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Abstract

The damaging effects of high plasma levels of cholesterol in the cardiovascular system are widely known, but little attention
has been paid to direct effects on cardiomyocyte function. We therefore aimed at testing the hypothesis that Low Density
Lipoprotein (LDL) cholesterol affects calcium dynamics and signal propagation in cultured atrial myocytes. For this purpose,
mRNA and protein expression levels were determined by real time PCR and western blot analysis, respectively, and
intracellular calcium was visualized in fluo-4 loaded atrial HL-1 myocyte cultures subjected to field stimulation. At low
stimulation frequencies all cultures had uniform calcium transients at all tested LDL concentrations. However, 500 mg LDL/
mL maximally reduced the calcium transient amplitude by 43% from 0.3060.04 to 0.1760.02 (p,0.05). Moreover, LDL-
cholesterol dose-dependently increased the fraction of alternating and irregular beat-to-beat responses observed when the
stimulation interval was shortened. This effect was linked to a concurrent reduction in SERCA2, RyR2, IP3RI and IP3RII mRNA
levels. SERCA2 protein levels were also reduced by 43% at 200 mg LDL/mL (p,0.05) and SR calcium loading was reduced by
3866% (p,0.001). By contrast, HDL-cholesterol had no significant effect on SERCA expression or SR calcium loading. LDL-
cholesterol also slowed the conduction velocity of the calcium signal from 3.2+0.2 mm/s without LDL to 1.760.1 mm/s with
500 mg LDL/mL (p,0.05). This coincided with a reduction in Cx40 expression (by 4463%; p,0.05 for mRNA and by 7962%;
p,0.05 for Cx40 protein at 200 mg/ml LDL) whereas the Cx-43 expression did not significantly change. In conclusion, LDL-
cholesterol destabilizes calcium handling in cultured atrial myocytes subjected to rapid pacing by reducing SERCA2 and
Cx40 expression and by slowing the conduction velocity of the calcium signal.
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Introduction

The damaging effects of hypercholesterolemia in the cardiovas-

cular system are widely known, but little attention has been paid to

direct effects on cardiomyocyte function even though most of the

adult patients suffering from dyslipemia in industrialized societies

are at risk of suffering sudden cardiac death (SDC) caused by

arrhythmias[1]. Therefore, an antiarrhythmic potential of choles-

terol-lowering drugs may result from either a direct electrophys-

iological antiarrhythmic effect of these drugs or from an indirect

antiarrhythmic action resulting from lowering the cholesterol

levels provided that cholesterol have arrhythmogenic actions.

Since cardiac arrhythmias among others have been linked to

changes in the activity of ion channels[2,3,4], altered intracellular

calcium handling[2,5,6,7,8], or disturbances in the conduction of

the electrical signal through cardiac gap junctions[9], the

antiarrhythmic effects of cholesterol-lowering drugs could be due

to a direct or indirect action on one or several of these

mechanisms.

Regarding the direct actions of cholesterol-lowering drugs it has

been reported that statins can reduce the density of the

sacolemmal Na+–K+ pump[10], desensitize beta-adrenergic

signalling[11] and reduce beta-adrenergic receptor mediated

RAC-1 activation and apoptosis[12], affect the activity of Ca2+-

activated K+ channels in porcine coronary artery smooth muscle

cells[13], the expression of genes that regulate calcium homeostasis

in skeletal muscle[14], and calcium uptake in smooth muscle

cells[15]. Although several of these properties of statins may confer

antiarrhythmic activity to statins they have not been directly

associated with specific antiarrhythmic actions.

On the other hand, hypercholesterolemia has been associated

with electrical remodelling and increased vulnerability to ventric-

PLOS ONE | www.plosone.org 1 March 2013 | Volume 8 | Issue 3 | e58128



ular fibrillation in a rabbit hypercholesterolemic model[16].

