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a b s t r a c t

A (k, g)-graph is a k-regular graph with girth g and a (k, g)-cage is a (k, g)-graph with the
fewest possible number of vertices. The cage problem consists

∧
of constructing (k, g)-graphs

ofminimumorder n(k, g).We focus on girth g = 5,where cages are knownonly for degrees
k ≤ 7. We construct (k, 5)-graphs using techniques exposed by Funk (2009) and Abreu et
al. (2012) to obtain the best upper bounds on n(k, 5) known hitherto. The tables given in
the introduction show the improvements obtained with our results.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction1

All the graphs considered are finite and simple. Let G be a graph with vertex set V = V (G) and edge set E = E(G). The2

girth of a graph G is the size g = g(G) of a shortest cycle. The degree of a vertex v ∈ V is the number of vertices adjacent3

to v. A graph is called k-regular if all its vertices have the same degree k, and bi-regular or (k1, k2)-regular if all its vertices4

have either degree k1 or k2. A (k, g)-graph is a k-regular graph of girth g and a (k, g)-cage is a (k, g)-graph with the fewest5

possible number of vertices; the order of a (k, g)-cage is denoted by n(k, g). Cages were introduced by Tutte [29] in 1947 and6

their existence was proved by Erdős and Sachs [14] in 1963 for any values of regularity and girth. The lower bound on the7

number of vertices of a (k, g)-graph is denoted by n0(k, g), and it is calculated using the distance partition either to a vertex8

(for odd g), or to an edge (for even g):9

n0(k, g) =
{
1+ k+ k(k− 1)+ · · · + k(k− 1)(g−3)/2 if g is odd;
2(1+ (k− 1)+ · · · + (k− 1)g/2−1) if g is even.

10

A graph that attains this lower bound is called aMoore (k, g)-cage. Biggs [11] calls excess of a (k, g)–graph G the difference11

|V (G)|−n0(k, g). There has been intense work related with the cage problem,
∧
focused on constructing the smallest (k, g)-12

graphs (for a complete survey of this topic see [16]).13

In this paper we are interested in the cage problem for g = 5, in this case n0(k, 5) = 1 + k2. It is well known that this14

bound is attained for k = 2, 3, 7 and perhaps for k = 57 (see [11]) and that for k = 4, 5, 6, the known graphs of minimum15

order are cages (see [22–25,30–33]).16
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Table 1
Current and our new values of rec(k, 5) for 8 ≤ k ≤ 22.

k rec(k, 5) Due to Reference New rec(k, 5)

8 80 Royle, Jørgensen [20,26]
9 96 Jørgensen [20]

10 124 Exoo [15]
11 154 Exoo [15]
12 203 Exoo [15]
13 230 Exoo [15]
14 284 Abreu et al. [1]
15 310 Abreu et al. [1]
16 336 Jørgensen [20]
17 448 Schwenk [27] 436
18 480 Schwenk [27] 468
19 512 Schwenk [27] 500
20 572 Abreu et al. [1] 564
21 682 Abreu et al. [1] 666
22 720 Jørgensen [20] 704

Table 2
Current and our new values of rec(k, 5) for 32 ≤ k ≤ 52.

k rec(k, 5) Due to Reference New rec(k, 5)

32 1680 Jørgensen [20] 1624
33 1856 Funk [17] 1680
34 1920 Jørgensen [20] 1800
35 1984 Funk [17] 1860
36 2048 Funk [17] 1920
37 2514 Abreu et al. [1] 2048
38 2588 Abreu et al. [1] 2448
39 2662 Abreu et al. [1] 2520
40 2736 Jørgensen [20] 2592
41 3114 Abreu et al. [1] 2664
42 3196 Abreu et al. [1] 2736
43 3278 Abreu et al. [1] 3040
44 3360 Jørgensen [20] 3120
45 3610 Abreu et al. [1] 3200
46 3696 Jørgensen [20] 3280
47 4134 Abreu et al. [1] 3360
48 4228 Abreu et al. [1] 3696
49 4322 Abreu et al. [1] 4140
50 4416 Jørgensen [20] 4232
51 4704 Jørgensen [20] 4324
52 4800 Jørgensen [20] 4416

