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Summary. The thin flexible composite membrane stretched on the frame of space solar array 
should be capable of withstanding the mechanical loadings exerted on the structure during the 
delivery to orbit and deployment. Nonlinear analysis of the deflections of the orthotropic 
flexible membrane stretched over the rectangular frame cell and subjected to transverse 
loading is presented in this paper.

1 INTRODUCTION
Thin film photovoltaic (TFPV) solar arrays offer the potential for providing a higher level 

of power generation in a lightweight configuration that can be compactly stowed for a space 
launch [1 - 4]. A typical solar wing design is shown in Fig. 1. Advanced high-modulus, high-
strength carbon fibre reinforced polymers (CFRP) are normally implemented in current 
designs of the frames for solar wings. The thin flexible membrane is stretched on the frame, 
and then the photovoltaic cells are attached to its surface. The deployable solar arrays are 
normally stowed folded and could be deployed in various configurations. When stowed, they 
are usually placed parallel to each other and compactly packaged for launch. During the 
delivery to orbit, the membranes are subjected to the transverse g-force. The resulting 
pressure is equal to the product of the weight-per-unit-area of the membrane with the 
photovoltaic elements attached by the g-force. As a result of this loading the flexible 
membrane deflects. The excessive deflection could lead to the damage of the photovoltaic 
cells and/or electrical circuits. For this reason, one of the design requirements is that the 
deflection of the membrane should be limited to some specified value. 

The solution of the problem related to the non-linear deformation of the flexible 
membrane carrying photovoltaic elements is presented in this paper. The problem is 
formulated for the orthotropic flexible membrane subjected to the transverse uniform pressure 
and tensile in-plane forces applied to the edges of the membrane. The membrane deformation 
is modelled by the system of non-linear differential equations which is solved using Galerkin 
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method. The similar approach has been applied by Lopatin et al. [5]. An analytical formula 
for the calculation of the membrane deflection at the central point has been derived. Using 
this formula, the calculation of the deflections have been performed for orthotropic flexible 
membranes having different geometry parameters and subjected to different levels of loads. 
The results have been verified using comparisons with the finite-element solutions. 

Figure 1: Spacecraft with solar arrays (Courtesy of ISS-Reshetnev Company).

2 PROBLEM FORMULATION
Consider a flat frame of the solar array shown in Fig. 1 and single out from this frame a

typical representative rectangular fragment formed by the four rigid composite ribs. Refer this 
𝑎𝑎 × 𝑏𝑏 cell to the Cartesian coordinated frame xyz as presented in Fig. 2. As shown, the 
rectangular flexible orthotropic membrane with the photovoltaic plates attached to its surface 
is stretched with the in-plane forces-per-unit-length 𝑇𝑇𝑥𝑥 and 𝑇𝑇𝑦𝑦 and fixed to the ribs. The 
membrane is subjected to the transverse g-force, 𝑛𝑛𝑧𝑧. It is assumed that this loading can be 
represented by the transverse pressure:

𝑝𝑝 = 𝐵𝐵𝜌𝜌𝑛𝑛𝑧𝑧𝑔𝑔 (1) 

where 𝐵𝐵𝜌𝜌 is the mass of the unit area of membrane material (including photovoltaic elements 
attached) and 𝑔𝑔 = 9.8 𝑚𝑚/𝑠𝑠2.

             

Figure 2: Typical rectangular fragment of the solar array with the stretched membrane and photovoltaic 
elements attached.
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Deformation of the membrane is modelled by the following geometrically non-linear 
equations including the equations of equilibrium
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in which Nx, Ny, and Nxy are the membrane stress resultants; ξx, ξy, and ξxy components of the 
finite strain;  εx, εy, and εxy components of the infinitesimal strain; u and v in-plane
displacements in the x- and y-directions, respectively; w is the transverse deflection; ωx and ωy
are the angles of rotations of the lines tangent to the coordinate axes x and y; B11, B12, B22, and
B33 (B12=B21) are the membrane stiffness coefficients. 

Equations Eqs. (2) – (4) are derived based on the geometrically nonlinear equations for 
the orthotropic plate given in [6] in which the bending stiffness coefficients are neglected.
Substituting Eq. (4) into Eq. (3) and subsequently into Eq. (2) yields the following governing 
system of equations:
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This system provides the governing equations for the pre-stretched membrane under 
consideration in terms of displacements u, v, and w.