Recently, we also reported that very low-density lipoproteins

(VLDL) uptake induces intracellular lipid accumulation in

cardiomyocytes, which is associated with disturbances in intracel-

lular calcium handling linked to SERCA2 downregulation[17].

These results suggest that lipoprotein-derived intracellular lipids

may modulate intracellular calcium handling. Furthermore,

hypercholesterolemia has been associated with down-regulation

of connexin-40 (Cx40) and connexin-43 (Cx43)[18,19] and statins

have been shown to reverse this effect[18]. Thus, it is conceivable

that low density lipoprotein (LDL) uptake and derived intracellular

lipid accumulation have direct effects on intracellular calcium

homeostasis and signal propagation in cardiac myocytes. To test

this hypothesis, we here investigated how exogenous LDL affected

cholesterol accumulation in cultured cardiomyocytes and the

concurrent effects on calcium dynamics, signal propagation, as

well as SERCA2 and connexin expression.

Methods

HL-1 cardiomyocyte cell culture
The murine HL-1 cell line was generated by Dr. W.C.

Claycomb (Louisiana State University Medical Centre, New

Orleans, Louisiana, USA)[3] and kindly provided by Dr. U

Rauch (Charité-Universitätmedizin Berlin). These cells showed

cardiac characteristics similar to those of adult cardiomyocytes

such as the presence of highly ordered myofibrils and cardiac-

specific junctions in the form of intercalated disks as well as the

presence of cardio-specific voltage dependent currents such as the

IKr and an ultrastructure similar to primary cultures of adult atrial

cardiac myocytes[20,21]. The HL-1 cells were maintained in a

Claycomb Medium (JRH Biosciences, Lenexa, KS, USA) supple-

mented with 10% fetal bovine serum (FBS) (Invitrogen Corpora-

tion, Carlsbad, CA, USA), 100 mM norepinephrine, 100 units/mL

penicillin, 100 mg/mL streptomycin, and L-Glutamine 2 mM

(Sigma Chemical Company, St. Louis, MO, USA) in plastic

dishes, coated with 12.5 mg/mL fibronectin and 0.02% gelatin, in

a 5% CO2 atmosphere at 37uC.

Lipoprotein isolation and characterization
Human LDLs (d1.019–d1.063 g/mL) and HDLs (d1.063–d1.210 g/

mL) were obtained from pooled sera of normocholesterolemic

anonymous volunteers that provided written informed consent to

use the serum for this study. LDL and HDL preparations were less

than 24 hours old, non-oxidized (less than 1.2 mmol malonalde-

hyde/mg protein LDL) and without detectable levels of endotoxin

(Limulus Amebocyte Lysate test, Bio Whittaker). The purity of

LDLs and HDLs was assessed by agarose gel electrophoresis

(Paragon System, Beckmann) and the composition of LDL and

HDL was, as expected, cholesterol:protein (2:1) and (1:5),

respectively. The study was approved by the institutional ethics

committee at Hospital of Santa Creu i Sant Pau and conducted in

accordance with the Declaration of Helsinki.

Lipid extraction
At the end of lipoprotein-exposure period, cells were exhaus-

tively washed, twice with PBS, twice with PBS–1% BSA, and twice

with PBS–1% BSA–heparin 100 U/mL before they were

harvested for intracellular lipid determination or calcium-handling

studies as previously described[17,22]. One aliquot of the cell

suspension was extracted with methanol/dichlorometane (2:1,

vol/vol). After solvent removal under an N2 stream, the lipid

extract was redissolved in dichloromethane and one aliquot was

partitioned by thin layer chromatography.

Determination of cholesteryl ester and free cholesterol
intracellular content

Thin layer chromatography (TLC) was performed on silica G-

24 plates. The different concentrations of standards were applied

to each plate. The chromatographic developing solution was

heptane/diethylether/acetic acid (74:21:4, vol/vol/vol). The spots

corresponding to cholesteryl ester (CE) and free cholesterol (FC)

were quantified by densitometry against the standard curve of

cholesterol palmitate, triglycerides and cholesterol, respectively,

using a computing densitometer (Molecular Dynamics).

