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Abstract. This work proposes a NURBS for the determination of a smooth response
surface relating biaxial strains and stresses from discrete test data. These NURBS surfaces
are based on two axes of strain and one axis of stress. The constitutive material tensor
is calculated with the derivatives of the NURBS surfaces and curves. The motivation
of the proposed work came from the use of new materials in membrane structures that
requires complex material models to describe the complex material behavior. A method
for the establishment of a matrix of material coefficients from these surfaces is developed
aiming its application in finite element models. The response surface stress-strain relation
and the material matrix derived are compared to classical hyperelastic and Mooney-
Rivlin material models. The response surface approach using NURBS allows for an easy
implementation in an existent FE code, requiring few changes. A similar application is
found in the work of Bridgens and Gosling [1]. This approach provides a direct correlation
between stresses and strains in the wide range of possible stress paths the material is
subject to. Curve fitting based on least squares approximation is employed to generate
NURBS surfaces for the experimental data. The advantage of this material model is that
a smooth stress-strain response surface can be obtained directly from the experimental
results. On the other hand, in order to generate good NURBS surfaces the experimental
data should provide an adequate point distribution. This could require a large range
of experimental data. We conclude that this material model is a good alternative to
conventional material models for complex material behavior.
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1 INTRODUCTION

Non Uniform Rational Basis Splines (NURBS) is a mathematical representation of a
geometry in 3D used for curves and surfaces. This representation is widely used in Com-
puter Aided Design (CAD) to create and modify designs offering smooth surfaces. Due
to the success of the use of NURBS in CAD, it has been suggested in other applica-
tions. An example of this is the isogeometric analysis introduced by Hughes et al. [4],
to solve problems governed by partial differential equations such a structures and fluids.
Another application of NURBS in numerical analysis is the NURBS-enhanced finite el-
ement method (NEFEM). Sevilla et al. [8] reports that the NEFEM uses NURBS to
accurately describe the boundary of the computational domain. The NURBS application
proposed in this work aims the determination of a smooth response surface relating biax-
ial strains and stresses. These NURBS surfaces are based on two axes of strain and one
axis of stress. The constitutive material tensor is calculated with the derivatives from the
NURBS surfaces and curves.

A similar application is found in the work of Bridgens and Gosling [1]. In Bridgens
and Gosling [1] Bezier functions, B-spline and NURBS are used to represent the bi-axial
behavior of coated woven fabrics. The validity of the approach is assessed through an
extensive fabrics testing program. This approach provides a direct correlation between
stresses and strains in the wide range of possible stress paths the material is subject
to. As pointed out in Bridgens and Gosling [1] this representation has the additional
ability to represent surfaces with rapid changes in gradients and discontinuities in the
data. Also, the plane stress constraint, frequently used by the analysis of films and
membrane structures is not explicitly imposed. Curve fitting based on least squares
approximation is employed to generate NURBS surfaces for the experimental data. The
response surface methodology based on NURBS is tested on classical hyperelastic and
Mooney-Rivlin constitutive models. A set of results of an aluminum testing program
were used to illustrate the response surface construction procedure from test results.
Aiming the application of this methodology together with a finite element non-linear
analysis program for the investigation of global structure behavior the derivation from
the NURBS surface of a constitutive matrix is developed. Most general purpose FE
programs provide user access to add new functionalities such as user constitutive models.
The response surface approach using NURBS presented in this work allows for an easy
implementation in such programs.

2 NONUNIFORM RATIONAL B-SPLINE CURVES AND SURFACES

The concept of NURBS curve and NURBS surface used in the present study refers to
the works of Piegl and Tiller [6] and L. Piegl [5].

The definition of NURBS curve/surface is the rational generalization of the tensor-
product nonrational B-spline curve/surface. According to Rogers [7], technically, a NURBS
surface is a special case of a general rational B-spline surface that uses a particular form
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of knot vector. For a NURBS surface, the knot vector has multiplicity of duplicate knot
values equal to the order of the basis function at the ends. The knot vector may or may
not have uniform internal knot values.