2 SOLUTION PROCEDURE
Galerkin procedure is employed for the solution of the system of equations given by Eqs. 

(5). Taking into account that the displacements of the membrane u, v, and w are equal to zero 
at the edges supported by the ribs, and that for the given loading the lines 𝑥𝑥 = 𝑎𝑎/2 and 𝑦𝑦 = 𝑏𝑏/2
are the lines of symmetry, the approximating functions are selected in the following form:
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where U, V,and  W are unknown coefficients. Following Galerkin procedure, i.e., substituting 
Eq. (6) into Eq. (5) the corresponding errors are presented as follows:

a
x

a
xW

b
y

b
BB

b
y

b
B

a
B

a

b
y

a
xV

ba
BB

b
y

a
xU

b
B

a
ByxRx

ππππππππ

ππππ

ππππ

cossincos)(sin)(

2coscos2)(

sin2sin)4(),(

22
2

2

3312
2

2

2

332

2

11

3312

2

2

332

2

11









+−+−

−++

++−=



304

Evgeny V. Morozov and Alexander V. Lopatin

5

b
y

b
yW

a
y

a
BB

a
y

a
B

b
B

b

b
y

a
xV

a
B

b
B

b
y

a
xU

ba
BByxRy

ππππππππ

ππππ

ππππ

cossincos)(sin)(

2sinsin)4(

cos2cos2)(),(

22
2

2

3312
2

2

2

332

2

22

2

2

332

2

22

3312









+−+−

−+−

−+=

p
b
y

a
xW

b
T

a
T

W
b
y

b
y

a
x

a
x

ba
B

b
y

b
y

a
x

b
B

a
B

b

b
y

a
x

a
x

b
B

a
B

a

VW
b
y

b
y

a
x

a
B

b
y

b
y

a
x

b
B

a
B

b

UW
b
y

a
x

a
x

b
B

b
y

a
x

a
x

b
B

a
B

a
yxR

yx

z

++−

−



+

++−





−+−+

+



+





++−+

+



+





++−=

ππππ

ππππππ

ππππππ

ππππππ

ππππ

ππππππ

ππππ

ππππππ

sinsin)(

sincossincos2

sincossin)(
2
1

sinsincos)(
2
1

cos2sincos

sin2cossin)(2

coscos2sin

sinsin2cos)(2),(

2

2

2

2

322
2

2

2

2

33

23
2

2

222

2

122

2

32
2

2

122

2

112

2

2
2

2

33

2
2

2

222

2

12

2
2

2

33

2
2

2

122

2

11

(7)

The orthogonality conditions for the errors, Eq. (7) and the basis functions, Eq. (6) have 
the form
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Integrating yields the following system of non-linear algebraic equations:
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Solving Eqs. (9), for U and V the latter can be presented as follows:
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Substituting these expressions into Eq. (10) yields the following cubic equation:
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Equation, Eq. (13), is the governing equation for the problem of nonlinear deformation of the 
orthotropic membrane under consideration subjected to the transverse uniformly distributed 
pressure and pre-stretching tensile in-plane loads. This equation links the forces 𝑇𝑇𝑥𝑥 , 𝑇𝑇𝑦𝑦 ,
pressure p, membrane dimensions a and b, membrane stiffness coefficients B11, B12, B22, B33,
and deflection at the centre of the membrane W, and it can be transformed into the form
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The discriminant of Eq. (15) is calculated as
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complex conjugates. According to Cardano’s formula the real root is given by
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Using this equation, the deflection can be found for various combinations of stiffness 
parameters of the orthotropic membrane subjected to the pressure and in-plane tensile loads. 

The equation, Eq. (13) can be used when designing the membrane with the voltaic 
elements attached. Based on this equation, the membrane parameters and in-plane stretching 
loads, delivering the specified deflection W,  can be found for given mass of the unit area of 
membrane material and g-force.

Note that if the pre-tensioning loads 𝑇𝑇𝑥𝑥 = 𝑇𝑇𝑦𝑦 = 0, than the coefficient 𝑐𝑐11 = 0 and it 
follows from Eq. (13) that
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For given W, the values of U and V are calculated using Eqs. (12) and the displacements at 
any point of the membrane are determined by Eqs. (6). 
Furthermore, substituting Eqs. (6) into Eqs. (4) and the resulting equations into Eqs. (3), the 
stress resultants can be calculated as follows
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Obviously, for the orthotropic membrane loaded with a uniform pressure, the largest values of 
𝑁𝑁𝑥𝑥 and 𝑁𝑁𝑦𝑦 are reached in the centre of membrane with 𝑁𝑁𝑥𝑥𝑥𝑥 = 0. Thus, taking 𝑥𝑥 = 𝑎𝑎/2 and 
𝑏𝑏 = 𝑦𝑦/2 in Eqs. (20), the maximum values of 𝑁𝑁𝑥𝑥 and 𝑁𝑁𝑦𝑦 are 
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Substituting for the values U and V in this equation their expressions given by Eqs. (12), the 
stress resultants 𝑁𝑁𝑥𝑥 , 𝑁𝑁𝑦𝑦 can be expressed in terms of deflection W as follows:
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It should be noted that the solution of the nonlinear problem under consideration was obtained 
under assumption that the membranes analysed should not be too long, i.e. their aspect ratio 
a/b should not be excessively large. If the membrane is too long, the deformed shape would 
resemble the cylindrical surface and the use of the approximations as per Eqs.(6) could lead to 
noticeable errors. In practice, the aspect ratio a/b for the cells of solar arrays normally does 
not exceed 2.  So the solution presented in this work can be efficiently applied at the early 
stages of the design of flexible-membrane stiffened space solar arrays [7].