Determination of intracellular calcium handling
Twenty-four hours before experimentation, HL-1 cardiomyo-

cytes were incubated in a culture medium containing one of four

LDL concentrations: 0. 125, 250 or 500 mg/mL, and the stability

and propagation of the calcium signal was recorded upon a step-

wise reduction of the stimulation interval from 2.5 to 0.75 s. In

some experiments, the effect of LDL and HDL was compared. To

detect changes in intracellular calcium handling, cultures were

loaded with fluo-4 and calcium was assessed in a 161 mm square

of the cell culture using a resonance scanning confocal microscope

(Leica SP5 AOBS) with a 10x objective (see figure 1A). Cell

cultures were loaded with 2.5 mM fluo-4AM for 15 min at room

temperature followed by 30 min of deesterification. Fluo-4 was

excited at 488 nm with the laser intensity set to 20% and

subsequently attenuated to 10%. Fluorescence emission was

collected between 505 and 650 nm at a frame rate of 25 Hz,

and changes in intracellular calcium were estimated by normal-

izing the fluorescence emission (F) to the fluorescence emission at

rest (F0). The experimental solution contained (in mM): NaCl 136,

KCl 4, NaH2PO4 0.33, NaHCO3 4, CaCl2 2, MgCl2 1.6, HEPES

10, Glucose 5, pyruvic acid 5, (pH = 7.4). Calcium signals were

detected and characterized off-line using Leica LAS software or a

custom made program that automatically detects the calcium

signal (baseline fluorescence, peak fluorescence, calcium transient

amplitude, and calcium transient duration at half maximum

(FDHM) for each cell in the culture. Baseline fluorescence was

determined as the lowest 5% of the fluorescent signal at a given

stimulation frequency. Values for baseline and peak fluorescence

were expressed as the increase above baseline fluorescence in the

absence of field stimulation. The calcium transient amplitude was

calculated as the difference between the peak fluorescence and the

baseline fluorescence immediately before the peak.

To visualize the propagation pattern of the calcium transient

through the image field, cell segmentation was performed by

inspecting spatial regions presenting large variability in the

fluorescence signal. Regions with sizes between 150 and

1500 mm2 were identified as cells and their average calcium signal

was measured. The delay in the propagation of the calcium

transient across the image field was then colour coded for each cell

detected.

The propagation pattern of the calcium transient across the

image field was also characterized as uniform, alternating or

irregular. In this case, the propagation pattern was considered

uniform if all calcium transients propagated from the proximal

region (next to the stimulation electrode) to the distant region of

the image field. Alternating propagation patterns were those

showing an alternating response at the distal region, with the

extreme being a response on every second pulse at the distant

region. Irregular propagation patterns included all responses

where the response at the distal region was irregular. The

propagation velocity was calculated as the distance between a

region of interest proximal and distal to the stimulation electrodes
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(dX) divided by the time delay between the calcium transients (dt)

measured at half maximum.

To estimate SR calcium loading and the activity of the Na+–

Ca2+ exchanger, field stimulation was interrupted and cell cultures

were transiently exposed to 10 mM caffeine for 30 s in order to

release the calcium stored in the SR. The SR calcium content was

estimated from the time integral of the global calcium transient

elicited by caffeine. Moreover, tau values obtained by fitting the

decay of the calcium transient with an exponential function were

used as a measure of the Na+–Ca2+ exchange activity.

