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Abstract. This paper presents an effective method to perform Code Verification of a
software which is designed for structural analysis using membranes. The focus lies on
initially curved structures with large deformations in steady and unsteady regimes. The
material is assumed to be linear elastic isotropic. Code Verification is a part of efforts to
guarantee the code’s correctness and to obtain finally predictive capability of the code.
The Method of Manufactured Solutions turned out to be an effective tool to perform
Code Verification, especially for initially curved structures. Here arbitrary invented ge-
ometries and analytical solutions are chosen. The computer code must approach this
solution asymptotically. The observed error reduction with systematic mesh refinement
(i.e. observed order of accuracy) must be in the range of the formal order of accuracy,
e.g. derived by a Taylor series expansion. If these two orders match in the asymptotic
range, the implemented numerical algorithms are working as intended. The given exam-
ples provide a complete hierarchical benchmark suite for the reader to assess other codes,
too. In the present case several membrane states were tested successfully and the used
code Carat++ assessed to converge - as intended - second order accurately in space and
time for all kind of shapes and solutions.

1 INTRODUCTION

In the context of quantitative accuracy assessment of computer codes and their results
Verification and Validation activities (V&V) are inevitable. They provide evidences for the
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Figure 1: Integration of Verification and Validation in the modeling process

code’s and the results’ correctness. V&V activities can be separated in three parts: Code
Verification, Solution Verification, and Model Validation. Code Verification represents the
mathematical procedure to demonstrate that the governing equations, as implemented
in the code, are solved consistently [17]. Solution Verification, often seen as part of
validation, is the assessment of the correctness and accuracy of obtained solutions for a real
(physical) problem if interest and Model Validation finally is the assessment of the model
accuracy by comparison with experimental measurements. The relation between these
activities and the different model parts are shown in figure 1. More detailed explanations
of the topics of V&V and their most common definitions can be found in [10, 13, 15].
Roache gave a much simpler, but also very popular definition of Verification and Valdation
in [15]. He states that Verification is the purely mathematical discipline to assess that a
code is “solving the equations right” and Validation is the discipline to assess that the
code is “solving the right equations”.

2 CODE VERIFICATION

Code Verification can be performed in many different ways. As a stair of increasing rigor
Oberkampf names the following methods [13]: simple tests, code-to-code comparisons,
discretization error quantification, convergence tests, and order-of-accuracy tests. The
first two are the weakest methods but they don’t need exact solutions of the problem.
The latter three methods need exact solutions [13]. This paper focusses on the last
method, the order-of-accuracy tests. Here one assesses, if the discretization error reduces
with the formal order of the used discretization schemes. For an exact error evaluation
of simulations the availability of analytical solutions is a prerequisite for the method.
Unfortunately only a limited number of analytical solutions are available. The available
test cases are usually much simpler then the application of interest, which reduces their
practival value. This is especially the case for initially curved and prestressed, dynamically
loaded structures. All other available, highly accurate solutions are insufficient to evaluate
the exact discretization error of the simulations. Hence the Method of Manufactured
Solutions (MMS) is used.
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3 METHOD OF MANUFACTURED SOLUTIONS

Within the order-of-accuracy tests, the MMS provides a framework to generate artificial
analytical solutions. It has been used in fluid dynamics [3, 5, 10, 13, 15–17], but also in
structural stress computations [2], or recently in monolithic fluid-structure interaction
computations [6]. The method can be used as a toolbox to assess implemented discrete
procedures for the solution of differential equation(s). A major advantage of the method is
the independence of the numerical approach: the method formulates the equations of state
in the continuum, therefore it is independent of the discretization method (e.g. Finite
Elements, Finite Differences, ...) or the solution procedure (direct solution, fix-point
iteration, Newton-Raphson, ...). The main concept of MMS is that an own chosen target
solution d̂ represents an analytical (but not necessarily a physically realistic) solution for
the primary variables d of the differential equations in the continuum. After insertion
of the target solution into the differential equations a source/force term remains, as the
equilibrium no longer holds for the arbitrary solution d̂. The continuous source/force
term can be obtained by hand or using symbolic manipulation software like MapleR©. If
the discrete schemes are correctly implemented one can observe that d tends towards d̂
for systematically refined meshes. The difference between d and d̂ represents the exact
error of the individual calculation. The development of the error with mesh refinement
(mesh refinement factor r = hcoarse

hfine
with a characteristic element size h) gives the observed

order of accuracy p̂ in equation 1.

p̂ =
log

(
Ehcoarse

Ehfine

)

log (r)
(1)

If the formal order of accuracy p (cf. chapter 6) matches p̂ in the asymptotic range
of the solution, the following parts of the code have been verified [15]: all coordinate
transformations, the order and the programming of the discretization, and the matrix
solution procedure. The procedure with all its parts is shown in detail in chapter 7.