Jørgensen [20] established that n(k, 5) ≤ 2(q−1)(k−2) for every odd prime power q ≥ 13 and k ≤ q+3. Abreu et al. [1] 1

proved that n(k, 5) ≤ 2(qk − 3q − 1) for any prime q ≥ 13 and k ≤ q + 3, which improved
∧
Jørgensen’s bound except for 2

k = q+ 3 where both coincide. 3

In [17] Funk uses a technique that consists in finding regular graphs of girth greater or equal than five and performing 4

some operations of amalgams and reductions of the (bipartite) incidence graph, also called Levi Graph of elliptic semiplanes 5

of type C and L (see [5,13,17]). In this paper we improve some results of Funk finding the best possible regular graphs 6

to amalgamate which allow us to obtain new better upper bounds. To do that, we also use the techniques given in [1,2] 7

where the authors amalgamate not only regular graphs, but also bi-regular graphs. In this paper new small (k, 5)-graphs are 8

constructed for 17 ≤ k ≤ 22 using the incidence graphs of elliptic semiplanes of type C . The new upper bounds appear in 9

the last column of Table 1, which also shows the current values for 8 ≤ k ≤ 22. To evaluate our achievements, we follow 10

the notation in [16,17], and let rec(k, 5) denote the smallest currently known order of a k-regular graph of girth 5. Hence 11

n(k, 5) ≤ rec(k, 5). 12

For 23 ≤ k ≤ 31, the value rec(k, 5) obtained by Funk in [17] remain untouched. However, for 32 ≤ k ≤ 52, we construct 13

a k-regular graph of girth five and provide in Table 2 a new value of rec(k, 5). 14

Finally, when q ≥ 49 is a prime power, the search for 6-regular suitable pairs of graphs allows us to establish the two 15

following general results. Note that the bounds are different depending on the parity of q. 16

Theorem 1.1. Given an integer k ≥ 53, let q be the lowest odd prime power such that k ≤ q+6. Then n(k, 5) ≤ 2(q−1)(k−5). 17

Theorem 1.2. Given an integer k ≥ 68, let q = 2m be the lowest even prime power such that k ≤ q+6. Then n(k, 5) ≤ 2q(k−6). 18

Since the bounds of Theorems 1.1 and 1.2, associated to primes q = 49 and q = 64, represent a considerable improvement 19

to the current known ones, we give them explicitly in Table 3. 20
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Table 3
Current and our new values of rec(k, 5) for k = 55, 70.

k rec(k, 5) Due to Reference New rec(k, 5)

55 5510 Abreu et al. [1] 4800
70 8976 Jørgensen [20] 8192

To finalize the introduction we want to emphasize that Funk, in [17], gives a pair of 4-regular graphs of girth 5 suitable1

for amalgamation into some specific incidence graphs of elliptic semiplanes and he posed the question about the existence2

of a suitable pair of 5-regular graphs for the same objective. In this paper we exhibit these graphs which solve this open3

question. Furthermore, let us notice that all the bounds on n(k, 5) contained in this paper are obtained constructively, that4

is, for each k, we construct a (k, 5)-graph with improved order rec(k, 5).5

2. Preliminaries6

A useful tool to construct k-regular graphs of girth 5 is the operation of amalgamation on the incidence graph of an elliptic7

semiplane (Jørgensen [20] and Funk [17]).8

Let q be a prime power and consider the Levi graphs or incidence graphs Cq and Lq of elliptic semiplanes of type C and L,9

respectively. Recall that a semiplane of type C is obtained from the projective plane of order q by choosing an incident point10

line pair (p, ℓ) and deleting all the lines incident with p and all the points belonging to ℓ. Thus, the Levi (or incidence) graph11

Cq is bipartite, q-regular and has 2q2 vertices, which correspond in the elliptic semiplane of type C to q2 points and q2 lines12

both partitioned into q parallel classes or blocks of q elements each. A semiplane of type L is obtained from the projective13

plane of order q by choosing a non-incident point line pair (p, ℓ) and deleting all the lines incident with p and all the points14

belonging to ℓ. Hence, the Levi graphLq is also bipartite, q-regular and has 2(q2−1) vertices, which correspond in the elliptic15

semiplane of type L to q2 − 1 points and q2 − 1 lines both partitioned into q+ 1 parallel classes of q− 1 elements each.16