3 NUMERICAL EXAMPLES
The solution obtained in this work has been applied to the analyses of membranes made 

from orthotropic material. Consider non-linear deformation of a membrane made of an 
orthotropic material with the moduli of elasticity 𝐸𝐸𝑥𝑥 and 𝐸𝐸𝑦𝑦 , shear modulus 𝐺𝐺𝑥𝑥𝑥𝑥 , and 
Poisson’s ratios 𝜈𝜈𝑥𝑥𝑥𝑥 and 𝜈𝜈𝑦𝑦𝑦𝑦 . The stiffness coefficients of the membrane are given by
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Substituting Eq. (23) into Eq. (11), the latter are transformed into the following form:
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are the membrane aspect ratio and the ratio of the in-plane stretching tensile forces, 
respectively.  
The coefficient 𝑐𝑐33 in Eq. (13) is calculated using Eq. (14) after substitution of coefficients 
determined by Eq. (25):
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Substituting 𝑐𝑐11 , Eq.(25) and 𝑐𝑐33 , Eq. (28) into Eq. (13) yields the governing equation for the 
problem under consideration in the following form:
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The solution of Eq. (31) is given by Eqs. (17) and (18). Substituting coefficients defined by 
Eq. (25) into Eq. (22) and taking into account equations for the stiffness coefficients, Eq.(23), 
the stress resultants 𝑁𝑁𝑥𝑥 and 𝑁𝑁𝑦𝑦 acting at the centre of membrane are calculated as follows:
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Consider analysis of the orthotropic membrane with typical for the solar array dimensions: 
a = 1 m , 𝑏𝑏 = 0.8 m , and ℎ = 0.5 mm . The membrane is made of a material based on the 
glass-fibre fabric with the following elastic properties: 𝐸𝐸𝑥𝑥 = 𝐸𝐸𝑦𝑦 = 0.8 GPa , 𝐺𝐺𝑥𝑥𝑥𝑥 = 0.15 GPa,
𝜈𝜈𝑥𝑥𝑥𝑥 = 𝜈𝜈𝑦𝑦𝑦𝑦 = 0.35 and density 𝜌𝜌 = 1800 kg/m3. The mass of the unit area of membrane 
material with photovoltaic elements attached 𝐵𝐵𝜌𝜌𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 1.8 kg/m2. Assume that 𝑇𝑇𝑥𝑥 = 𝑇𝑇𝑦𝑦 = 𝑇𝑇 =
0, 250, and 500 N/m . The resulting pressure exerted on the membrane is determined as 
follows:

( ) gnBhp z
cell
ρρ += (35)

If 𝑛𝑛𝑧𝑧 = 1, 5, and 10, than the pressure 𝑝𝑝 = 26.5, 132.4, and 264.9 N/m2, respectively. 
Using Eqs.(17), (18) and (32), the membrane deflection W have been calculated. The results 
of calculations for different values of 𝑛𝑛𝑧𝑧 and T are presented in Table 1. Analysis of the data 
shows that the increase in the stretching force T leads to a reduction of the membrane 
deflection. This effect is most noticeable for 𝑛𝑛𝑧𝑧 = 1.

                Table 1:   Deflection W (mm) for different values of nz and T.

nz
T (N/m)

0 250 500
1 10.92 5.78 3.30
5 18.67 15.30 12.22
10 23.53 20.83 18.21

The results of the calculations were verified by a finite-element analysis. The non-linear 
analysis has been performed using the COSMOS/M module NSTAR [8]. The results 
(𝑊𝑊𝐹𝐹𝐹𝐹𝐹𝐹) are presented in Table 2 and deformed shape of the membrane is shown in Fig. 3.
Comparison of the results presented in Tables 1 and 2 shows that the maximum difference 
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between W and 𝑊𝑊𝐹𝐹𝐹𝐹𝐹𝐹 is -6.75% for 𝑛𝑛𝑧𝑧 = 1 and 𝑇𝑇 = 0 which is acceptable for the 
approximate analytical solution.

Table 2:    Deflection WFEM (mm) for different values of nz and T.

nz
T (N/m)

0 250 500
1 10.92 5.78 3.30
5 18.67 15.30 12.22
10 23.53 20.83 18.21

                                     
                                                  Figure 3: Shape of the deformed orthotropic membrane.

3 CONCLUSIONS
The solution of the problem of nonlinear deformation of the orthotropic flexible membrane 
stretched on a rectangular frame and subjected to the transverse uniform pressure was 
developed in this work. The system of the nonlinear differential equations written in terms of
in-plane displacements and deflection was solved using Galerkin method. The membrane 
displacements and deflection were approximated by the trigonometric functions satisfying the 
boundary conditions. The problem has been reduced to the algebraic cubic equation and the 
analytical formula providing the value of deflection at the centre of membrane was derived. 

The deflections of the membranes made from the orthotropic flexible glass-fibre fabric 
have been calculated and the effects of the in-plane stretching loads on the deflection and 
internal stress resultants have been investigated. The accuracy of the analyses has been 
verified by comparison with the results obtained using the finite-element method. It has been 
shown that the analytical solution developed in this work provides an accurate estimate of the 
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deflection at the centre of membrane and can be successfully applied to the design of 
composite flexible-membrane stiffened space solar arrays. 
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