Real time PCR
Gene expression of SERCA2, Cx40, and Cx43 was assessed by

real time PCR-7000 Sequence Detection System of ABIPRISM

(Applied Biosystems) using the following assays on demand: mouse

Cx40 (Mn01264990_m1), mouse Cx43 (Mn00439105_m1),

SERCA2 (Rn01499537_m1), RyR2 (Rn01470303_m1), IP3R-I

(Rn01425720_m1), IP3R-III (Rn01470303_m1). Rat ribosomal

protein, large, P0 (ARBP) (Rn00821065_g1) was used as endog-

enous control. Taqman real-time PCR was performed with 1-mL/

well of RT products (1 mg total RNA) in 10 mL of TaqMan PCR

Master Mix (PE Biosystem) with the primers at 300 nM and the

probe at 200 nM. PCR was performed at 95uC for 10 minutes (for

AmpliTaq Gold activation) and then run for 40 cycles at 95uC for

15 seconds and 60uC for 1 minute on the ABIPRISM 7000

Detection System. The threshold cycle (Ct) values were deter-

mined and normalized to endogenous control [17]. Relative

Figure 1. LDL induces intracellular cholesteryl ester accumula-
tion. A Thin layer chromatography showing intracellular cholesteryl
ester and free cholesterol in HL-1 cell cultures incubated with 0, 50, 125,
250, and 500 mg/mL LDL for 24 hours. Line graphs below show the
relationship between the extracellular LDL concentration and intracel-
lular cholesteryl ester (diamonds) and free cholesterol (squares) levels. B
Thin layer chromatography showing intracellular cholesteryl ester and
free cholesterol in HL-1 cell cultures incubated with LDL or HDL
(200 mg/mL). Bar graphs below show intracellular cholesteryl ester
(black bars) and free cholesterol (gray bars) levels. Results were
expressed as microgram of cholesterol per milligram of protein and
shown as the mean of three experiments performed in duplicate. Values
significantly different from the level with 0 mg/ml LDL are indicated
with asterisks.
doi:10.1371/journal.pone.0058128.g001

Figure 2. LDL reduces the intracellular Ca2+- transient. A
Schematic representation of a cell culture dish subjected to field
stimulation with indication of the 161 mm field where calcium imaging
is performed. B Image of the HL-1 cardiomyocyte culture with
individual myocytes showing detectable calcium transients represented
in blue. Scale bar is 250 mm. C Global calcium transients elicited by field
stimulation at 2 s intervals in the absence of LDL (control) and the
presence of 500 mg/ml LDL. D Average baseline (left panel), peak
(center panel) and amplitude (right panel) of the calcium transients
recorded without (CON) and with 500 mg/ml LDL. Values were recorded
in three different fields from eight HL-1 preparations. Statistical
differences between CON and LDL are indicated with an asterisk.
doi:10.1371/journal.pone.0058128.g002
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quantification using standard curves was used to analyze relative

gene expression.

Western blot
Proteins were analyzed by Western blot analysis as previously

described. Blots were incubated with monoclonal antibodies

against SERCA2 (Novus Biologicals NB100–237), Cx40 (Invitro-

gen, 36–4900) and Cx43 (Sigma-Aldrich C6219). Equal loading of

protein in each lane was verified staining filters with Pounceau and

also by incubating blots with monoclonal antibodies against beta

tubulin for HL-1 cardiomyocytes (Abcam, ab6046, dilution 1:500).

Statistical analysis
Data were expressed as mean 6 SEM. A statview (Abacus

Concepts) statistical package for the Macintosh Computer System

was used for all analysis. Statistical significance was assessed by

ANOVA for repeated measurements and by t-test when appro-

priate. P,0.05 was considered significant.

Results

Elevation of exogenous LDL levels induces cholesterol
accumulation

To test how exogenous LDL levels affected cholesterol

accumulation in cultured cardiomyocyte, HL-1 cardiomyocytes

were exposed to increasing concentrations of LDL (0, 50, 125, 250

and 500 mg/mL). As shown in Figure 1A, increasing LDL doses

increased basal intracellular CE from 2.660.2 at baseline to

23.561.6 with 50 mg/mL LDL and 4564 mg CE/mg cell protein

with 500 mg/mL LDL. In contrast, HDL (200 mg/mL) slightly

increased intracellular CE content of HL-1 cardiomyocytes

(Figure 1B). As expected, intracellular free cholesterol (FC) levels

were not altered by LDL or HDL in HL-1 cardiomyocytes.