To construct our new graphs we find regular and bi-regular graphs of girth greater or equal than five and we use them17

to perform some operations of amalgams and reductions in Cq or Lq. In [20], Jørgensen exploits these ideas and proves that18

two graphs are suitable for amalgamation (one of them in each block of points and the other in each block of lines) if they19

have disjoint sets of Cayley colors. In [1] these ideas are also used to construct graphs using the elliptic semiplane of type20

C, and the main theorem of [1] was refined in [2] to construct bi-regular cages of girth 5. In fact, the suitable graphs to be21

amalgamated can have some specific edges with a common Cayley color.22

The paper is organized as follows. In the next section we work with elliptic semiplanes of type C and with techniques23

used in [1,2]. In Section 4 we work with elliptic semiplanes of type L and with techniques given by Funk in [17]. Finally, in24

Section 5 we return to the elliptic semiplanes of type C for even prime powers because new descriptions are required.25

3. Amalgamating into elliptic semiplanes of type C26

Let q be a prime power and Fq the finite field of order q; we recall the definition and properties of the incidence bipartite27

graph Cq of an elliptic semiplane of type C exactly as they appear in [1,2]. Notice that in these papers the authors call this28

graph Bq and here, as it is related to the elliptic semiplane of type C, we prefer to call it Cq.29

Definition 3.1. Let Cq be a bipartite graph with vertex set (V0, V1) where Vr = Fq × Fq, r = 0, 1; and edge set defined as30

follows:31

(x, y)0 ∈ V0 adjacent to (m, b)1 ∈ V1 if and only if y = mx+ b. (1)32

The graph Cq is also known as the incidence graph of the biaffine plane [18] and it has been used to find extremal graphs33

without short cycles (see [1–10,21]). The graph Cq is q-regular of order 2q2, has girth g = 6 for q ≥ 3 and it is vertex transitive.34

The set of vertices can be described as the disjoint union of the sets Px = {(x, y)0 : y ∈ Fq} and Lm = {(m, b)1 : b ∈ Fq} for all35

x,m ∈ Fq. Other well known properties of the graph Cq can be seen in [1,2,18,21].36

Let Γ be a subgraph of G, and Γ ′ a graph of the same order of Γ and with the same labels on their vertices; an amalgam37

of Γ ′ into Γ is a graph obtained from G by adding all the edges of Γ into Γ ′. In [1] the authors described a technique of38

amalgamation of two r-regular graphs H0,H1 and two (r, r + 1)-regular graphs G0,G1 (all of them of girth at least 5 and39

with some specific properties) into a subgraph of Cq such that the resulting amalgam graph, denoted by Cq(H0,H1,G0,G1),40

is (q+ r)-regular and has girth at least five.41

Recall that if G is a graphwith V (G) labeled with the elements of Fq and αβ is an edge of G, then the Cayley Color orweight42

of the edge αβ is ±(α − β) ∈ Fq − {0}. Theorem 3.1 is a reformulation of Theorem 5 in [1] (with a new strong hypothesis43

that also appears in Theorem 4.9 in [2]).44

Theorem 3.1. Let q ≥ 3 be a prime power and r ≥ 2 an integer. Consider graphs H0, H1, G0 and G1 with the following properties:45

(i) V (Gi) = Fq and Gi is an (r, r + 1)-regular graph of girth g(Gi) ≥ 5 for i = 0, 1;46
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Fig. 1. The graphs Hi and Gi for i = 0, 1 where q = 16.

