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1Universitat Politècnica de Catalunya, Jordi Girona 1-3, Edifici C1, 08034, Barcelona, Spain
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Abstract

The log-conformation reformulation, originally proposed by Fattal and Kupferman [1], allows com-
puting incompressible viscoelastic problems with high Weissenberg numbers which are impossible
to solve with the typical three-field formulation. By following this approach, in this work we
develop a new stabilized finite element formulation based on the logarithmic reformulation using
the Variational Multiscale (VMS) method as stabilization technique, together with a modified
log-conformation formulation. Our approach follows the term-by-term stabilization proposed by
Castillo and Codina [2] for the standard formulation, which is more effective when there are stress
singularities. The formulation can be used when the relaxation parameter is set to zero, and per-
mits a direct steady numerical resolution. The formulation is validated in the classical benchmark
flow past a cylinder and in the well-known planar contraction 4:1, achieving very accurate, stable
and mesh independent results for highly elastic fluids.

Keywords: Viscoelastic fluids, Log-conformation, Stabilized finite element methods, Multiscale,
Contraction 4:1, Flow around a cylinder.

1 Introduction

Viscoelastic fluids are widely employed in a large variety of engineering, medical and
natural science applications, such as safety devices capable of absorbing impacts, some
plastics or blood pumps. Moreovear, these fluids display distinct features to those shown
by pure viscous fluids, for instance turbulent drag reduction [3] or elastic turbulence at low
Reynolds number [4], among others. For these reasons, the study of numerical tools for the
computation of viscoelastic flows is valuable both from the fundamental and the practical
perspectives. The main characteristic about the behavior of viscoelastic materials is that
stresses do not just depend on current deformation rates, but also on the deformation
history. Due to this, time is a crucial element to take into account, because viscoelastic
fluids have different responses depending on the time-scales of the deformation.

The computation of the flow of these kind of fluids leads to several difficulties, above all
when elasticity becomes dominant, i.e. the dimensionless number known as Weissenberg
number is high. This number is defined by We = λu/L, where λ is the characteristic
relaxation time of the material u is the characteristic velocity of the flow, and L is the
characteristic length of the domain. In some articles, another dimensionless number is used
for flows with non-constant deformation rate, the Deborah number, De = λ/tc written in
terms of the relaxation time and the time-scale of observation tc. In [5] an extensive
discussion is done about the suitable uses of each number.
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In addition, the difficulties in numerically simulating high Weissenberg numbers flows
are one of the biggest challenges in computational rheology since the 1970s; it is called the
High Weissenberg Number Problem (HWNP) [6]. It is defined as a numerical phenomenon
that causes the iterative computations to breakdown for relatively low Weissenberg num-
bers, and normally it is expressed as a lack of convergence in the iterative method due to
the hyperbolic nature of the differential constitutive equations. The breakdown occurs for
a critical value of the Weissenberg number, but it is specific to each particular problem, the
spatial discretization and the numerical algorithm. The numerical instability is brought
about by the failure of the proper balance of the deformation rate and the convection, and
it was identified and discussed by Fattal and Kupferman [7]. It is a fundamental instabil-
ity, present in all constitutive models and standard numerical methods. Nevertheless, it
is demonstrated that constitutive methods can predict other instabilities of mathematical
character [8, 9], referred to as constitutive instabilities, which can be classified in two: the
Hadamard instability, associated with the non-linear fast response of constitutive equa-
tions, and the dissipative instability, related to the formulation of the dissipative behavior
of viscoelastic models.

The source of the HWNP has thus been identified: on the one hand the loss of positive-
definiteness of the conformation tensor, an internal variable which should be symmetric
positive-definite to be physically admissible [10, 1]; on the other hand, the large stress gra-
dients, regions with particular high deformation rate, or near stagnation points favor the
breakdown of the numerical method, as explained in Fattal and Kupferman in [1, 7]. They
describe the cause for this phenomena to be caused by the use of inapropriate approxima-
tions to represent the stress tensor, remarking the importance of preserving its positivity.
By following these ideas, a new formulation was proposed by Fattal and Kupferman [1]:
the log-conformation representation (denoted by LCR), a reformulation of the traditional
equations of viscoelastic fluids, which eliminates the instability and linearizes the exponen-
tial stress profiles near the stress singularities. Therefore, the formulation seeks to treat
the exponential growth of the elastic stresses, allowing to extend the range of Weissenberg
numbers for which a numerical solution can be obtained.

However, alternative schemes have been proposed in other works. For example, Vaithi-
anathan and Collins [11] presented two matrix decomposition schemes in order to construct
the positive definite conformation tensor, employing the FENE-P model. Balci et al. [12]
proposed a square root conformation representation. Afonso et al. [13], developed several
matrix kernel-transformation families which can be applied to the conformation tensor
equation. Nevertheless, although there are a variety of proposals to deal with the lack
of positive-definiteness in the conformation tensor, the logarithm representation is the
uniquely capable of linearizing the exponential stress profile.

Since the logarithmic formulation was presented, a great number of works have been
written following this novel strategy, applying different methodologies and schemes, in
finite volume and finite element (FE) codes. The next first work published applying the
log-conformation reformulation is due to Hulsen et al. [14] using the DEVSS/DG for-
mulation for the discretization and a first-order upwind scheme in a FE implementation.
Later, Coronado et al. [15] proposed a “simple alternate” form of the log-conformation
formulation implemented in the DEVSS-TG/SUPG FE method, and in comparison with
the previous work, fewer code modifications with respect to the standard formulation were
required. An analysis between the two previous publications and two new implementations
was presented by Kane et al. [16], remarking particularly the treatment of the advective
term of the constitutive equation. The final conclusion is that all four formulations are
very similar, except the one described by Coronado et al. [15], that is a little less robust
due to the linear interpolation of the convective term. Damanik et al. [17] defined a
fully coupled monolithic FE approach, using the edge-oriented FE stabilization for the
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convective term. Saramito [18] and Knechtges [19] recently derived fully implicit versions
of the log-conformation formulation that do not involve an algebraic decomposition of the
velocity gradient tensor, and which can be linearized and solved by the Newton-Raphson
method. Afonso et al. [20, 21] investigated the performance of the log-conformation refor-
mulation using the finite volume method framework in both works, although the second
is more interesting because it seeks to predict the rich dynamical transitions in the 4:1
contraction planar benchmark, whereas the first one solves the flow around a cylinder,
a problem without singularities. Comminal et al. [22, 23], simulated incompressible vis-
coelastic flows and the stream-log-conformation methodology, a combination between the
log-conformation with the stream function flow formulation (see [24]) that is beneficial for
the accuracy and stability of the numerical algorithm. One of the most recent publica-
tions belongs to Pimenta et al. [25], who increased the robustness and accuracy of the
viscoelastic solver in OpenFoam, implementing there the log-conformation methodology.

Concerning this work, we propose a slightly different formulation to the log-confor-
mation formulation. Our formulation is non-singular when the Weissenberg number is
close to zero, while the original one proposed by Fattal and Kupferman [1] presents some
problems because of the inverse of the relaxation time in the equations. The same idea
was followed by Saramito [18]; both formulations can be reduced to the Navier-Stokes
equations when the Weissenberg number is set to zero. Due to this, continuation methods
can be successfully employed to get the optimal convergence in the validated problems.
Also, we have to remark that the steady problem can be solved directly, while in most of
the references the logarithmic formulation shows a strong time-dependency. As Saramito
[18] pointed out, the reason can be that previous methods relied on some finite difference
methods for computing the Jacobian matrix and strong non-linearities were considered
non-differentiable (see, for example, [17]). Let us stress again the theoretical contribution
presented in [18], where the main properties of the typical operators of the formulation
are proved.

In this paper, we apply the efficient logarithmic reformulation to solve the viscoelastic
problem with the goal of simulating flows with a high Weissenberg number, using a stabi-
lized formulation based on the Variational Multiscale (VMS) method. This stabilized for-
mulation has its beginnings in the methods introduced by Hughes et al. [26] for the scalar
convection-diffusion-reaction problem, and later extended to the Navier-Stokes problem
by Codina [27, 28, 29], where the space of the sub-grid scales was taken as orthogonal to
the FE space. This idea was adapted to the three-field Navier-Stokes problem in [30] and
later to the viscoelastic flow problem in [2]. The mathematical analysis of the formulation
can be found in [31, 32]. Other papers can be found concerning the VMS framework for
viscoelastic regimes, such as [33, 34], where an Oldroyd-B fluid is considered. By following
the same steps, the purpose of the present paper is the design of stabilized formulations
which allow computing viscoelastic problems with a high Weissenberg number using the
logarithmic reformulation, and testing them for numerical examples where both elastic
stress gradients and numerical singularities are the main features.