If the two orders do not match, there can be many reasons, e.g. programming errors,
insufficient grid resolution, singularities, etc. A complete list of reasons is discussed in [14].
MMS is not able to verify individual terms in mixed-order methods. Additionally it is
not able to judge the efficiency of a solution process, e.g. the speed of convergence of a
nonlinear problem or the iterative convergence rate of steady-state calculations [15]. The
prerequisites for the application of the MMS can be found in detail e.g. in [17]. The
basic requirement is that the target solution d̂ represents a smooth analytical function
with a sufficient number of derivatives. Additionally it should not contain singularities in
the function or its derivatives. Furthermore the solution d̂ should be general enough and
well balanced to activate all terms of the governing equations. In this paper the given
solutions give a stair of complexity or even a benchmark series to assess all containing
parts step by step. This stair can be very helpful to localize coding or other mistakes [10].
Therefore each solution should be as simple as possible but as complex as necessary.

3
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4 ERROR DEFINITION

Error in the context of this paper means the error between the exact solution of the
continuum formulation and the approximated equation and solution using numerical tech-
niques. The general sources of error in computer simulations are: physical modeling errors,
discretization and solution errors, programming errors, computer round-off errors [12]. In
this paper, we concentrate on the mathematical exercise and assessment of correctness of
the code; therefore the physical modeling errors can be left aside. The computer round-off
and iterative error shouldn’t affect the procedure. For this purpose the solution tolerance
should be near to round-off [4] or the error out of it should be at least 100 times smaller
then the discretization error [16]. The remaining errors (originating from discretization
and of programming) can be assessed with the MMS. To calculate an error of a complete
field of a variable in the domain Ω one can use error norms. The continuous L2 norm for
the variable d compared to an exact solution d̂ can be seen in equation 2. If we assume
a discrete solution (e.g. from a Finite Element solution) and an equidistant domain dis-
cretization with N elements or nodes one can reformulate equation 2 in the discrete L2

norm as seen in equation 3. Besides the L2 norm, the L1 norm or the infinity norm are
often referenced. Especially in the context of Finite Elements the error is often measured
in the energy norm [18,21].

E2 =‖ d− d̂ ‖2=

√
1

Ω

∫

Ω

(
d− d̂

)2

dω (2)

E2 =‖ d− d̂ ‖2=

√√√√ 1

N

N∑
n=1

(
dn − d̂n

)2

(3)

5 THE FULLY GEOMETRICAL NONLINEAR MEMBRANE ELEMENT

This paper concentrates on a fully geometrical nonlinear membrane element for large
deformations and small strains with a linear elastic isotropic material behavior and plane
stress assumption.

5.1 Equilibrium

The equilibrium equations hold in general for the differential/strong form. It states
the conservation of momentum in every point of the continuous structure. It can be
shown that the equilibrium w.r.t. the current configuration (equation 4) and the initial
configuration (eqn. 5) are equivalent [19]. In equations 4 and 5 d represents the field of
displacements, ρ the density, t the time, f and F the forces on the current and the initial
configuration, respectively. σ represents the Cauchy and P the first Piola-Kirchhoff (PK1)
stress tensor [19]. It can be shown that the presented equilibrium in the strong form can be
transformed into the commonly known weak forms of equilibrium (e.g. with the principle
of virtual work in eqn. 6) [9,19]. This equivalence of the weak and the strong form is the
most important requirement for the applicability of the MMS. In equation 6, Ω represents

4
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Figure 2: Configurations and deformation process of a body

the initial domain and T̂ the surface forces on the boundary Γ of Ω. S represents the
second Piola-Kirchhoff (PK2) stress and E the Green-Lagrangian strain tensor. With
the goal to perform MMS simulations, all necessary terms of the strong form equilibrium
(eqn. 4 resp. 5) have to be determined, completely independent of the implementation of
the equilibrium (e.g. eqn. 6).