(ii) Hi is an r-regular graph of girth g(Hi) ≥ 5 and V (Hi) = {v ∈ Fq : dGj (v) = r with i ̸= j}, for i, j ∈ {0, 1}. 1

(iii) E(H0) ∩ E(H1) = ∅, E(H0) ∩ E(G1) = ∅, E(H1) ∩ E(G0) = ∅ and G0 and G1 have disjoint Cayley colors. 2

Let Cq be the graph given in Definition 3.1, and A = V (Cq) \ ({(0, y)0 : y ̸∈ V (H0)} ∪ {(0, b)1 : b ̸∈ V (H1)}). Let Cq[A] be the 3

induced subgraph of Cq by A. 4

Let the sets of edges E0(0) = {(0, y)0(0, y′)0 : yy′ ∈ E(H0)}, E1(0) = {(0, b)1(0, b′)1 : bb′ ∈ E(H1)}, E0(x) = {(x, y)0(x, y′)0 : 5

yy′ ∈ E(G0)}, E1(m) = {(m, b)1(m, b′)1 : bb′ ∈ E(G1)} for all m, x ∈ Fq − {0}. 6

The graph Cq(H0,H1,G0,G1) with vertex set A and edge set E(Cq[A]) ∪ (
⋃

x∈FqE0(x)) ∪ (
⋃

m∈FqE1(m)) is (q + r)-regular and 7

has girth at least five. 8

The proof is the same as the one of Theorem 4.9 in [2]. Notice that Theorem 3.1 can also be applied when G0 and G1 are 9

regular graphs (then H0 = G0 and H1 = G1). In this case we denote the obtained graph by Cq(G0,G1). 10

Next, for q ∈ {16, 17, 19}, we construct graphs H0, H1, G0, G1, satisfying the conditions of Theorem 3.1. 11

Construction 1: 12

• For q = 16: 13

Let (F16,+) ∼= ((Z2)4,+) be a finite field of order 16 with set of elements {(d, e, f , g) : d, e, f , g ∈ Z2}, we write 14

defg instead of (d, e, f , g). Consider the graphs H0, H1, G0 and G1 displayed in Fig. 1. The graphs G0 and G1 are not 15

isomorphic, although both have girth 5 and order 16, with 6 vertices of degree 4 and 10 vertices of degree 3. We label 16

the vertices of G0 and G1 such that the vertices of the set S = {0000, 1100, 0110, 1001, 0011, 1111} have degree four and 17

the other ones have degree three. The weights or Cayley colors of G0 (and G1) are {0001, 0010, 0100, 1000, 1111} (and 18

{0011, 0110, 0111, 1001, 1010, 1011, 1100, 1101, 1110}, respectively). Hence, G0 and G1 have disjoint sets of Cayley colors. 19

Moreover, the graphs H0 and H1 are isomorphic to the Petersen graph and they are labeled with the elements of (Z2)4 − S 20

in such a way that E(H0) ∩ E(H1) = ∅, E(H0) ∩ E(G1) = ∅ and E(H1) ∩ E(G0) = ∅. 21

• For q = 17: 22

Let H0, H1, G0 and G1 be the graphs of girth 5 displayed in Fig. 2. Graphs G0 and G1 are isomorphic with V (G0) = V (G1) = 23

Z17, and both have the same set of vertices S = {0, 2, 5, 8, 10, 13, 15} of degree 4. The Cayley colors of G0 (and G1) in Z17 24

are ±{1, 5, 8} (and ±{2, 3, 4, 6, 7}, respectively). Regarding H0 and H1, it can be checked that V (H0) = V (H1) = Z17 − S, 25

E(H0) ∩ E(H1) = ∅, E(H0) ∩ E(G1) = ∅ and E(H1) ∩ E(G0) = ∅. 26
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Fig. 2. The graphs Hi and Gi for i = 0, 1 where q = 17.

• For q = 19: Let H0, H1, G0 and G1 be the graphs of girth 5 shown in Fig. 3. Graphs G0 and G1 are isomorphic,1

V (G0) = V (G1) = Z19 and both have the same set S = {0, 2, 3, 5, 6, 12, 13, 16, 17} of vertices degree 4. The weights or2

Cayley colors modulo 19 of G0 (and G1) are±{1, 4, 7, 8} (and±{2, 3, 5, 6, 9}, respectively). The two graphs H0 and H1 have3

vertex set Z19 − S and verify E(H0) ∩ E(H1) = ∅, E(H0) ∩ E(G1) = ∅ and E(H1) ∩ E(G0) = ∅.4