This work is organized as follows: Section 2 explains in detail the log-conformation
reformulation and the modifications considered; later we report the steps to obtain the
strong formulation, the variational equations and consequently the Galerkin FE discretiza-
tion. Once the main equations are defined, Section 3 presents the stabilized FE approach
based on the VMS approach; the linearization of the problem is also extensively discussed.

As for the numerical results, they are presented in Section 4. First, in Subsection 4.1,
a study of the h convergence of the formulations is described for a stationary Oldroyd-
B flow, where a manufactured solution is considered. Secondly, in Subsection 4.2, the
flow past a cylinder is tested for an Oldroyd-B fluid, comparing the solution obtained for
Weissenberg numbers 0.6, 0.7 and 0.9 with other published solutions. The drag force on
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the cylinder is also contrasted for higher Weissenberg numbers. Then, the well-known
4:1 planar contraction benchmark is elaborated in Subsection 4.3. It is studied for two
different Reynolds number values. Finally, we present a three dimensional example in
Subsection 4.4, with the aim of showing that the formulation works well in 3D cases.
Conclusions are drawn in the last section of the paper, Section 5.

2 The modified log-conformation formulation problem

2.1 Standard formulation for the viscoelastic flow problem

Let us start presenting the standard equations associated to the viscoelastic flow problem.
Let us consider a viscoelastic fluid moving in a domain Ω of Rd (d=2 or 3) during the time
interval [0, tf ] and let ∂Ω be the boundary. Assuming the flow to be incompressible and
isothermal, the governing equations are the conservation of momentum and mass, which
can be expressed as follows:

ρ
∂u

∂t
+ ρu · ∇u−∇ ·T +∇p = f in Ω, t ∈ (0, tf), (2.1)

∇ · u = 0 in Ω, t ∈ (0, tf), (2.2)

where ρ denotes the constant density, p : Ω × (0, tf) → R is the pressure field, u : Ω ×
(0, tf)→ Rd is the velocity field, f : Ω× (0, tf)→ Rd is the force field and T : Ω× (0, tf)→
Rd⊗Rd is the deviatoric extra stress tensor. In general, T is defined in terms of a viscous
and a viscoelastic contribution as

T = 2ηe∇su+ σ,

where ηe represents the effective viscosity (or solvent viscosity), ∇su is the symmetrical
part of the velocity gradient and σ is the viscoelastic or the elastic stress tensor.

Finally, the constitutive equation for the viscoelastic stress tensor must be defined
to close the problem. Even if there is a wide range of different models, we consider the
Oldroyd-B model in this work, which is the model of a Newtonian stress supplemented
with an extra-stress that satisfies the upper-convected Maxwell equation, and it reads as

1

2ηp
σ −∇su+

λ

2ηp

(
∂σ

∂t
+ u · ∇σ − σ · ∇u− (∇u)T · σ

)
= 0, in Ω, t ∈ (0, tf), (2.3)

where λ is the relaxation time and ηp represents the polymeric viscosity. Each term of the
equation has a particular meaning: ∇su is the source, λ

2ηp
u ·∇σ represents the convective

term and λ
2ηp

(
σ · ∇u+ (∇uT ) · σ

)
are the rotational terms. Note that from this point

we write the polymeric and the effective viscosity in function of the total viscosity η0. For
that, an additional parameter β ∈ [0, 1] is introduced, so that ηe = βη0 and ηp = (1−β)η0.

Calling U = [u, p,σ], F = [f , 0,0] and defining

Dt(U) :=


ρ
∂u

∂t
0

λ

2ηp

∂σ

∂t

 ,

L0(û;U) :=


−∇ · σ − 2ηe∇ · (∇su) + ρû · ∇u+∇p

∇ · u
1

2ηp
σ −∇su+

λ

2ηp

(
û · ∇σ − σ · ∇û− (∇û)T · σ

)
 , (2.4)

we may write (2.1), (2.2) and (2.3) as

Dt(U) + L0(u;U) = F . (2.5)
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2.2 The log-conformation reformulation

Departing from the standard formulation, the logarithmic reformulation will be exposed,
and later applied to the standard equations. This model has an interpretation in terms of
statistical mechanics, which involves a statistical average of dyadic vector products. First,
the conformation tensor is defined, taking into account that it must, by definition, be
symmetric and positive-definite to be physically-admissible, because this internal variable
represents the macromolecular configuration of the polymer chains. It is defined as

τ =
λσ

ηp
+ I.

Consequently, the stress tensor can be expressed as a function of the conformation tensor

as σ =
ηp
λ

(τ − I). Then, replacing σ in the constitutive equation (2.3) with τ , we can

rewrite the Oldroyd-B model in terms of the conformation tensor τ as

1

2λ
(τ − I)−∇su+

1

2

(
∂τ

∂t
+ u · ∇τ − τ · ∇u− (∇u)T · τ

)
= 0. (2.6)

However, in the paper, we have considered a modification when the conformation tensor
is defined, with the aim of allowing λ = 0, i.e., the Newtonian behavior. To this end, we
introduce the relaxation-time parameter λ0(λ) linearly dependent with λ, which could be
defined as λ0 = max{kλ, λ0,min}, k being a constant and λ0,min a given threshold. So, if
k = 1 and λ0,min = 0, the original change of variables proposed by Fattal and Kupferman
[1] is recovered; however, if k is taken equal to zero, then the three-field Navier-Stokes
problem for Newtonian fluids is obtained. It is worth to remark that in the numerical
experiments we have found useful to take k small, so that λ0 < λ; this has allowed us to
obtain converged solutions that we have not been able to get for k = 1.

Thus, we define

τ =
λ0(λ)σ

ηp
+ I.

From this point we use λ0 instead of λ0(λ) to simplify the notation. The constitutive
equation (2.3) can be rewritten by following the proposed modification as

1

2λ0
(τ − I)−∇su+

λ

2λ0

(
∂τ

∂t
+ u · ∇τ − τ · ∇u− (∇u)T · τ + 2∇su

)
= 0. (2.7)

The log-conformation reformulation basically consists of a change of variables in terms
of the matrix-logarithm of the conformation tensor, that is to say, the conformation tensor
is replaced by a new variable ψ = log(τ ). This can be calculated through eigenvalue
computation that rotates the τ tensor into its main principle axes and can be expressed
as ψ = R log(Λ)RT because τ is a symmetric positive definite tensor (for k ≤ 1) and
therefore it can always be diagonalized. In the expression introduced, Λ is a diagonal
matrix with the eigenvalues of τ , and R is the orthogonal matrix of the eigenvectors of τ .

To sum up, in order to obtain the new formulation the stress tensor must be replaced

by σ =
ηp
λ0

(τ −I), and in turn, the conformation tensor τ must be written as τ = exp(ψ)

in the standard viscoelastic formulation detailed above, (2.1), (2.2) and (2.3). The new
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equations of the log-conformation formulation are now expressed as follows:

ρ
∂u

∂t
− η0(1− β)

λ0
∇ · exp(ψ)− 2βη0∇ · (∇su) + ρu · ∇u+∇p = f , (2.8)

∇ · u = 0, (2.9)

1

2λ0
(exp(ψ)− I)−∇su

+
λ

2λ0

(
∂ exp(ψ)

∂t
+ u · ∇ exp (ψ)− exp (ψ) · ∇u− (∇u)T · exp (ψ) + 2∇su

)
= 0,

(2.10)

where the unknowns are the velocity, the pressure, and tensor ψ, which depends directly
on the viscoelastic stress tensor σ.

This logarithm reformulation employed reminds of the formulation used by Coronado
et al. in [15], although there the conformation tensor was simply replaced by exp(ψ).
Another change was introduced in [15] with respect to the original log-conformation re-
formulation: the decomposition of the gradient of the velocity into three different tensors.
However, this has not been taken into account in our formulation. In this sense, the
modified log-conformation formulation proposed by Saramito [18] is very similar to our
formulation.

Let us introduce some notation, useful in the next subsections. Calling now U =
[u, p,ψ] and F = [f , 0, 1

2λ0
I] and defining

Dt(U) :=


ρ
∂u

∂t
0

λ

2λ0

∂ exp(ψ)

∂t

 , (2.11)

L(û;U) :=


−η0(1− β)

λ0
∇ · (exp(ψ))− 2βη0∇ · (∇su) + ρû · ∇u+∇p

∇ · u
1

2λ0
exp(ψ)−∇su+

λ

2λ0
(û · ∇ (exp(ψ))

− exp(ψ) · ∇û− (∇û)T · exp(ψ) + 2∇su
)

 , (2.12)

we may write (2.8)-(2.10) as

Dt(U) + L(u;U) = F . (2.13)

The notation û in (2.12) is used to distinguish the different arguments in which the velocity
appears. These equations need to be complemented with initial and boundary conditions
to close the problem. For the sake of simplicity, in the exposition we only consider the
simplest boundary condition u = 0 on ∂Ω for all time. Boundary conditions for the ψ
tensor will be similar to those for the elastic stresses σ in the standard formulation: they
do not need to be prescribed, but imposing them can suppose a significant computational
save. We will indicate in our examples where the boundary condition are prescribed.