Effect of LDL on the calcium transient
To test if intracellular CE accumulation was associated with

changes in intracellular calcium handling, we first examined how

exogenous LDL affected the intracellular calcium transient elicited

by field stimulation. Figure 2A shows schematic outline of a

Figure 3. LDL reduces the expression of calcium handling proteins. Real-time PCR analysis showing SERCA2 (A), RyR2 (B), IP3-RI (C) and IP3-
RIII mRNA expression levels in HL-1 cardiomyocytes exposed to increasing doses of LDL. Data were processed with a specially designed software
programme based on Ct value of each sample and normalized to ARBP mRNA. Values significantly different from the level with 0 mg/ml LDL are
indicated with asterisks.
doi:10.1371/journal.pone.0058128.g003
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161 mm field of a HL-1 culture subjected to field stimulation and

panel 2B shows the image field with indication of 427 myocytes

that had calcium transients when subjected to field stimulation.

Representative traces of global calcium transients recorded in

control conditions and with 500 mg/mL LDL, which induces

maximal CE accumulation, are shown in Figure 2C. When

stimulated at intervals of 2 s, 500 mg/mL LDL reduced the

amplitude of the calcium transient by 43% (from 0.3060.04 to

0.1760.02, p,0.05), and there was a concurrent reduction in

both baseline and peak fluorescence (Figure 2D). By contrast, the

duration of the calcium transient at half maximum was unaffected

by LDL (938633 ms with LDL vs. 1021632 ms in control).

To determine whether the observed changes in the calcium

transient were associated to LDL-mediated changes in calcium

handling proteins, the mRNA levels of SERCA2, RyR2, IP3-RI

and IP3-RII were analyzed at increasing LDL doses. Figure 3
shows that increasing LDL levels caused a progressive and

significant decrease in the mRNA levels of all four calcium

Figure 4. LDL reduces SERCA expression and SR calcium loading. Representative Western blot analysis showing SERCA2 bands in HL-1 cells
exposed to increasing LDL concentrations (0, 50, 100 and 200 mg/mL) (A) or to similar dose (500 mg/ml) of LDL or HDL (B) for 24 hours. The bar graph
below shows SERCA2 band quantification. Unchanged levels of b-tubulin are shown as loading control. Results are mean6SEM of three independent
experiments performed in duplicate. *P,0.05 versus. HL-1 cells incubated in absence of LDL. C Calcium images acquired at rest before (CON) and
during a rapid caffeine application. D Representative calcium transients recorded in cultures incubated without lipoproteins (CON), with 500 mg/ml
LDL or with 500 mg/ml HDL. The lower panel shows the corresponding time integrals of the calcium transients. E summary of the effect of LDL and
HDL on the time integral of the caffeine induced calcium transient. *P,0.05 vs. cells incubated with LDL
doi:10.1371/journal.pone.0058128.g004
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handling proteins. Further investigation of the effect of LDL on

SERCA levels and SR calcium loading showed that LDL dose-

dependently reduced the expression of SERCA2 protein levels

(Figure 4A). At a concentration of 200 mg/mL LDL, SERCA2

protein was maximally reduced to 43% of the level detected in

myocytes incubated without LDL. Importantly, HDL at the same

dose, did not exert any significant effect on SERCA-2 protein

expression (Figure 4B) supporting the notion that the effects of

LDL are linked to intracellular lipid accumulation rather than to a

non-specific effect on membrane properties. Accordingly, the time

integral of the calcium transient elicited by a rapid caffeine

application, which releases the SR calcium content, was signifi-

cantly smaller in cells incubated with 500 mg/mL LDL than in

controls or in cells incubated with 500 mg/mL HDL (Figure 4C–
E). This suggests that LDL but not HDL significantly reduces

steady-state SR calcium loading. Moreover, there were no

significant differences in the decay of the caffeine induced calcium

transient among CON, LDL and HDL treatments (exponential fits

yielded tau values of 6.460.7, 5.460.6 and 6.861.2 s respective-

ly), suggesting that LDL treatment does not modify the activity of

the Na+–Ca2+ exchanger.

