (Ji + Ji)]− χi (Ji + Ji) + hiJi}+ Θ. (25)

The term Θ is a dissipating component that produces entropy and is computed below.
In order to obtain expressions for the diffusive fluxes of heat and species, it is convenient to express

Eq. (22) in the matrix flux-force form

ṡprod =

[
LqqF 1 +

N−1∑
k=1

LqkF k+1

]
· F 1 +

N−1∑
i=1

[
LiqF 1 +

N−1∑
k=1

LikF k+1

]
· F i+1, (26)

where Lqq = L1,1, Lq,k−1 = L1k (k = 2, ..., N), Li−1,q = Li1 (i = 2, ..., N), Li−1,k−1 = Lik (i, k = 2, ..., N),
F 1 = ∇(1/T ) and F i>1 = −∇T (µ̃i − µ̃N ) (1/T ). Comparing the last two terms of Eq. (22) with Eq. (26)
provides the expressions

qc = −Lqq
T 2
∇T −

N−1∑
k=1

Lqk
T
∇T (µk − µN ) , Θ =

N−1∑
k=1

Lqk
T
∇T∇ · (ψk −ψN ) , (27)

and

Ji = −Liq
T 2
∇T −

N−1∑
k=1

Lik
T
∇T (µk − µN ) , Ji =

N−1∑
k=1

Lik
T
∇T∇ · (ψk −ψN ) , (28)

for the heat and species diffusion fluxes, respectively. Additionally, the relation Lqq = λT 2 is obtained by
analogy with Fourier’s law of heat conduction, with λ the thermal conductivity.

In Eqs. (23), (25) and (28), the tensor K and the fluxes Q and Ji, with Θ given in Eq. (27), represent
the interfacial disturbances to the deviatoric part of the stress tensor, τ , and to the diffusive fluxes of heat,
q and species Ji, respectively. In absence of interfaces, K = Q = Ji = 0 and PNL = P , thereby leading to
a simplification of the conservation equations (5)-(8) to their classic Navier-Stokes form. Symmetries in the
diffusive fluxes are illustrated by the presence of the Dufour term in qc due to chemical-potential gradients
as well as the corresponding Soret term in Ji due to temperature gradients.

The species diffusion flux Ji can be expanded in terms of pressure and composition gradients by making
use of the differential form

∇T µ̄k =
(
∂µ̄k
∂P

)
T,Xi

∇P +
N−1∑
j=1

(
∂µ̄k
∂Xj

)
T,P,Xi6=j

∇Xj , (29)

and the Gibbs-Duhem equation

∇T µ̄N =
1
XN

1
c
∇P −

N−1∑
j=1

Xj∇T µ̄j

 , (30)

with c = ρ/W as the molar density. The combination of Eqs. (29)-(30) leads to the relation

∇T (µk − µN ) =
N−1∑
`=1

(
X`

WNXN
+
δ`k
Wk

)N−1∑
j=1

(
∂µ̄`
∂Xj

)
T,P,Xi6=j

∇Xj

+

[
1
Wk

(
∂µ̄k
∂P

)
T,Xi

− 1
cWNXN

+
N−1∑
`=1

X`

WNXN

(
∂µ̄`
∂P

)
T,Xi

]
∇P (31)
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for the chemical-potential gradients, where δjk is the Kronecker delta. Upon substituting Eq. (31) into
Eq. (28), the species diffusion flux Ji can be expressed as

Ji = −ρ

N−1∑
j=1

DM
ij ∇Xj +DT

i ∇T +DP
i ∇P

 , (32)

where DM
ij , DT

i and DP
i are mass, thermal and pressure diffusion coefficients defined as

DM
ij = aiNDiN

WiXi

LiiW

N−1∑
k=1

Lik

N−1∑
`=1

W`X` +WNXNδ`k
W`

(
∂ ln f`
∂Xj

)
T,P,Xm6=j

, (33)

DT
i = aiNDiN

kiT
T
, (34)

DP
i = aiNDiN

WiXi

R0TLiiW

N−1∑
k=1

Lik

[
WNXN

Wk
V̄k −

1
c

+
N−1∑
`=1

X`V̄`

]
, (35)

where (∂µ̄k/∂P )T,Xi
= V̄k and (∂µ̄`/∂Xj)T,P,Xi6=j

= R0T∂ ln f`/∂Xj |T,P,Xi6=j
have been used. In Eqs. (33)-

(35), aiN = WiWN/W
2 and DiN = W 2R0Lii/

(
cW 2

i W
2
NXiXN

)
are prefactors, and kiT = WiWNXiXNLiq

/
(
WR0Lii

)
is the thermal-diffusion ratio.