The problem is completely defined by the initial conditions for the velocity and the
new variable ψ, which are denoted by u = u0, and ψ = ψ0 at time t = 0, with u0and ψ0

functions defined on the whole domain Ω.

2.3 Variational formulation

In order to write the weak form of the problem, let us introduce some notation. The
space of square integrable functions in a domain ω is denoted by L2(ω), and the space of
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functions whose distributional derivatives of order up to m ≥ 0 (integer) belong to L2(ω)
is denoted by Hm(ω).

The space H1
0 (ω) is made up of functions in H1(ω) vanishing on ∂ω. The topological

dual of H1
0 (ω) is denoted by H−1(Ω), the duality pairing being 〈·, ·〉. The L2 inner product

in ω (for scalars, vectors and tensors) is denoted by (·, ·)ω and the integral over ω of the
product of two general functions is written as 〈·, ·〉ω, the subscript being omitted when
ω = Ω. The norm in a space X is denoted by ‖ · ‖X , except in the case X = L2(Ω), case
in which the subscript is omitted.

Using this notation, velocity and pressure FE spaces for the continuous problem are
V 0 = H1

0 (Ω)d and Q = L2(Ω)/R, and the space for the tensor ψ is denoted by Υ for each
fixed time t, where an appropriate regularity is assumed. The weak form of the problem
consists in finding U = [u, p,ψ] : (0, tf) −→ X := V 0 × Q × Υ, such that the initial
conditions are satisfied and:(

ρ
∂u

∂t
,v

)
+
η0(1− β)

λ0
(exp(ψ),∇sv) + 2(βη0∇su,∇sv)

+〈ρu · ∇u,v〉 − (p,∇ · v) = 〈f ,v〉, (2.14)

(q,∇ · u) = 0, (2.15)

1

2λ0
(exp(ψ),χ)− (∇su,χ) +

λ

2λ0

(
∂ exp(ψ)

∂t
,χ

)
+

λ

2λ0
(u · ∇ exp(ψ),χ)

+
λ

2λ0

(
− exp(ψ) · ∇u− (∇u)T · exp(ψ) + 2∇su,χ

)
=

1

2λ0
〈I,χ〉, (2.16)

for all V = [v, q,χ] ∈ X , where it is assumed that f is such that 〈f ,v〉 is well defined. In
compact form, the problem can be written as:

(Dt(U),V ) +B(u;U ,V ) = L(V ), (2.17)

where

(Dt(U),V ) =

(
ρ
∂u

∂t
,v

)
+

λ

2λ0

(
∂ exp(ψ)

∂t
,χ

)
, (2.18)

B(û;U ,V ) =
η0(1− β)

λ0
(exp(ψ),∇sv) + 2(βη0∇su,∇sv) + 〈ρû · ∇u,v〉 − (p,∇ · v)

+ (∇ · u, q) +
1

2λ0
(exp(ψ),χ)− (∇su,χ)

+
λ

2λ0

(
u · ∇ exp(ψ)− exp(ψ) · ∇u− (∇u)T · exp(ψ) + 2∇su,χ

)
, (2.19)

L(V ) = 〈f ,v〉+
1

2λ0
〈I,χ〉. (2.20)

Note that the test function χ is, from the physical point of view, a stress, whereas ψ is the
logarithm of the conformation tensor (and thus, dimensionless). We could also have used
a test function for the constitutive equation of the form

ηp
λ0

exp(χ), where now χ would
be dimensionless. This would simplify the analysis (some stability would follow taking
χ = ψ), but complicate significantly the finite element approximations described below.

2.4 Linearization of the exponential

Apart from the typical non-linearities associated with the standard viscoelastic problem
such as convective or stretching terms, now we have to consider how to process the expo-
nential function of the tensor ψ. It has been treated as follows:

exp(ψ) = exp(ψ̂ + δψ) = exp(ψ̂) · exp(δψ),
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where δψ = ψ − ψ̂ is considered as the incremental part and ψ̂ is a known tensor, which
will be calculated at the previous iteration in the linearization scheme. The term exp(δψ)
has been linearized in turn through a Taylor expansion with a truncation error of order
(δψ)2. Therefore the approximation is defined as

exp(δψ) ≈ I + δψ.

Consequently,

exp(ψ) ≈ exp(ψ̂) · (I + δψ) = exp(ψ̂) ·ψ + exp(ψ̂) · (I − ψ̂). (2.21)

So, inserting the approximation into the system (2.8) - (2.10), the system is linearized
around ψ̂ as follows

ρ
∂u

∂t
− η0(1− β)

λ0
∇ · (exp(ψ̂) ·ψ)− 2βη0∇ · (∇su) + ρu · ∇u+∇p

= f +
η0(1− β)

λ0
∇ · (− exp(ψ̂) · ψ̂ + exp(ψ̂)), (2.22)

∇ · u = 0, (2.23)

1

2λ0
exp(ψ̂) ·ψ −∇su+

λ

2λ0

(∂(exp(ψ̂) ·ψ)

∂t
+ 2∇su

+u · ∇
(

exp(ψ̂) ·ψ − exp(ψ̂) · ψ̂ + exp(ψ̂)
)

−
(

exp(ψ̂) ·ψ − exp(ψ̂) · ψ̂ + exp(ψ̂)
)
· ∇u

−(∇u)T ·
(

exp(ψ̂) ·ψ − exp(ψ̂) · ψ̂ + exp(ψ̂)
))

=
1

2λ0
(I − exp(ψ̂) + exp(ψ̂) · ψ̂) +

λ

2λ0

(
∂(exp(ψ̂) · ψ̂)

∂t
−∂ exp(ψ̂)

∂t

)
. (2.24)

The variational formulation of this problem is straightforward.

2.5 Galerkin finite element discretization

The standard Galerkin approximation for the variational problem, which has been estab-
lished in (2.17), is described next. Let Th = {K} be a FE partition of the domain Ω.
The diameter of an element K ∈ Th is denoted by hK and the diameter of the partition
is defined as h = max{hK |K ∈ Th}. From Th we may construct conforming FE spaces for
the velocity, the pressure and the elastic stress, Vh ⊂ V , Qh ⊂ Q, Υh ⊂ Υ, respectively.
Calling X h := Vh ×Qh ×Υh, the Galerkin FE approximation of the problem consists in
finding Uh : (0, tf) −→ X h, such that:

(Dt(Uh),V h) +B(uh;Uh,V h) = L(V h),

for all V h = [vh, qh,χh] ∈ X h, and satisfying the appropriate initial conditions.

2.6 Monolithic time discretization

For the time discretization, we have used a monolithic approach, although it would also be
possible to employ a fractional step technique, as in [35]. There are a lot of possibilities for
the discretization in time, but we will restrict ourselves to the classical backward difference
(BDF) approximations.

Consider a partition of the interval [0, tf ] into m subintervals of constant size δt, and
let f(t) be a generic time-dependent function. We will denote as fn the approximation to
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f(tn), with tn = nδt, n = 0, 1, 2, . . . ,m. A BDF approximation to the time derivative of

the function f order k = 1, 2, . . . , is given by δkf
n+1

δt , where δkf
n+1 is defined as

δkf
n+1 =

1

γk

(
fn+1 −

k−1∑
i=0

ϕikf
n−i

)
,

and where γk and ϕik are parameters. In particular, since the time evolution is not the
main emphasis of this work, in the numerical examples we have used the simplest BDF1
scheme (in fact, as a means to reach the stationary solution):

δ1f
n+1

δt
=
fn+1 − fn

δt
=
∂f

∂t

∣∣∣∣
tn+1

+O(δt).

A remark is needed for the time derivative of the exponential. Using approximation
(2.21), it is easily shown that the operations “linearization” and “time approximation”
commute if we identify ψ̂

n
= ψn. Indeed, in both cases we obtain:

∂(exp(ψ))

∂t

∣∣∣∣
tn+1

=
1

δt

[
exp(ψ̂

n+1
) ·ψn+1 + exp(ψ̂

n+1
)− exp(ψ̂

n+1
) · ψ̂n+1

− exp(ψn)
]

+O(δt) +O((δψn+1)2).

3 Design of a stable finite element formulation

3.1 Residual based stabilized finite element method

We present in this section two stabilized finite element formulations for computing vis-
coelastic flows using the logarithm constitutive reformulation, in particular applied to the
Oldroyd-B constitutive model.