3 MATERIAL MODEL BASED ON NURBS FOR PRINCIPAL DIREC-
TIONS (PD–NURBS)

The proposed material model covers isotropic nonlinear materials under plane stress
conditions. This model is based on principal directions of stress and strain. Therefore
only one surface is required for its definition.

PD–NURBS is valid for isotropic materials because of the use of orthogonal transfor-
mation to calculate the response of the stress. According to Gruttmann and Taylor [3], for
isotropic material response the contravariant components of the second Piola–Kirchhoff
stress tensor are recovered by an orthogonal transformation of the principal stresses.

The second Piola–Kirchhoff stresses and the Green–Lagrange strains in principal di-
rections are given by:

Ŝ =
[
S1 S2 Ŝ12

]
(1)

Ê =
[
E1 E2 Ê12

]
(2)

where Ŝ12 = 0 and Ê12 = 0.
The constitutive material tensor in general directions is obtained with the rotation

matrix calculated as follows:
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dŜ12

dE2

dŜ12
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 (4)

and derivatives of the NURBS surface for S1 in directions u and v are given by

SNURBS
u1

(u, v) =
[

dE1
du

dE2
du

dS1
du

]
(5)

SNURBS
v1

(u, v) =
[

dE1
dv

dE2
dv

dS1
dv

]
(6)
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and analogously for the derivatives of the NURBS surface for S2 in directions u and v.

SNURBS
u2

(u, v) =
[

dE1
du

dE2
du

dS2
du

]
(7)

SNURBS
v2

(u, v) =
[

dE1
dv

dE2
dv

dS2
dv

]
(8)

and the rotation matrix T is given by:

T =




cos2φ sin2φ cosφsinφ
sin2φ cos2φ −cosφsinφ

−2cosφsinφ 2cosφsinφ cos2φ− sin2φ


 (9)

The constitutive material tensor in principal directions is computed with the NURBS
surface derivatives: [ dS1

dE1
dS1

dE2

]
=
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·
[

dS2

du
dS2

dv

]
(11)

The algorithm of the material model based on NURBS for principal directions is pre-
sented in the following box:

1. Update the strain tensor.
En+1 = En + �Su

2. Calculate the strains in principal directions

Ên+1 = TTEn+1

3. Calculate the local parameter u and v from the strains.

4. Obtain the stress values S1(u, v), S2(u, v).

5. Calculate the derivatives dS1

dE1
, dS1

dE2
, dS2

dE1
, dS2

dE2
, and dŜ12

2dÊ12
(equations 10, 11 and ??).

6. Constitutive material tensor is obtained:

dS

dE
= TT ·
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dE2
0

dS2
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dS2

dE2
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 ·T

7. Calculate the stress tensor.
S = TT · Ŝ
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4 VALIDATION EXAMPLES

The PD–NURBS material model is applied to examples with different material re-
sponses to validate the proposed material model. Attention is given to materials with
large strains.

Data fitting based on least-squares aproximation is used to generate NURBS surfaces
for the experimental data. For more details see the works of Piegl and Tiller[6] and L.
Piegl [5]. An alternative approach for the generation of NURBS surfaces is the use of a
CAD software.

4.1 Hyperelasticity – Mooney-Rivlin

This example consists of the stretching of a square sheet with a circular hole. This
example is found in Gruttmann and Taylor [3] and in Souza Neto et al. [9]. The length
of the sheet is 20m, the radius of the circle is 3m and the thickness is 1m. Due to
problem symmetry, one quarter of the sheet was analyzed and the mesh with 200 linear
quadrilateral membrane elements is presented in figure 1(a). The material used is on of
the Mooney-Rivlin type with the constant values of C1 = 25MPa and C2 = 7MPa. Thus
the Ogden material constants are µ1 = 50MPa, µ2 = −14MPa and α1 = 2, α2 = −2.
The analysis was performed under load control conditions in three steps.