Effect of LDL on the stability and propagation of the
calcium transient

To test if the reduction in calcium handling proteins also

affected the beat-to-beat stability of the calcium transient, myocyte

Figure 5. LDL promotes non-uniform Ca2+ - transients at short stimulation intervals. A Calcium transients recorded at stimulation intervals
of 2.5, 2, 1.5, 1 and 0.75 s (top to bottom) in the absence (CONTROL) or the presence of 500 mg/ml LDL (right panel). Each stimulation pulse is
indicated with a dot above the traces. B Representative traces illustrating uniform, alternating and irregular response. C Distribution of uniform (black
bar), alternating (grey bar) or irregular (white bar) calcium transient amplitudes at decreasing stimulation intervals recorded in the absence
(CONTROL) or the presence of 500 mg/ml LDL (right panel). Values were recorded in four different fields from each of five HL-1 preparations.
doi:10.1371/journal.pone.0058128.g005
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cultures were subjected to field stimulation at increasingly shorter

pacing intervals. Figure 5A shows calcium transients elicited at

increasingly shorter stimulation intervals in the absence of LDL

(Control) and in the presence of 500 mg/mL LDL. The calcium

transient amplitudes were uniform at all LDL concentrations with

long intervals between stimulation pulses. As the stimulation

interval was shortened, cultures started to present alternating

(cyclical oscillations between two or three values) or irregular

calcium transients (cultures responded in an irregular manner to

the stimulation pulses). Figure 5B shows examples of uniform,

alternating and irregular responses. Figure 5C shows the

relationship between the stimulation interval and the percentage

of preparations presenting uniform, alternating and irregular

responses. Moreover, it shows that LDL-cholesterol increased the

fraction of irregular responses and decreased the fraction of

uniform responses at shorter stimulation intervals. Thus, when

Figure 6. LDL prevents uniform propagation of the Ca2+ - transient. A HL-1 image field with the activation time for individual myocytes
shown in color code. Black and light grey rectangles at the bottom and the top of the images indicate regions used to measure calcium transients
proximal and distal to the stimulation electrodes respectively. Image field is 161 mm. B Calcium transients recorded in the black and grey rectangles
are shown in black and grey traces. Recordings were performed at stimulation intervals of 2.5, 2, 1.5, 1, and 0.75 s (top to bottom) in the absence of
LDL (CONTROL) or the presence of 500 mg/ml LDL (right panel). Notice that LDL disrupted a uniform propagation of the calcium transient from the
dark to the light grey rectangle. C Rate dependent distribution of the propagation pattern recorded with 0 (CONTROL) and 500 mg/ml LDL (indicated
above figures). The stimulation interval is given below each bar (in seconds) and the propagation patterns were classified as uniform (black bars),
alternating (grey bars) or irregular (white bars). See methods for details. Values were recorded in four different fields from each of five HL-1
preparations.
doi:10.1371/journal.pone.0058128.g006
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stimulated at 0.75 s intervals, the fraction of irregular responses

increased from 41% at 0 mg/ml LDL to 71% at 500 mg/mL LDL

and the fraction of uniform responses decreased from 30% to 8%.

To determine if exogenous LDL affected the propagation of the

calcium signal across the myocyte culture, calcium transients were

measured in two regions of interest proximal and distant to the

stimulation electrodes. Figure 6A shows a map of an image field

with indication of the activation time for each myocyte in the field.

The black rectangle indicates the region used to quantify the

calcium transient proximal to the stimulation electrode and the

calcium transient distant to the stimulation electrodes was

quantified in the region delimited by the light grey rectangle.

Figure 6B illustrates how incubation with LDL dramatically

impaired the ability of calcium signal to propagate uniformly from

the proximal to the distant region. Figure 6C shows how LDL

dose-dependently increased the fraction of non-uniform propaga-

tion patterns.