− ρ
∂2d

∂t2
+∇ · σ + ρf = 0 (4)

− ρ
∂2d

∂t2
+∇ ·P+ ρF = 0 (5)

δW =−
∫

Ω

ρ
∂2d

∂t2
δddΩ +

∫

Ω

S : δEdΩ−
∫

Γ

T̂δddΓ = 0 (6)

5.2 Kinematics

The kinematics of the element (eqn. 7) are shown in figure 2. Capital and lower case
letters indicate that quantities belong to the initial (e.g. X) and the current/deformed
configuration (e.g. x), respectively. From equation 7 the covariant base vectors in the
initial (Gα) and the deformed configuration (gα) can be derived. θα with α = 1..2 are the
surface parameters along Gα. The base vectors G3 and g3 are constructed as normalized
cross-product of the first two base vectors. Using the base vectors, the covariant metrics
Gij and gij can be evaluated by gij = gi · gj (Gij analogously). The calculation of
contravariant base vectors can be performed with the aid of the contravariant metric
(gij = (gij)

−1) with the rule gi = gijgj. The deformation gradient tensor F is calculated
in equation 9, where ⊗ represents the dyadic product [8,19]. The Green-Lagrangian strain
tensor E is calculated using F and the unity tensor I in equation 10.

5
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x = X+ d = X iei + diei (7)

Gα =
∂X

∂θα
gα =

∂x

∂θα
(8)

F = gi ⊗Gi (9)

E =
1

2
·
(
FTF− I

)
(10)

5.3 Material

The linear elastic isotropic material combined with the plane stress assumptions can
be computed with the aid of modified Lamé parameters λm and µm [11, 20] in equation
11 with 12. Using the material tensor C and the strain tensor E, the PK2 stress tensor
S can be calculated (equation 13).

C = CαβγδGα ⊗Gβ ⊗Gγ ⊗Gδ = λm ·GαβGγδ + µm

(
GαγGβδ +GαδGβγ

)
(11)

λm =
E · ν

(1− ν2)
µm =

E

2 · (1 + ν)
(12)

S = C : E (13)

5.4 Forces

Additionally to the stresses caused by strains, membranes are in general prestressed.
The element of interest has its prestress defined in the initial configuration and the pre-
stress tensor Sps is therefore added to the PK2 stress tensor [11]. As the equilibrum of
momentum (eqn. 4 and 5) contains the Cauchy resp. the PK1 stress tensor, they can be
evaluated from the present PK2 stress tensor with equations 14 and 15 [8, 19].

σ =
1

det(F)
F (S+ Sps)F

T (14)

P = F (S+ Sps) (15)

The equilibrium forces required to reach a prescribed deformation d = d̂ in the context of
MMS are shown in equations 16 and 17. For the calculation of the forces it is recommended
to use symbolic computation software like MapleR©. For ease of understanding the stress
tensors are shown as a function of the target displacements d̂ (e.g. σ = σ(d̂)). The general
stress tensor components σij or P ij can be reduced to the in-plane stresses nαβ resp. Nαβ

in the membrane theory [1]. nα|α represents the covariant derivative of nα [1, 19].

f̂ = ρ
∂2d̂

∂t2
−∇ · σ(d̂) = ρ

∂2d̂

∂t2
− nα|α = ρ

∂2d̂

∂t2
−

(
nαβgβ

)
|α (16)

F̂ = ρ
∂2d̂

∂t2
−∇ ·P(d̂) = ρ

∂2d̂

∂t2
−Nα|α = ρ

∂2d̂

∂t2
−

(
Nαβgβ

)
|α (17)
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The calculated forces in eqn. 16 or 17 are volume forces. To generate an area force acting
on the midplane of the thin membrane they have to be integrated over the thickness b resp.
B. It has to be stated again, that the calculated forces (̂f or F̂) represent the equlibrium
forces of the problem for a desired or given displacement field d̂. That means that this
force (̂f or F̂) has to be applied to the code indifferently of the variational method of the
implemented equilibrium. All these approaches and their developed equilibria are based
on the strong form equilibrium (eqn. 4 resp. 5). Thus, the generality of the method is
evident.