(a) (b)

Figure 1: Square sheet with a circular hole (a) undeformed sheet mesh with applied load (b) diplacement
result in y direction with deformed sheet in a scale of 1:1.
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Figure 2: Load–displacement curves of stretching of a square sheet

The results obtained are compared with the nonlinear material model based on NURBS
surfaces. Figure 3 shows the NURBS surfaces used in these examples. This surfaces are
composed by a net of control points 120(u) x 120(v) and degree 3 (p = 3 and q = 3).

4.1.1 Results

Figure 2 show the load-displacement curves, of three points on the mesh (A, B and C
highlighted in figure 1), for the work of Gruttmann and Taylor [3] and the results obtained
with the proposed material model based on NURBS. The results show good accuracy.

4.2 ETFE-Foil modeled with PD-NURBS

This example shows the application of PD-NURBS to model a material making use of
the available experimental data. The experimental results used to generate the NURBS
surfaces are those of the biaxially loaded ETFE–foil under two loading programs ratios
of applied force: 1:1 and 2:1 presented in the work of Galliot and Luchsinger [2]. The
available experimental data is not enough to generate good NURBS surfaces. In order to
obtain a point cloud data necessary for the generation of the NURBS surface, data points
based on the von Mises elastoplatic material formulation will be used. Figure 4 shows the
experimental data points represented by the filled circles and the artificial ones by hollow
squares. In this figure the gap between the points of the experimental test is observed.
With this data points, NURBS surfaces in principal directions for stress and strain are
generated and figure 6 shows the NURBS surface in conjunction with the experimental
data points.

There is a dependence of the material model formulation with the size of the NURBS
surfaces, in other words, input strains outside the NURBS surface, do not generate output
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(a)

(b)

Figure 3: NURBS surfaces with stresses and strains in principal directions for the Mooney-Rivlin
material: (a) stresses in direction 1, and (b) stresses in direction 2.

stress results. In these regions artificial data is used to supply the stresses and strains
information.

In figure 6 it is observed that the experimental data points are on the NURBS surfaces.
The test is carried out for two load ratios 1:1 and 2:1. The mesh used is a rectan-

gular membrane presented in figure 5. This mesh has 441 nodes and 400 quadrilateral
linear elements. In figure 5 the boundary conditions and the applied loads for this model
are presented. These examples are symmetric, therefore one quarter of the problem is
modeled.

The analysis is carried out with the arclength control method and an equivalent nodal
force is applied on the edges.
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Figure 4: NURBS surface with experimental data
















Figure 5: Mesh, geometry and boundary conditions for the biaxial test

4.2.1 Results

For both load ratios, the results are compared with the experimental results of Galliot
and Luchsinger [2]. Table 1 shows the relative error of the numerical model with PD–
NURBS material for stress and strain results.

Table 1: Relative error of biaxial test for the PD–NURBS material

Error (%)
Biaxial 1:1 Biaxial 1:1

Strain Stress Strain Stress Strain Stress
direction 2 direction 1

0.42 1.99 0.95 0.32 1.57 1.63
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(a)

(b)

Figure 6: NURBS surfaces of stress and strain in principal directions for von Mises material: (a) stresses
in direction 1 and (b) stresses in direction 2.

Table 1 shows that the error with the PD–NURBS material for the biaxial test for load
ratios of 1:1 and 2:1 is small compared to the experimental results.

5 CONCLUSIONS

The present work presents a material model, which use NURBS surfaces as response
surfaces for material behavior. The material behavior is defined with NURBS surfaces
with stresses and strains in principal directions. These NURBS surfaces are generated
with the results from biaxial tests. The advantage of this material model is that from
results of experimental tests, a material model can describe the material behavior. On the
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other hand, the experimental data should provide a such point distribution as to generate
good NURBS surfaces. This point distribution could result in a necessity for a large range
of experimental data.

The results obtained for the perforated square membrane with Mooney–Rivlin material
model are compared with the results from literature. The results obtained are in complete
accuracy.

Numerical analysis with the finite element method using the PD–NURBS material
model are applied to model the ETFE material. The error obtained is small and the
results can be improved with the optimization of the NURBS surface.

With respect to computational time for the analysis no significant difference between
the PD–NURBS material and conventional material was observed.

We conclude that this material model is a good alternative to conventional material
models.
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