To determine if the promotion of non-uniform propagation

patterns by increasing LDL-doses was linked to changes in the

propagation velocity, this parameter was determined as the time

required for the calcium transient to advance from the proximal

(green rectangle) to the distant (pink rectangle) region of the

myocyte culture as shown in Figure 7A. Figure 7B shows that

LDL-dose dependently reduced the propagation velocity (dx/dt) at

stimulation frequencies where signal propagation was uniform.

Effect of LDL on connexin-40 and connexin-43 expression
To determine whether alterations in the propagation of the

calcium signal were associated to changes in the expression of

connexins, we analyzed the effect of increasing dose of LDL on

Cx40 and Cx43 expression in HL-1 cardiomyocytes. LDL at

200 mg/mL maximally reduced Cx40 mRNA expression by 45%

(Figure 8A) and Cx40 protein expression by 79% (Figure 8B). In

contrast, LDL did not exert a significant effect on Cx43 mRNA or

protein expression. Interestingly, we found an inverse correlation

between intracellular CE content and Cx40 protein expression

(Figure 8C) in HL-1 cardiomyocytes.

Discussion

The main finding of this study is that LDL-cholesterol reduces

the calcium transient in a dose-dependent manner, destabilizes

calcium handling on a beat-to-beat basis and slows the conduction

velocity of the calcium signal in cultured atrial myocytes subjected

to rapid pacing. This alteration of calcium handling is accompa-

nied by an LDL-dependent down-regulation of Cx40, SERCA2

and other calcium-handling proteins.

LDL-mediated reduction of the calcium transient
We have recently shown that exposure of cultured cardiomy-

ocytes to high VLDL doses induce intracellular CE and

triglyceride accumulation and a concurrent reduction in SERCA2

expression, SR calcium loading, and in the intracellular calcium

transient[17]. The present data show that exposure to pathological

doses of LDL also promotes CE accumulation, reduces SERCA2,

RyR2, IP3-RI and IP3-RII expression, lowers SR calcium loading,

and diminishes the calcium transient; supporting the notion that

intracellular CE accumulation impairs SR calcium handling. In

agreement with this, our results show that HDL only induced a

slight intracellular cholesteryl ester accumulation in HL-1 cardio-

myocytes and had no significant effect on SERCA-2 expression or

SR calcium loading. In fact, a previous study performed in a

hypercholesterolemic animal model showed that SERCA2 ex-

pression inversely correlated with CE lipid enrichment of the

sarcoplasmic reticulum[23].

LDL-mediated destabilization of the beat-to-beat
response

Interestingly, high extracellular LDL levels also altered the beat-

to-beat stability of the calcium transient when myocyte cultures

were subjected to increased stimulation frequency. Theoretically,

the LDL-mediated reduction in SERCA2 expression could lead to

insufficient SR calcium reuptake at short pacing intervals, and thus

affect the beat-to-beat stability of the calcium transient[24].

However, insufficient SR calcium reuptake would also be expected

to result in a rate-dependent elevation of cytosolic calcium

Figure 7. LDL slows the propagation velocity of the Ca2+ -
transient. A HL-1 image field with the activation time for individual
myocytes shown in color code. Green and pink rectangles at the
bottom and the top of the images indicate regions used to measure
calcium transients proximal and distal to the stimulation electrodes
respectively. Image field is 161 mm. The middle panel shows global
calcium transients and the lower panes shows local calcium transients
recorded in green and pink rectangles. The propagation velocity (dx/dt)
was calculated as distance between the two rectangles divided by the
time elapsed between the green and pink calcium transients at their
half maximum (dt, indicated below traces). B Effect of 0 (Control), 100,
250, and 500 mg/ml LDL on the propagation velocity (dx/dt) recorded at
stimulation intervals of 2.5, 2, and 1.5 s. Values were recorded in four
different fields from each of five HL-1 preparations. Values statistically
different from the corresponding Control value are indicated with
asterisks.
doi:10.1371/journal.pone.0058128.g007
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concentration at baseline, a phenomenon that was observed in