VMS methods consist in the splitting of the unknown U in a component Uh, which
can be resolved by the FE space, and the remainder Ũ , that will be called sub-grid
scale. The framework is based on the work by Hughes et al. [26]. In the context of a
three field formulation for flow problems, see [36] and [2]. The sub-grid scale needs to
be approximated in a simple manner, with the goal of capturing its effect and yielding a
stable formulation. The final number of degrees of freedom is the same as the Galerkin
method. Different approaches can be followed to approximate the sub-scale and to choose
the space where it is defined.

The problem we wish to approximate is (2.13) in differential form and (2.17) in varia-
tional form. Suppose for the moment that L(û; ·) is a linear operator (for û given). After
introducing the subscales decomposition and integrating by parts, the VMS method leads
to the problem of finding Uh : (0, tf) −→ X h such that

(Dt(Uh),V h) +B(uh;Uh,V h) +
∑
K

〈Ũ ,L∗(uh;V h)〉K = L(V h), (3.1)

for all V h ∈ X h, where L∗(û; ·) is the formal adjoint operator of L(û; ·) and Ũ is the sub-
grid scale, which needs to be approximated, without considering boundary conditions.

Let us remark that two different schemes can be followed at this point to get the
stabilized problem:

1. Since operator L(û; ·) in (2.13) is in fact non-linear because of the exponential of ψ,
the VMS strategy needs to be applied to a certain linearization. The one described
previously could be used, but other options are also possible.
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2. The alternative is to work with the standard form of the problem (2.5) (depending
on the elastic stress σ), in which operator L0(û; ·) is linear, design the stabilized FE
problem based on the VMS concept (involving operator L∗0(û; ·)) and then change
variables to obtain a log-conformation formulation.

Both cases give us different stabilized formulations, although for simplicity only the second
one has been considered in this work. Therefore, the adjoint operator we need to consider is

L∗0(û;U) :=


∇ · χ− 2βη0∇ · (∇sv)− ρû · ∇v −∇q

−∇ · v
1

2η0(1− β)
χ+∇sv − λ

2η0(1− β)

(
û · ∇χ+ χ · (∇û)T +∇û · χ

)
 .

(3.2)
Taking P̃ as the L2 projection onto the space of sub-grid scales, the approximation

we consider for the sub-grid scales within each element is

Ũ = αP̃ [F −Dt(Uh)− L(uh;Uh)], (3.3)

where α is a diagonal matrix α = diag(α1Id, α2, α3Id×d) with Id the identity on vectors
of Rd, Id×d the identity on second order tensor and the parameters αi, i = 1, 2, 3 are
computed as

α1 =

[
c1
η0
h21

+ c2
ρ|uh|
h2

]−1
,

α2 =
h21
c1α1

,

α3 =

[
c3

1

2η0(1− β)
+ c4

(
λ

2η0(1− β)

|uh|
h2

+
λ

η0(1− β)
|∇uh|

)]−1
,

where h1 corresponds to a characteristic element length calculated in the two-dimensional
case as the square root of the element area, and in three-dimensional case as the cubic
root of the element volume, whereas h2 represents the characteristic length associated to
the element length in the streamline direction. On the other side, |uh| is the Euclidean
norm of the velocity while |∇uh| is calculated by means of the Frobenious norm. The
dimensionless constants ci, i = 1, .., 4 are algorithmic parameters in the formulation, and
the values adopted in this work are c1 = 4.0, c2 = 2.0, c3 = 4.0, c4 = 0.25 for linear
elements. Numerical analysis indicates that they have to be of order one [36], and that
c4 < 1. Moreover, c1 = 4.0, c2 = 2.0 are the optimal values for the approximation of the
one-dimensional convection-diffusion equation. Note that the values for these constants
are the same as those used for the standard formulation [2].

Inserting (3.3) in (3.1), with α given above and using the adjoint operator (3.2), we
obtain the following problem: find Uh ∈ X h such that

(Dt(Uh),V h) +B(uh;Uh,V h) + S1(uh;Uh,V h) + S2(Uh,V h) + S3(uh;Uh,V h)

= L(V h) +R1(uh;V h) +R3(uh;V h), (3.4)
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for all V h ∈ X h, where

S1(ûh;Uh,V h) =
∑
K

α1

〈
P̃
[
ρ
∂uh
∂t
− η0(1− β)

λ0
∇ · (exp(ψh))− 2βη0∇ · (∇suh)

+ ρûh · ∇uh +∇ph
]
,−∇ · χh + 2βη0∇ · (∇svh) + ρûh · ∇vh +∇qh

〉
K
,

(3.5)

S2(Uh,V h) =
∑
K

α2

〈
P̃ [∇ · uh],∇ · vh

〉
K
, (3.6)

S3(ûh;Uh,V h) =
∑
K

α3

〈
P̃
[ 1

2λ0
exp(ψh)−∇suh +

λ

2λ0

(∂(exp(ψh))

∂t
+ ûh · ∇(exp(ψh))

)
− exp(ψh) · ∇ûh − (∇ûh)T · exp(ψh) + 2∇suh

]
,

− 1

2η0(1− β)
χh −∇svh

+
λ

2η0(1− β)

(
ûh · ∇χh + χh · (∇ûh)T +∇ûh · χh

) 〉
K
, (3.7)

R1(ûh;V h) =
∑
K

α1

〈
P̃
[
f
]
,−∇ · χh + 2βη0∇ · (∇svh) + ρûh · ∇vh +∇qh

〉
K
, (3.8)

R3(ûh;V h) =
∑
K

α3

〈
P̃
[ 1

2λ0
I
]
,− 1

2η0(1− β)
χh −∇svh,

+
λ

2η0(1− β)

(
ûh · ∇χh + χh · (∇ûh)T +∇ûh · χh

) 〉
K
. (3.9)

In these equations, P̃ is the projection restricted to the appropriate components of the
FE residual Rh := F − L(uh;Uh) onto the space of sub-grid scales. It remains only
to define the projection, for which we consider two possibilities. If we consider P̃ = I
(identity), then the method is called Algebraic Sub-Grid Scales (ASGS). In the case that
P̃ = P⊥h = I − Ph (where Ph is the L2 projection onto the appropriate finite element
space), the name of the method is Orthogonal Sub-Grid Scales (OSS). Independently of
the choice of the projection P̃ , method (3.4) is consistent, since the terms added to the
Galerkin ones are proportional to the FE residual Rh.

3.2 Split-OSS

Method (3.4) is stable for smooth solutions, and displays the appropriate order of conver-
gence, both for P̃ = I and for P̃ = P⊥h . As it is indicated in [2], the OSGS method seems
in general more accurate, whereas ASGS is cheaper because projections are not needed
and it is more robust.

If we consider the case P̃ = P⊥h , from (3.4) we can design a simplified method, which
consists in neglecting the cross local inner-product terms, as well as some other terms that
do not contribute to stability.

Following the considerations made in [37] for the construction of the Split OSGS sta-
bilization for the traditional viscoelastic formulation, the modified method we propose for
the log-conformation reformulation is: find Uh : (0, tf) −→ X h satisfying the appropriate
initial conditions and such that

(Dt(Uh),V h) +B(uh,ψh;Uh,V h) + S⊥1 (uh;Uh,V h) + S⊥2 (Uh,V h)

+ S⊥3 (uh;Uh,V h) = L(V h), (3.10)
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for all V h ∈ X h, where

S⊥1 (ûh;Uh,V h) =
∑
K

α1

〈
P⊥h

[
− η0(1− β)

λ0
∇ · (exp(ψ))

]
,−∇ · χh

〉
K

+
∑
K

α1

〈
P⊥h

[
∇ph

]
,∇qh

〉
K

+
∑
K

α1

〈
P
[
ρûh · ∇uh

]
, ρûh · ∇vh

〉
K

(3.11)

S⊥2 (Uh,V h) =
∑
K

α2

〈
P⊥h [∇ · uh],∇ · vh

〉
K
, (3.12)

S⊥3 (ûh;Uh,V h) =
∑
K

α3

〈
P⊥h [∇suh],∇svh

〉
K

+
λ2

4λ0η0(1− β)

∑
α3

〈
P⊥h [(ûh · ∇(exp(ψh)], ûh · ∇χh

〉
K

+
λ2

4λ0η0(1− β)

∑
K

α3

〈
P⊥h [− exp(ψh) · ∇ûh

− (∇ûh)T · exp(ψh) + 2∇suh)], (χh · (∇ûh)T +∇ûh · χh)
〉
K
. (3.13)

Method (3.10) is not just a simplification of (3.4). For smooth solutions, both have
an optimal convergence rate in h. However, in problems where the solution has strong
gradients, we have found (3.10) more robust, similarly to what it is explained in [37].