Table 1. Transport coefficients and fluxes for a binary mixture with κ1,2 = κ2,1 = κ2,2 = 0.

Transport coefficients

Fickian DM
1,1 = a1,2D1,2

„
∂ ln f1

∂ lnX1

«
T,P

Barodiffusion DP
1 = a1,2D1,2

X1

R0T

„
V̄1 −

W1

ρ

«
Soret DT

1 = a1,2D1,2
k1T

T

Dufour DF
1 =

DT
1 WR0T

W1W2X1(1−X1)

„
∂ ln f1

∂ lnX1

«
T,P

Interfacial (species) DK,M
1 = a1,2D1,2κ1,1

W1W2X1(1−X1)

WR0T

Interfacial (heat) DK,T
1 = a1,2D1,2κ1,1

k1T

T
Total stress tensor −PNLI + τ + K

Non-local pressure tensor −PNLI = −
„
P −

1

2
κ1,1|∇ρ1|2

«
I

Viscous stress tensor τ = η
“
∇v +∇vT

”
+

„
ζ −

2

3
η

«
(∇ · v)I

Interfacial stress tensor K = κ1,1(ρ1∇2ρ1I −∇ρ1 ⊗∇ρ1)

Total heat flux q + Q

Fourier, inter-diffusion q = −λ∇T + (h1 − h2)J1 − ρDF
1 ∇X1

and Dufour heat fluxes

Interfacial heat flux Q = κ1,1∇ρ1 [ρ1∇ · v +∇ · (J1 + J1)]

−χ1(J1 + J1) + (h1 − h2)J1 + ρDK,T
1 ∇T∇2ρ1

Total species diffusion flux J1 + J1

Fickian, barodiffusion J1 = −ρDM
1,1∇X1 − ρDP

1 ∇P − ρD
T
1 ∇T

and Soret species diffusion flux

Interfacial species diffusion flux J1 = ρD
K,M
1 ∇T∇2

ρ1

Simplified versions of the expressions given above are provided in Table 1 for binary mixtures in which κ1,1

is assumed to be the only non-zero gradient-energy coefficient for the reasons described in Section III.A after
Eq. (3). Additionally, Table 1 lists the coefficients DK,M

1 and DK,T
1 , which are proportional to the gradient-

energy coefficient κ1,1 and are related to species and heat transport across interfaces. The formulation
provided here can be easily simplified to the single-component gradient theory of Ref.,17 which provides
the spatial distribution of density across a stationary quasi-planar vapor-liquid interface. The reduction is
based on imposing the mechanical equilibrium condition −∇PNL +∇·K = 0 in the momentum conservation
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equation (6), with PNL and K being defined in Eqs. (9) and (23), respectively. This constraint leads to the
gradient-theory equation

P − P0 = κρ
d2ρ

dξ2
− 1

2
κ

(
dρ

dξ

)2

, (36)

where ξ is the coordinate normal to the interface and P0 the thermodynamic pressure far from the interface.
Integration of Eq. (36), subject to far-field boundary conditions for the vapor- and liquid-phase densities,
yields ρ(ξ) across the interface. Further details on the integration of Eq. (36) can be found, for instance, in
Ref.34

IV. Conclusions

This study focuses on theoretical aspects of transcritical dynamics of liquid-fuel streams injected into
high-pressure environments. The mixture displays a critical-point elevation property by which the two-
phase region extends up to pressures much larger than the critical pressures of the individual components.
As a result, linear thermodynamic trajectories emulating typical injection conditions frequently pass through
the two-phase region, thus indicating that the mixture could become separated into liquid and vapor phases
by an interface. A set of modifications to the Navier-Stokes equations for multi-component flows is proposed
based on diffuse-interface theory in order to treat the emergent and vanishing interfaces in the same flow
field. This requires appropriate alterations of the stress tensor and diffusive fluxes of heat and species. The
resulting transport formulation is particularized for binary mixtures and single-component flows, the latter
recovering the well-known gradient theory of van der Waals.17

It should be mentioned that in most practical cases the computational cost of the numerical resolution
of the resulting interfaces would be prohibitive, since they typically remain small with respect to the hy-
drodynamic scales (e.g., see resulting thicknesses based on the one-dimensional gradient theory in Ref.20).
Nonetheless, this should not deter the derivation and understanding of formulations that may be later used
to inspire subgrid-scale interface-modeling approaches. Future work will involve the integration of these
equations in simple canonical problems.
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