control conditions but not with high extracellular LDL (see

Figure 3). This observation is likely due to the concomitant LDL-

mediated reduction in RyR2 and IP3R expression, which together

with a reduced SERCA level is expected to cause a reduction in

calcium cycling on a beat-to-beat basis. Additionally, LDL dose-

dependently impaired propagation of the calcium transient across

the myocyte culture at short pacing intervals, suggesting a

reduction in excitability[25] and/or a reduction in the commu-

nication between the cultured cardiomyocytes[26,27].

LDL-mediated reduction of connexin-40 expression and
signal propagation

The observation that the Cx40 protein expression is dose

dependently reduced as the LDL-induced accumulation of

intracellular CE increases could account for the observed LDL-

mediated reduction in the propagation velocity of the calcium

signal[26]. Moreover, the observation that intracellular CE

derived from LDL plays a significant role on Cx40 reduction is

in accordance with previous work in aortic endothelium where the

Cx40 expression was found strongly reduced in a hyperlipidemic

apoE knockout mice[28]. In contrast to the downregulatory effect

of LDL on Cx40 expression, we did not observe any significant

effects of LDL on CX43 expression in HL-1 cardiomyocytes,

suggesting that Cx40 and Cx43 are differentially regulated by

LDL in atrial cardiomyocytes. It should also be kept in mind that

alterations in Cx43 phosphorylation have been reported to cause

conduction abnormalities in the context of congestive heart

failure[29], and we cannot rule out that changes in Cx43

phosphorylation could also contribute to the observed reduction

of the propagation velocity. Similarly, changes in the activity of

Na+ or K+-channels could also modify the propagation of the

electrical signal, and we cannot rule out that LDL-mediated lipid

accumulation also modulates the propagation velocity by changing

Na+ or K+-channel expression or activity

Figure 8. LDL reduces connexin-40 expression in HL-1 myocytes. Effect of increasing doses of LDL (0, 50, 100 and 200 mg/mL) on connexin-
40 (Cx40) and connexin-43 (Cx43) mRNA (A) or protein (B) levels in HL-1 myocyte cultures C Relationship between intracellular cholesteryl ester (CE)
and Cx40 and Cx43 protein levels in HL-1 myocyte cultures. Results are shown as mean6SEM of three independent experiments performed in
duplicate. *P,0.05 vs. cells incubated in absence of LDL.
doi:10.1371/journal.pone.0058128.g008
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On the other hand, previous studies in mouse and goat models

have reported that lack of Cx40 increases atrial vulnerability to

arrhythmia[30,31], suggesting that the LDL-mediated reduction

in Cx40-expression reported here might increase the vulnerability

to atrial arrhythmia. In line with this notion, a marked increase in

intracellular lipid droplets has been associated to the disruption of

intercellular junctions in the biopsied myocardium from a patient

with arrhythmogenic right ventricular cardiomyopathy[32].

Considerations on the model
Although our findings cannot be directly extrapolated to clinical

conditions, cultured atrial HL-1 myocytes retain fundamental

features of the native cardiomyocyte such as intracellular calcium

transients and contraction in response to electrical field stimulation

as well as propagation of the calcium signal through the cultured

adult cardiomyocytes[20,21]. Moreover, this in vitro model may be

useful to investigate effect of high LDL levels on intracellular lipid

accumulation and calcium handling in cardiomyocytes, and

appropriate for studying concurrent effects of LDL on the

expression of calcium handling proteins, on the intracellular

calcium transient, and on its propagation through the multicellular

myocyte preparation.

In summary, our results highlight LDL-cholesterol as a potential

contributor to reductions of the calcium transient amplitude and

its propagation in cardiomyocytes by suppressing expression of

Cx40 and the calcium handling proteins SERCA2, RyR2, IP2-RI

and IP3-RII.
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