As insignificant differences between the use of S3(ûh;Uh,V h) in (3.7) or the last
modification indicated S⊥3 (ûh;Uh,V h) in (3.13) have been found, in the implementation
we have taken (3.7) instead of (3.13). Therefore, we will refer to S-ASGS when P̃ = I in
(3.7), and S-OSGS for the case P̃ = P⊥h = I −Ph. However note that in both cases (3.11)
and (3.12) have been used instead of (3.5) and (3.6), respectively. Note that the last term
in (3.13) is unnecessary for stability and could be omitted.

3.3 Linearized problem and algorithm

The equations for incompressible viscoelastic flows have a high number of non-linear terms,
in particular in the momentum and the constitutive equation. Obviously, these are main-
tained with the logarithmic reformulation, and furthermore, new non-linearities arising
from the exponential function appear, as it has been exposed in Section 2.2.

For the convective term of the momentum equation we can use a fixed point scheme or
Newton-Raphson’s scheme. However, for the non-linear terms in the constitutive equation,
we have used a Newton-Raphson linearization always, and it has been decisive to be able
to compute some high Weissenberg cases and get the optimal convergence of the method.
At each iteration of each time step, the equations written in Algorithm 1 are computed.

Let us make the following remarks about the algorithm used:

• The nonlinear term in the momentum equation can be linearized with the fixed
point scheme or with Newton-Raphson’s method, but in the algorithm presented
the method used is the second.

• The exponential terms that appear both in the momentum equation and in the
constitutive equation have been linearized using (2.21), taking the tensor ψ̂ as the
one obtained from the previous iteration of the current time step.

• The computation of the exponential function, the gradient and the divergence of the
exponential function of the variable ψh at the previous iteration must be calculated
at each iteration.
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• All non-linear terms belonging to the constitutive equation, both in the Galerkin
terms and in the stabilization, have been linearized using Newton-Raphson’s method.

• Stabilization parameters are computed with the values of the unknowns at the pre-
vious iterations.

• The iterative treatment of the orthogonal projection is coupled to the linearization
of the total system. Specifically, the orthogonal projection of any function f has
been approximated as P⊥h (f i) ≈ f i − Ph(f i−1), the superscript being the iteration
counter.

• Note that the ASGS method associated to the constitutive equation is considered
when P̃ = I, while the OSS is applied when P̃ = P⊥h .

Apart from the linearization carried out in some terms just explained, we have found ex-
tremely useful the application of other techniques that lead to a better convergence. One
of them is the under-relaxation scheme, taking as a relaxation parameter ε = 0.5, which
has been found effective in most of the cases; the second tool employed is the continuation
method in terms of the relaxation time λ, which consists in Nλ continuation steps of equal
size δλ = λ/Nλ. Note that continuation techniques can be employed because of the mod-
ification of the log-conformation formulation; if the original logarithmic formulation had
been taken, they could not be used. Besides, the continuation loop and the linearization
loop are coupled in the algorithm used.

In the equations displayed in the Algorithm 1 variables uj+1,i
h , pj+1,i

h ,ψj+1,i
h corre-

sponding to the (j + 1) time step are denoted by uih, p
i
h,ψ

i
h for simplicity. Regarding the

temporal terms, the notation introduced in Section 2.6 is employed here.
The equations considered in Algorithm 1 are solved inside of a general algorithm,

presented in Algorithm 2, where all considerations made are taken into account.

4 Numerical results

In this section we will show some numerical examples where the benefits of the stabi-
lized formulations applied to the logarithmic formulation will be demonstrated. As it
is remarked in Section 2.6, most of the results shown have been obtained solving the
steady problem directly, although many references and previous approaches with the log-
conformation were time-dependent.

The first result presented in Section 4.1 is a convergence test that will show the
accuracy of the formulation. It is useful to show that it is optimally convergent for smooth
solutions. Secondly, in Section 4.2, the well-known benchmark flow past a cylinder is tested
to compare different quantities, such as the stress tensor around and downstream of the
cylinder or the drag coefficient, with the values published in the literature. In Section
4.3 we present the classical 4:1 planar contraction flow problem for two different Reynolds
numbers, Re = 1.0 and Re = 0.0, with the purpose of validating the results with a number
of references. Finally, the last example in Section 4.4 is a three dimensional problem,
designed as an extension of the two dimensional 4:1 contraction benchmark.

4.1 Convergence test

This first numerical results belong to the convergence study of the stabilized formulations
employed for the log-conformation problem. The exact solution will be defined by the
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Algorithm 1 Fully discrete and linearized problem at each iteration.

Given ui−1
h , pi−1

h , ψi−1
h (i ≥ 1), solve ui

h, pih and ψi
h from:

(
ρ
δku

i
h

δt
,vh

)
+
η0(1− β)

λ0
(exp(ψi−1

h ) ·ψi
h,∇svh) + 2(βη0∇sui

h,∇svh) + 〈ρui−1
h · ∇ui

h,vh〉

+ 〈ρui
h · ∇ui−1

h ,vh〉 − (pih,∇ · vh) + (∇ · ui
h, qh) +

1

2λ0
(exp(ψi−1

h ) ·ψi
h,χh)

− (∇sui
h,χh) +

λ

2λ0

(
δk
δt

(exp(ψi−1
h ) ·ψi

h) + (ui−1
h · ∇(exp(ψi−1

h ) ·ψi
h),χh

)
+

λ

2λ0

(
ui
h · ∇

(
exp(ψi−1

h )
)
− exp(ψi−1

h ) ·ψi
h · ∇ui−1

h − exp(ψi−1
h ) · ∇ui

h,χh

)
− λ

2λ0

(
(∇ui−1

h )T · exp(ψi−1
h ) ·ψi

h + (∇ui
h)T · exp(ψi−1

h ),χh

)
+

λ

2λ0
(2∇sui

h,χh)
)

+
∑
K

αi−1
1

〈
− η0(1− β)

λ0
∇ · (exp(ψi−1

h ) ·ψi
h),−∇ · χh

〉
K

+
∑
K

αi−1
1

〈
∇pih,∇qh

〉
K

+
∑
K

αi−1
1

〈
ρui−1

h · ∇ui
h + ρui

h · ∇ui−1
h , ρui−1

h · ∇vh
〉
K

+
∑
K

αi−1
2

〈
∇ · ui

h,∇ · vh
〉
K

+
∑
K

αi−1
3

〈
P̃
[ 1

2λ0
exp(ψi−1

h ) ·ψi
h −∇sui

h

+
λ

2λ0

(δk
δt

(exp(ψi−1
h ) ·ψi

h) + ui−1
h · ∇(exp(ψi−1

h ) ·ψi
h) + ui−1

h · ∇(exp(ψi−1
h )

− (exp(ψi−1
h ) ·ψi

h) · ∇ui−1
h − exp(ψi−1

h ) · ∇ui
h − (∇ui−1

h )T · (exp(ψi−1
h ) ·ψi

h)

− (∇ui)T · exp(ψi−1
h ) + 2∇sui

h

)]
,− 1

2η0(1− β)
χh −∇svh

+
λ

2η0(1− β)

(
ui−1
h · ∇χh − χh · (∇ui−1

h )T −∇ui−1
h · χh

) 〉
K

= 〈f ,vh〉+
η0(1− β)

λ0
(exp(ψi−1

h ) ·ψi−1
h − exp(ψi−1

h ),∇svh)

+ 〈ρui−1
h · ∇ui−1

h ,vh〉+
1

2λ0

(
I − exp(ψi−1

h ) + exp(ψi−1
h ) ·ψi−1

h ,χh

)
+

λ

2λ0

(
δk
δt

(
exp(ψi−1

h ) ·ψi−1
h − exp(ψi−1

h )
)

+ ui−1
h · ∇(exp(ψi−1

h ) ·ψi−1
h ),χh

)
+

λ

2λ0

(
− exp(ψi−1

h ) ·ψi−1
h ) · ∇ui−1

h − (∇ui−1
h )T · (exp(ψi−1

h ) ·ψi−1
h ,χh)

)
+
∑
K

αi−1
1

〈
− η0(1− β)

λ0
∇ · (exp(ψi−1

h ) ·ψi−1
h + exp(ψi−1

h )),−∇ · χh

〉
K

+
∑
K

αi−1
1

〈
Ph

[
− η0(1− β)

λ0
∇ · (exp(ψi−1

h ))
]
,−∇ · χh

〉
K

+
∑
K

αi−1
1

〈
Ph

[
ρui−1

h · ∇ui−1
h

]
, ρui−1

h · ∇vh
〉
K

+
∑
K

αi−1
1

〈
Ph

[
∇pi−1

h

]
,∇qh

〉
K

+
∑
K

α2

〈
Ph[∇ · ui−1

h ],∇ · vh
〉
K

+
∑
K

αi−1
3

〈
P̃
[ 1

2λ0
(I − exp(ψi−1

h ) + exp(ψi−1
h ) ·ψi−1

h ) +
λ

2λ0

(δk
δt

(
exp(ψi−1

h ) ·ψi−1
h )