5.5 Boundary and Initial Conditions

One can directly determine the Dirichlet and Neumann boundary conditions (BC) for
the deformed and the initial configuration with equations 18 resp. 19 [19]. N and n
represent the in-plane normal vector, T and t are the traction vectors on the edges of the
initial (Γ) and the deformed (γ) configuration,respectively. In steady-state computations
the initial conditions (IC) are set to a nonbalanced state (e.g. to zero). In transient
problems the IC have to be set to the target value of the variable. At t = t0 the deformed
matches the initial configuration (eqn. 20 for both configurations).

dγ = d̂ t = σn (18)

dΓ = d̂ T = PN (19)

d(t = t0) = d̂(t = t0) (20)

6 FORMAL ORDER OF CONVERGENCE

The discretization method and the chosen form functions for spatial and temporal
discretization determine the formal order of convergence [2, 18, 21]. The approximation
of the continuum, meaning the geometry, the boundaries, the solution fields and the
integrals cause the discretization error in a simulation. One can determine the formal
order of convergence p of an approximated expression by comparison with its Taylor series
expansion. The first term of the Taylor series which is not approximated is the leading
error term within the asymptotic range of the solution. According to [21] the error for
an isoparametric polynomial approximation of order j is O(hp) = O(hj+1−m). h states
the characteristic mesh size and m the magnitude of the mth derivative of the primary
variable. For instance, this means for linear form functions (j = 1) that the displacement
(primary variable, m = 0) convergences with a formal order of p = 2 while stresses and
strains (m = 1) converge with a formal order of p = 1. The formal order can be reached
as long as no other errors (e.g. geometry approximation or integral approximation) with
smaller convergence rate occur. A detailed discussion, especially about Variational Crimes
can be found in [18].

7
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7 PROCEDURE

The procedure applying the MMS is stated in the following. The notation is based on
the momentum equilibrium in the initial configuration (cf. eqn. 5, 17, 19 and 20).

1. Invention of a manufactured solution d̂

2. Derivation of the equilibrium forces F̂ using eqn. 17

3. Derivation of the IC (eqn. 19) and BC (eqn. 20)

4. Application of the BC, the IC and the forces F̂ as input of the code to be assessed

5. Performing the simulation with a resulting field d

6. Error evaluation in d with the aid of d̂ (e.g. eqn. 3)

7. Repetition of steps 4-6 on systematically refined meshes

8. Calculation of the error development with refinement and evaluation of p̂ (eqn. 1)

9. Comparison of the formal order of convergence p to p̂

There are two different ways to assess the transient functionality of a code: one option is
to assess the temporal discretizazion scheme independently of the spatial discretizazion
scheme. To do so, one has to isolate the time discretization error from the spatial dis-
cretization error. This can be done either with a 0-dimensional problem where spatial
discretization doesn’t play any role or with a spatial field where the geometry and solution
exactely can be represented by the used shape functions. The second option is to assess
the temporal and the spatial discretization schemes together. Therefore one has to refine
both (time and space) with the same factor r = rs = rt in the refinement process. The
second procedure is also applicable, if the spatial discretization doesn’t match the formal
order of the temporal discretization (here, rs �= rt) [10]. The error evaluation in step 6
always has to be at the same locations of the mesh and in time (e.g. the midpoints of
the coarsest simulation) [10,12,13,15]. This guarantees the comparability of the different
resolved solutions.

8 BENCHMARK EXAMPLES

All functions and variables of the following examples are listed in a table, such that
the reader is able to construct the force term F̂, the BC and the IC. The choice of the
BC type (Dirichlet or Neumann on each edge) is left to the reader. Performing own MMS
calculations is therefore possible with the given examples and the procedure of chapter
7. Remember: MMS starts at given equilibrium equations with all its assumptions. It is
not necessary that the used parameters are in the range of applicability of the equations.
This means that e.g. in the first example the membrane has a thickness B of 0.25m

8
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initial configuration

0.25

0.00

G2, θ
1

G2, θ
2

deformed configuration

e3, z
e2, y e1, x

Figure 3: Example 4: Initial (analytically parametrized with parameter lines) and deformed configura-
tion

Figure 4: Example 4: Error development and observed order of accuracy p̂ over refinement

over an area of only 1m2 although this wouldn’t make sense in physical applications of
the membrane model. For a better understanding of the domain, the parametrization
and the geometry are shown for example 4 in figure 3. The logarithmic error and the
observed order of accuracy development with refinement for this example are shown in
figure 4. The different graphs show the L2 error norms of the different displacement
directions d = (du, dv, dw)T . The negative inclination - with almost a straight line in the
more refined area - of the log-log diagram of figure 4 indicates the error tending against
machine accuracy and therefore convergence of the variables. The inclination of the error
graph is calculated at each refinement step from a pair of errors (using eqn. 2) and is
drawn as a graph in figure 4, right. The calculated inclination states the observed order
of accuracy p̂. In order to judge an example successful, the observed order of accuracy
must reach the formal order of accuracy with refinement.