Next, we apply Theorem3.1 to q ∈ {16, 17, 19}. The graph Cq(H0,H1,G0,G1) is a (q+3, 5)-regular graphwith less vertices5

than any other (q+ 3)-regular graph of girth 5 so far known, and therefore the upper bound rec(k, 5) for k ∈ {19, 20, 22} is6

improved. As it is explained in the Reduction 2 in [1], referred as ‘‘Deletion’’ in [17], by removing pairs of blocks Px and Lm7

from Cq(H0,H1,G0,G1), we also generate new graphs which improve rec(k, 5) for k ∈ {17, 18, 21}.8

Theorem 3.2. The following upper bound rec(k, 5) on the order n(k, 5) of a k-regular cage of girth 5 holds9

k 17 18 19 20 21 22

rec(k, 5) 436 468 500 564 666 70410

Proof. Using the graphs given in Construction 1,we obtain for q ∈ {16, 17, 19} the graph Cq(H0,H1,G0,G1) as in Theorem3.1,11

which has girth 5. Moreover we have the following considerations:12

For q = 16, C16(H0,H1,G0,G1) is a (19, 5)-graph of order 2 · 162
− 12 = 500 implying that any (19, 5)-cage has at most13

500 vertices. Removing of C16(H0,H1,G0,G1) (using the operation called ‘‘Reduction 2’’ in [1]) a block of lines Lm and a block14

of points Px, for x,m ∈ (Z2)4− {0000}, we construct a 18-regular graph with 500− 2 · 16 = 468 vertices. Similarly, deleting15

from this last graph another pair of blocks we obtain a 17-regular graph of girth 5 with 436 vertices. Each of these k-regular16

graphs (k = 17, 18, 19) has 12 vertices less than the ones constructed by Schwenk in [27].17

For q = 17, C17(H0,H1,G0,G1) is a (20, 5)-graph of order 2 · 172
− 14 = 564, which implies that a (20, 5)-cage has at18

most 564 vertices.19

For q = 19, C19(H0,H1,G0,G1) is a (22, 5)-graph of order 2 · 192
− 18 = 704, which also implies that any (22, 5)-cage has20

atmost 704 vertices. Newly, deleting any block of points and any block of lines (except P0 and L0 blocks), it is straightforward21

to check out that n(21, 5) ≤ 666. ■22

Remark 3.1. Note that the construction of a (q+3)-regular graph of girth at least 5 using bi-regular amalgams into a subgraph23

of Cq involves the existence of two 3-regular graphs H0 and H1 and two (3, 4)-regular graphs G0 and G1 all of themwith girth24

at least 5. The graph Cq(H0,H1,G0,G1) has order 2(q2 − (q− n(H0))) ≥ 2(q2 − q+ 10). It means that our construction is the25
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Fig. 3. The graphs Hi and Gi for i = 0, 1 where q = 19.

best possible one for q = 16 and q = 17, because a 4-regular amalgam could only be possible for q ≥ n(4, 5) = 19 (the 1

(4, 5)-cage is the Robertson Graph that has order 19). 2

4. Elliptic semiplanes of type L 3

In this section we use the technique given by Funk in [17] to amalgamate a pair of suitable regular graphs into the Levi 4

graph Lq of an elliptic semiplane of type L. Recall that the semiplane of type L is obtained by deleting from the projective 5

plane of order q a non-incident pair (p, ℓ), all the lines incident with the point p and all the points incident with the line ℓ. 6

Moreover, the Levi graph Lq is bipartite, q-regular and has 2(q2 − 1) vertices of which q2 − 1 are points and q2 − 1 are lines 7

in the elliptic semiplane, both partitioned into q+ 1 parallel classes of q− 1 elements each. 8

We divide the section into two parts. First we construct suitable regular graphs G0, G1 and then we describe the graph 9

Lq(G0,G1) obtained after amalgamation. 10

4.1. Constructions of regular graphs of girth five 11

To apply Funk’s technique we need to construct two regular graphs with the same order, girth at least five and having 12

disjoint Cayley colors, one of them to be amalgamated into the point blocks and the other into the line blocks of Lq. 13