+(ψi−1
h )

)
− ui−1

h · ∇(exp(ψi−1
h ) ·ψi−1

h )− (exp(ψi−1
h ) ·ψi−1

h ) · ∇ui−1
h

− (∇ui−1
h )T · (exp(ψi−1

h ) ·ψi−1
h )

)]
,− 1

2η0(1− β)
τh −∇svh

+
λ

2η0(1− β)

(
ui−1
h · ∇χh − χh · (∇ui−1

h )T −∇ui−1
h · χh

) 〉
K
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Algorithm 2 General algorithm.

read initial condition u0
h

set p0h = 0, ψ0
h = 0

set λ0=0
for j = 0, ...,m− 1 do (Temporal loop)

set i=0
set uj+1,0

h = ujh, pj+1,0
h = pjh, ψj+1,0

h = ψjh
set the relaxation time to λj+1 = min(λj + λ/Nλ, λ)
while not converged do

i← i+ 1
compute exponentials: exp(ψj+1,i−1), ∇·(exp(ψj+1,i−1)) and ∇(exp(ψj+1,i−1))
compute projections

Ph

(
− η0(1− β)

λ0
∇ · (exp(ψj+1,i−1))

)
, Ph(∇pj+1,i−1

h ), Ph(ρuj+1,i−1
h · ∇uj+1,i−1

h )

and Ph(∇ · uj+1,i−1
h )

if P̃ = P⊥h in the constitutive equation then
compute projection

Ph

[ 1

2λ0
exp(ψj+1,i−1

h )−∇suj+1,i−1
h +

λ

2λ0

(
uj+1,i−1
h · ∇(exp(ψj+1,i−1

h ))

+ δk
δt (exp(ψj+1,i−1

h ) ·ψj+1,i−1
h − exp(ψj+1,i−1

h ))− exp(ψj+1,i−1
h ) · ∇uj+1,i−1

h

−(∇uj+1,i−1
h )T · exp(ψj+1,i−1

h ) + 2∇suj+1,i−1
h

)]
end if
compute stabilization parameters αj+1,i−1

1 , αj+1,i−1
2 and αj+1,i−1

3 with U j+1,i−1

solve equations from Algorithm 1 for uj+1,i
h , pj+1,i

h and ψj+1,i
h

update unknows:
uj+1,i
h ← εuj+1,i

h + (1− ε)uj+1,i−1
h

pj+1,i
h ← εpj+1,i

h + (1− ε)pj+1,i−1
h

ψj+1,i
h ← εψj+1,i

h + (1− ε)ψj+1,i−1
h

check convergence
end while
set converged values
uj+1
h = uj+1,i

h

pj+1
h = pj+1,i

h

ψj+1
h = ψj+1,i

h

end for(End temporal loop)
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next set of functions:

ux(x, y) = 2x2y(x− 1)2(y − 1)(2y − 1),

uy(x, y) = −2xy2(x− 1)(y − 1)2(2x− 1),

p(x, y) = sin(2πx)sin(2πy),

σxx(x, y) = 5sin(2πx)sin(2πy),

σyy(x, y) = −5sin(2πx)sin(2πy),

σxy(x, y) = sin(2πx)sin(2πy),

where the x and y components of the velocity and the stress tensor have been indicated
with a subscript.

In order to satisfy the constitutive equation (2.10) with the velocity and the tensor
ψ, we have to add the forcing term

f c =
1

2λ0
(exp(ψ)− I)−∇su

+
λ

2λ0

(
u · ∇ exp (ψ)− exp (ψ) · ∇u− (∇u)T · exp (ψ) + 2∇su

)
to the right-hand-side of the constitutive equation, with u and ψ being the given manufac-
tured solution. Note that tensor ψ is obtained analytically from the stress tensor through
the relation defined in Section 2.2.

The computational domain is the unit square, discretized using uniform structured
meshes of bilinear (Q1) and biquadratic (Q2) quadrilateral elements. The range of element
sizes employed in this study ranges between h = 0.003125 and h = 0.0125 for Q1 elements,
and between h = 0.00625 and h = 0.025 for Q2 elements.

We have considered three different Weissenberg numbers for every mesh, We = 0.0,
We = 0.5 and We = 1.0. These quantities have been calculated with the maximum velocity
value as characteristic velocity and the side of the square as characteristic length, taking
into account that the expression of the dimensionless number is We = λU

L .
Regarding the optimal convergence rate expected, when the mesh is composed of linear

elements, it is 2 in velocity and 1 in pressure and ψ for the L2 -norm, but using quadratic
elements it is 3 in velocity and 2 in pressure and ψ.

For both formulations, S-OSGS and S-ASGS, results are extremely close, so we have
only represented represented the S-ASGS results in Fig. 1

4.2 Viscoelastic fluid flow past a cylinder in a channel

In the literature, we can find that this problem has been worked out using both formula-
tions, the log-conformation one and the standard one. The most relevant results obtained
with the standard formulation belong to Fan et al. [38] and Alves et al. [39]. In both
works results are highly accurate, although their schemes failed for a Weissenberg num-
ber around 1. Other authors, who have published results with diverse techniques for the
standard formulation, have obtained similar results regarding the numerical breakdown at
relatively moderate Weissenberg numbers with an Oldroyd-B fluid, such as Caola et al.
[40], Owens et al. [41], or Castillo et al. [2]. Nevertheless, the logarithmic reformulation of
the equations allows us to get solutions for higher Weissenberg numbers. We will compare
our results with the solutions found in the literature.

4.2.1 Set up

The geometry of a viscoelastic fluid flow past a confined cylinder in a channel considered
in this section is depicted in Fig. 2. Note that only the half domain has been taken, for
symmetry reasons.
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Fig. 1: Discrete L2-errors for the manufactured exact solution.

Fig. 2: Geometry and computational boundaries of the cylinder between two plates.
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Fig. 3: Computational mesh used in flow past a cylinder.

Mesh Nodes Elements hmin

M1 38 469 71980 0.005

M2 84 378 156 959 0.002

M3 179 645 336 106 0.001

Tab. 1: Main characteristics of the computational meshes.

Let us describe the boundary conditions of the problem, following the notation in-
cluded in the sketch of the geometry. For the velocity, we will impose non-slip conditions
on the top wall y = 2R, Γwall, and on the cylinder boundary Γcyl, while symmetry con-
ditions are prescribed along the axis y = 0, denoted by Γsym. In our case, these last
conditions are applied imposing the component y of the velocity to be zero. On the other
hand, a fully developed parabolic velocity profile and the associated elastic stress profile
are imposed at the inlet Γin:

ux = 3Q
2R

(
1− y2

(2R)²

)
, uy = 0,

σxx = 2λ(1− β)η0

(
∂ux
∂y

)2
, σxy = (1− β)η0

(
∂ux
∂y

)
, σyy = 0,

where Q is the flow rate and R is the radius of the cylinder. Note that the stress
conditions will be defined over the inflow boundary using the new variable ψ, taking into

account the already mentioned relation ψ = log
(

λ0σ
η0(1−β)

)
in Section 2.2. Moreover, the

horizontal velocity is left free, the vertical one is set to zero and the pressure is prescribed
to zero on the outlet boundary Γout. The values for the parameters used along all this
study are Q = 1, η0 = 1, β = 0.59.

We have solved the benchmark for different Weissenberg numbers We = λU
L0

, where the

characteristic velocity in this problem is U = 3Q
2R , and the characteristic length is L0 = R.

Furthermore, in all our calculations the convective term of the momentum equation is
neglected, as it is customary of this problem.

In order to check the independence of the mesh in the results we have employed three
different meshes, with a similar structure. In Fig. 3 one of them is displayed, where we
can observe its unstructured nature, composed of linear triangles. We have to stand out
the refinement of the mesh in the region around the cylinder and downstream, where the
maximum values of the stress are achieved. More details about these are found in Table
1, which contains the number of nodes, elements and the minimum element size hmin for
each mesh.

4.2.2 Drag coefficient results

Although convergence for the dimensionless drag coefficient is a good indicator to check
a method, in the literature some discrepancies exist when a moderately high Weissenberg
number is considered (We ≥ 0.7). Moreover, as the drag coefficient is an integrated
quantity over a cylinder, accuracy in the whole of the domain cannot be ensured if this
drag coefficient is not adequately reproduced.
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We Hulsen M4 [14] Afonso M30 [20] Damanik [17] P.S.