9
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8.1 Example 1: Plane Structure, In-Plane Deformation steady-state

The simplest example is a plane rectangular membrane under pure tension in a steady-
state calculation (cf. table 1). The example assesses the pure normal force action with
prestress in the fully geometric nonlinear environment.

Table 1: Overview table of example 1

initial configuration deformation material element properties domain size
x = θ1 dx = 0.1 · sin(θ1π) E = 70000 B = 0.25 θ1 ∈ [0..1]
y = θ2 dy = 0 ρ = 0 Spsθ1

= 25000 θ2 ∈ [0..1]

z = 0 dz = 0 ν = 0 Spsθ2
= 25000 steady state

8.2 Example 2: Plane Structure, Out-of-Plane Deformation, steady state

Example 2 is a membrane which gets deformed steady-state out-of-plane (cf. table 2).
It additionally assesses the geometric transformation through the out-of-plane deforma-
tion, shear force action, and the full material law with Poisson’s effect.

Table 2: Overview table of example 2

init. conf. deformation material element properties domain size
x = θ1 dx = 0 E = 1000 B = 0.001 θ1 ∈ [0..1]
y = θ2 dy = 0 ρ = 0 Spsθ1

= 5 θ2 ∈ [0..1]

z = 0 dz = 0.25 · sin(θ1π) · sin(θ2π) ν = 0.3 Spsθ2
= 5 steady state

8.3 Example 3: Plane Structure, Out-of-Plane Deformation, unsteady

Example 3 is a plane membrane which will be deformed out-of-plane in an unsteady
calculation (cf. table 3). This example additionally assesses the mass/inertia contribution
and the time integration/discretization.

Table 3: Overview table of example 3

init. conf. deformation material element prop. domain size
x = θ1 dx = 0 E = 1000 B = 0.001 θ1 ∈ [0..1]
y = θ2 dy = 0 ρ = 1000 Spsθ1

= 25 θ2 ∈ [0..1]

z = 0 dz = 0.25 sin(θ1π) sin(θ2π) sin(tπ) ν = 0.3 Spsθ2
= 25 t ∈ [0..1]

8.4 Example 4: Curved Structure, Out-of-Plane Deformation, unsteady

The last given example is a plane membrane which will be deformed out-of-plane in
an unsteady calculation (cf. table 4). This example additionally assesses the geometric
approximation of the initial configuration. The initial and the deformed configuration

10
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of this example are given in figure 3. The error and the observed order of accuracy p̂
development are shown in figure 4.

Table 4: Overview table of example 4

init. conf. deformation material element prop. domain size
x = θ1 dx = 0 E = 1000 B = 0.001 θ1 ∈ [0..1]
y = θ2 dy = 0 ρ = 1000 Spsθ1

= 25 θ2 ∈ [0..1]

z = θ1 − θ1θ1 dz =
1
4
sin(θ1π) cos(θ2π) sin(1

2
πt) ν = 0.3 Spsθ2

= 25 t ∈ [0..2]

9 CONCLUSIONS

The paper presents an effective method for detailed assessment of all functionalities of
a membrane element within steady-state and transient Finite Element codes, containing
curved geometries, prestress, and Poisson’s effect on curved geometries. Compared to
other code verification methods, the MMS represents a very extensive testing method
which provides an exact error evaluation. The generality of the MMS method made
it very attractive to the authors.The present software code Carat++ could be tested
successfully and the formal order of convergence of 2 was confirmed through the performed
tests. In addition to the demonstrated application of MMS to structural dynamics with
membranes, the methodology can be applied to create benchmarks and to assess other
structural dynamics problems, fluid dynamics or even fluid structure interaction software
environments, independent of the code structure and the discretization methods.
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