0.1 130.363 - 130.366 130.30

0.5 118.936 118.781 118.828 118.82

1.0 118.501 118.662 118.574 118.88

1.2 120.650 120.985 120.919 121.14

1.4 123.587 124.124 123.936 124.14

1.6 127.172 127.759 127.523 127.66

1.8 131.285 132.024 131.578 131.53

2.0 135.839 136.580 136.039 135.53

2.2 not solved 141.801 not solved 139.62

2.4 not solved 146.730 not solved 143.66

Tab. 2: Comparison of drag force coefficient (P.S.: present study).

Fig. 4: Comparison of drag force coefficient (P.S.: present study).

Some drag coefficients for different Weissenberg numbers are presented numerically in
Table 2 and graphically in Fig. 4, where our own results (labelled P.S.) are compared to
those of other authors, who also have applied the log-conformation reformulation, such as
Hulsen et al. [14], Afonso et al. [20] or Damanik et al. [17]. Particularly, Hulsen et al. [14]
indicate that from a certain Weissenberg value, the solution shows time-dependency and
computations do not break down, although some fluctuations are detected when We = 2.0
is reached. However, in our calculations, fluctuations have not been detected and a steady
flow has been obtained.

The agreement is acceptable with other publications where the logarithmic reformula-
tion has been made, although from values higher than 1.2 slight discrepancies are detected.

The advantages of using this formulation are notorious: while computations reported
in the literature using the standard formulation break down around a Weissenberg number
of 0.9, the logarithmic formulation shows good stability for higher values. In our case, we
have been capable of simulating fluids with Weissenberg number equal to 2.4.

4.2.3 Stress convergence

As we have commented above, the drag coefficient study is not enough to prove the
accuracy of the formulation. Therefore, we have displayed the component x of the stress
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Fig. 5: Profile of the first component stress (σxx) along cylinder and downstream for We =
0.7.

on the cylinder wall and along the downstream center line with the purpose of contrasting
our results with those reported by different authors.

Regarding stress convergence when the mesh is refined, as some authors have remarked
(Afonso et al. [20], Coronado et al.[15]), there are a lot of discrepancies, particularly when
the Weissenberg number begins to increase (We ≥ 0.7). It occurs especially for the maxi-
mum peak of stresses situated in the rear wake. Some authors, in spite of using extremely
refined meshes and high order methods, cannot be conclusive about the converged results.

A comparison of the first component of the elastic stress profile along the cylinder and
downstream at the center line of the domain is shown in Figures 5 and 6; our results are
compared with other published results.

For Weissenberg number equal to 0.6, we are in agreement with results found in the
literature, particularly with Hulsen et al. [14] and Damanik et al. [17] (not shown).
However, for the figure presented associated with a Weissenberg number equal to 0.7
(Fig. 5), the discrepancies among authors start mainly in the rear wake, in spite of mesh
convergence. As it has been commented previously, although this case has been computed
by a wide number of authors, high order methods are not conclusive. Regarding our
results, these are in agreement with the values reached in the rear wake by Hulsen et al.
[14] and Afonso et al. [20] when the finest mesh is employed, although the maximum peak
over the cylinder is higher than that plotted by Afonso et al. [20]; in turn, these maximum
values are very close to those of the rest of authors compared. Mesh dependency needs to
be highlighted for this Weissenberg number at this point, and it is shown in Fig. 5 (right),
where we can see differences between meshes, especially along the centerline in the wake
of the cylinder.

In Fig. 6 the results for Weissenberg 0.9 are displayed. As we have remarked before,
this solution does not have mesh convergence; this phenomenon has already been reported
in the literature by some researchers [15, 14, 20]. To show this effect clearly, we have
plotted in Fig. 6 the values obtained with two different meshes (M1 and M2), so the
lack of convergence is demonstrated, because whenever the mesh is refined the maximum
values reached along the centerline downstream show a significant increment. The authors
referenced above relate this to the behavior of the constitutive model, which models an
unlimited extension of the fluid at finite extension rates. For this reason, numerous dis-
crepancies are found between works published when the stress values along the rear wake
are plotted, for example between Alves et al. [39], Coronado et al.[15], Afonso et al. [20],
and our own results. Nevertheless, the values in points situated around the cylinder are
very close in all quoted references.

20



Fig. 6: Profile of the first component stress (σxx) along cylinder and downstream for We =
0.9.

Fig. 7: Geometry of the planar contraction 4:1.

4.3 Contraction 4:1

The next benchmark presented is the well-known 4:1 planar contraction problem in the
two dimensional version. This is a suitable example because it is more stringent than
other benchmarks when highly elastic problems are studied, due to the singularity which
is situated in the corner.

4.3.1 Set up

First of all, we describe the main characteristics of this case. Since the problem is sym-
metric, we have just considered half of the domain, as it is shown in Fig. 7. Moreover,
the main characteristic lengths have been already detailed in the figure, taking H1 = 4
and H2 = 1, together with the corner vortex length definition denoted by XR and the lip
vortex XL. These quantities are useful to compare our results with those of other authors.

Let us describe the boundary conditions associated with this problem. On the solid
walls Γwall, non-slip conditions are imposed for the velocity field and on symmetric bound-
aries Γsym , the component y of the velocity is set to zero. Moreover, on the inlet boundary
Γin a fully parabolic velocity profile and stress profile are prescribed:

ux = 3Q
2H1

(
1− y2

H2
1

)
, uy = 0,

σxx = 2λ(1− β)η0

(
3Q
H3

1
y
)2

, σxy = −(1− β)η0

(
3Q
H3

1
y
)
, σyy = 0,

where Q is the flow rate, set to 1. In this case the characteristic length is H2 = 1,
which is the length of the inlet channel, and the characteristic velocity is the mean outflow
velocity, ū2 = 1. Note that the stress conditions will be imposed to the new variable ψ,
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Mesh Nodes Elements ∆xmin = ∆ymin

M1 10 316 19 770 0.04

M2 12 880 24 712 0.02

M3 20 441 39 242 0.01

M4 28 713 55 693 0.0075

M5 36 513 70 818 0.005

Tab. 3: Characteristic of the meshes of the 4:1 contraction problem.

Fig. 8: Mesh used in contraction 4:1 problem.

easily computed from the defined stress functions; these are required in order to avoid the
need of using a too large computational domain.

For the outlet boundary Γout, the x-component of the velocity is left free, and the
y-component is set to zero. In addition, the x-component of the normal component of
the total Cauchy stress tensor is set to zero. The remaining parameters are η0 = 1 and
β = 1/9.

With the characteristic values chosen, We = λu2
H2

and the Reynolds number is

Re =
ρu2H2

η0
,

where parameter ρ is the fluid’s density.
The main characteristics of the different size meshes used are detailed in Table 3. The

structure is shared by all of them, although only one is shown in Fig. 8. The notation
∆xmin = ∆ymin indicates the minimum element sizes in the x and y directions. We have to
remark the structured character of the mesh employed near to the contraction, while it is
unstructured in the rest of the domain. The results displayed in Section 4.3.2 correspond
to mesh M3, while in Section 4.3.3 various mesh sizes are used.

4.3.2 Oldroyd-B flow at Re = 1

In this subsection we will study the problem taking into consideration the inertial effects,
in other words, without neglecting the convective term of the momentum equation. So,
in order to be capable of comparing our results with others, we have chosen the Reynolds
number to be equal to 1. All the authors found in the literature have solved this exact
case employing the standard formulation. A wide range of techniques have been carried
out to solve this problem: Sato and Richardson [42] and Phillips and Williams et al.
[43] describe a semi-Lagrangian finite volume scheme, Nithiarasu et al. [44] propose an
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(a) We = 1.0 (b) We = 3.0

(c) We = 5.0 (d) We = 7.0

Fig. 9: Streamlines patterns in the contraction planar for different Weissenberg number
for Re = 1.0.

explicit characteristic based split (CBS) scheme, whereas Li et al [45] present a mixed
finite element scheme, utilizing the DEVSS method for stress stabilization. Castillo et al.
[2] proposed a stabilized method using the VMS method with a discontinuity capturing
technique which allows to deal with local discontinuities.

In our case, the maximum Weissenberg number achieved by the present scheme is
about We = 9.0. This value is smaller than the Weissenberg value that we have been ca-
pable of simulating when the Reynolds number is set to zero. This effect is in agreement
with the authors quoted before, and is produced by the relevance of the non-linear convec-
tive term of the momentum equation. As it is commented before, we have not come upon
this problem solved with the logarithmic reformulation in the literature, but the benefits
of this formulation are clear in comparison with the standard formulation, allowing us to
solve the problem for fluids with much higher elasticity. For example, one of the highest
values reached for the standard formulation is We = 5.0 in the work written by Castillo
et al. [2], where it is explained that for We = 5.5 some instabilities appeared, and the
scheme is incapable of solving the problem for We = 6.0.

Next, we will present some results, starting with the distribution of streamlines near
the contraction for some of Weissenberg numbers, shown in Fig. 9. As in other works, the
vortex in the corner decreases when We increases, while the lip vortex grows progressively
for increasing Weissenberg numbers. This secondary vortex starts to emerge for We ≥ 1.0
(see [44, 45, 2] for discussion). Lip vortices start to merge with the corner vortices at
We = 5.5 approximately, but two different centers of rotation are clearly defined. The two
centers merge at about We = 6.0. The resulting corner, in some works as [23], is referred
as the third vortex. So, when the Weissenberg number increases, we observe a divergence
of the streamlines upstream of the contraction.

The relationship between the corner vortex length (denoted by XR in Fig. 7) and
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Fig. 10: Corner length comparison for Re = 1.0, We ≤ 5.0.

the Weissenberg number is shown in in Fig. 10 together with the results of other works
in the literature. We have to remark that although the corner vortex sizes are consistent
with results published, lip vortex sizes are notably higher than the ones reported in the
literature. However, it seems a logical behavior that contributes to the final merge between
the two vortices. Both graphs are plotted up to Weissenberg 5.0 because above this value
the third vortex appears, annihilating the previous vortices. This phenomenon is clearly
visible in Fig. 9.

The first elastic stress distribution (σxx) along y = −H2 is given in Fig. 11 for various
Weissenberg values using mesh M3. The singularity (at the corner) is located at x = 20.0.
We can observe that the peak values of the viscoelastic stresses increase with elasticity. We
have found differences between the maximum peaks obtained and the results presented in
[2], where the standard formulation is employed. Nevertheless, our solution is very close
to the distribution shown in the work of Afonso et al. [21], where a study comparing
both formulation is developed and where a distribution of the elastic stress along the
centerline y = 0 (symmetry axis), where the solution is smoother, is plotted. By following
the same idea, Fig. 12 compares solutions in both formulations; we have not found large
discrepancies between them, except in the maximum values, where a slight variation is
observed when elasticity grows. Moreover, in [21] it is described how these differences
are more perceptible from We = 2.5, because with the logarithmic formulation the flow
becomes unsteady, while with the standard one it diverges at We = 3.0.

4.3.3 Oldroyd-B flow at Re = 0.01

There are studies, such as Sato and Richardson [42] and Matallah et al. [46], which
indicate that solutions for the Oldroyd-B flow with a Reynolds number Re ≤ 0.01 are
almost identical to those for the Oldroyd-B flow with Re = 0.0, in other words, those of
creeping flow. For this reason, the solutions for Re = 0.01 given by the proposed scheme
can be compared with studies of creeping flow published in the literature. Recall that in
our case Re = ρu2H2

η0
.

Many references with different numerical schemes present results for the problem
considered. For example, Alves et al. [47], analyze the dispersion and the vortex length
using several methods, and Kim et al. [48] employ a transient finite element method based
on a fractional step scheme and stabilization techniques. Authors quoted in previous
sections, as [44, 2], also validate their schemes for Re = 0.01; these are included in our
comparisons. All the mentioned articles use the standard formulation; however, we have
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Fig. 11: First elastic stress component along y = −H2, Re = 1.0.

Fig. 12: First elastic stress component along y = 0, Re = 1.0.
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Fig. 13: Corner vortex length comparison between meshes for Re=0.01.

come upon some relevant analysis where a log-conformation reformulation is employed to
solve the contraction problem, such as the work by Afonso et al. [21], where a dynamic
evaluation of the behavior and the fluctuation of flow at high Weissenberg number is
studied, Comminal et al. [23], which presents a numerical solution for a Weissenberg
number up to 20 with a streamfunction-log-conformation methodology, and Pimenta et
al. [25], the most recent study, in which the typical solver available in the OpenFOAM
toolbox is modified to get second-order accuracy. All these works consider We ≤ 12.

The maximum Weissenberg number reached in our case is 15.0 in stationary regime
and using the coarsest mesh. We are aware of the lack of accuracy of the results of the
highest we reached, because in references [21, 23] the existence of large fluctuations are
described for high Weissenberg numbers, whereas we obtain a stable stationary solution.
Note that the aim of this work is to validate the formulation, therefore transient terms
have just been added to achieve stationary solutions and not to perform truly transient
calculations.

The behavior of the vortex is very close to the one described for the Re = 1.0 case.
Fig. 13 shows the evolution of the corner vortex and later the third vortex size when the
Weissenberg number is increased for the three finest meshes. Just as it is exposed in the
work of Pimenta et al. [25], the growth of the lip vortex size is shown to be significantly
dependent on the mesh resolution, where finer meshes lead to a smaller lip vortex and,
consequently, it affects the merge between two vortices and thus to the growth and size of
the third vortex.

In Fig. 14, the comparison with the literature (references [21, 23]) of the corner size in
terms of the Weissenberg number is shown. A survey of the numerical results presented in
the literature reveals large discrepancies between the results of the different studies. Our
results are in very good agreement with the solutions of Kim et al. [48] for values up to
We = 3.0.

4.4 Three dimensional case

As a last example, we are going to show a 4:1 contraction problem in its three dimen-
sional version, in order to proof that the proposed formulation is ready for 3D problems.
Measures and conditions considered are similar to those in [2].

4.4.1 Set up

The geometry is illustrated in Fig. 15 together with some measures. Since the problem
is symmetric for low Weissenberg numbers, we have just considered a fourth of the total
domain. In [21], the full domain was used in order to be able to capture flow asymmetries
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Fig. 14: Corner vortex length comparison for Re=0.01.

Fig. 15: Three dimensional geometry of the 4:1 contraction problem.

or instabilities when the Weissenberg number grows. Both inlet and outlet lengths are
the same as in the two dimensional case, long enough for getting a full flow development.
Moreover, the characteristic length we have chosen is H2 = 1, which is half of the channel
width of the narrowest part, and the average velocity in the outlet of the channel ū2 = 1
has been chosen as characteristic velocity.

The boundary conditions are an extension from the two dimensional case, but now
the domain has two symmetry boundaries instead of one. The symmetry planes are y = 0
and z = 0 , and the normal velocity to each plane is set to zero. In this problem we
have just considered a Weissenberg number of We = 1.0 and the inertial effects have been
minimized, taking Re = 0.01.

Higher values of the Weissenberg number would require finer meshes in order to be
capable to capture the lip vortex. Nevertheless, we are now trying to study the behavior
of the highest Weissenberg number in a three dimensional geometry, as it is done in [2].
The mesh used is formed by 476 852 unstructured tetrahedra and 86 856 nodes.

4.4.2 Some results

Only a few pictures of results will be presented, intending to give an idea of the flow. On the
one side, streamlines are shown in Fig. 16, where these are plotted on two perpendicular
planes. Particularly, in Fig. 16a the main corner vortex is clearly appreciated, and also the
lip vortex starts to emerge. The similarities with the two dimensional case are remarkable,
in spite of the minimum mesh size being notably finer in that problem. In Fig. 16b the
symmetry with respect to plane y = z of the streamlines can be observed.

Lastly, in Fig. 17 the first elastic stress component along the wall around the contrac-
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(a) Cut with the plane y = 0. (b) Cut plane a x = cte near to
the contraction plane.

Fig. 16: Streamlines in the three dimensional 4:1 planar contraction in two different views.

Fig. 17: Normal elastic stress component σxx along the corner.

tion corner is shown, and we can appreciate how the stress peak is captured.
We have to stand out that the results presented in this section pretend to make a

qualitative study of the three dimensional problem, neither comparing the results obtained
with other publications nor establishing a rigorous analysis of the differences between them.

5 Conclusions

In this work a FE method has been designed for the log-conformation formulation of Fattal
and Kupferman [1], considering a modification with respect to the original formulation
which is non-singular with respect to the relaxation time parameter and, moreover, that
allows a direct steady numerical computation. The spatial approximation is carried out
using a stabilized FE method based on the VMS framework. Firstly, a residual-based
formulation of the equations is presented, and later the split OSS method is developed
for the momentum and continuity equations, whereas the constitutive equation can be
stabilized using the classical residual-based stabilization, following the steps of [2]. The
linearization of the problem has been presented in detail, emphasizing the treatment of the
exponential function. The convergence of the proposed method has a strong dependency
on this treatment.

The resulting method allows one to obtain globally stable solutions, and has been
validated in different benchmarks for high Weissenberg numbers, showing accuracy, opti-
mal convergence for smooth solutions, and robustness even in steady-state computations,
reaching accurate results in comparison with other methods reported in the literature.
Moreover, the formulation also performs well in the three-dimensional case, with good
results from a qualitative point of view.
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