Let Zn be the set of integers modulo n, and J = {k1, . . . , kw} ⊂ Zn − {0}. Recall that a circulant graph Zn(J) is a graph 14

with vertex set Zn and edges αβ where β − α ∈ J . Let n = 2t and suppose that every element of J is odd. We denote by 15

S2t (k1, . . . , kw) the subgraph of the circulant graph Z2t (k1, . . . , kw) with vertex set Z2t and edge set {{2v, 2v+ kj} : 0 ≤ v ≤ 16

t − 1, 1 ≤ j ≤ w} where the sum is taken modulo 2t . Moreover, we denote by S∞(k1, . . . , kw) the (infinite) graph defined 17

in a similar way over Z. Next, we describe some relevant properties of this graph. 18

Lemma 4.1. Given an integer t ≥ 5, and a sequence k1, . . . , kw of different odd elements from Z2t , the graph S2t (k1, . . . , kw) is 19

w-regular, bipartite and has at most w Cayley colors in Z2t . Moreover, the girth of S2t (k1, . . . , kw) is at least 6 iff all the numbers 20

ki − kj are different for i ̸= j and 1 ≤ i, j ≤ w. These properties hold even for 2t = ∞. 21

Proof. Given an odd element kj ∈ Z2t , the set of edges {{2v, 2v+kj} : 0 ≤ v ≤ t−1} defines amatching between the vertices 22

with even label and the ones with odd label in Z2t . Therefore, for a given sequence k1, . . . , kw of different odd elements of 23

Z2t , the graph G = S2t (k1, . . . , kw) is w-regular, bipartite and has even girth g ≥ 4. 24
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By hypothesis, the numbers ki− kj are different for i ̸= j and 1 ≤ i, j ≤ w. We prove that the girth of G is greater or equal1

than 6. Suppose that there exists a 4-cycle v0v1v2v3v0. By reordering, wemay take v0, v2 even and v1, v3 odd. So, v1 = v0+ki,2

v2 = v1 − kj, v3 = v2 + kp, v0 = v3 − kq with i ̸= j, p ̸= q, p ̸= j, q ̸= i. Then, ki − kj + kp − kq = 0 and ki − kj = kq − kp3

in Z2t which is a contradiction, since by hypothesis all these numbers are different. Hence the girth of G must be at least 64

because it is bipartite. The proof is the samewhen Z2t = Z, taking into account that in this case the equalities are considered5

in Z. ■6

The (q+ 1, 6)-cages with q a prime power, are known examples of this type of graphs. For instance, the Heawood graph7

or the Moore (3, 6)-cage can be constructed as S14(1,−1, 5). It is also very known that Moore (q + 1, 6)-cages can also be8

represented by using perfect difference sets (see [20,28]) and as the Levi graphs of the projective plane over the field Fq.9

Definition 4.1. Given an integer t ≥ 5, a sequence of different odd elements k1, . . . , kw and two different even elements10

0 < P,Q < t from Z2t , we denote by S2t (P,Q ; k1, . . . , kw) the graph obtained by adding to S2t (k1, . . . , kw) the new edges11

{2v, 2v + P} and {2v + 1, 2v + 1 + Q }, where the sum is taken modulo 2t . The graph S∞(P,Q ; k1, . . . , kw) is defined in a12

similar way over Z.13

Notice that if P divides 2t , the subgraph of S2t (P,Q ; k1, . . . , kw) induced by the even numbers is formed by P/2 cycles,14

each of them with size 2t/P . Similar result holds when Q divides 2t and the subgraph of S2t (P,Q ; k1, . . . , kw) induced by15

the odd numbers. The standard Generalized Petersen Graphs with 2t vertices introduced by Coxeter in [12] are obtained16

as S2t (2,Q ; 1) and the I-graph I(t, j, k) in [34] as S2t (2j, 2k; 1). Funk uses in [17] a 4-regular generalization P(k, η, ν) of the17

Petersen graph which corresponds to S2k(2, 2η; 1, 2ν + 1). Another example is one of the four (5, 5)-cages on 30 vertices,18

which can be described as S30(6, 12; 1,−1, 9). It can be checked that this graph is isomorphic to the (5, 5)-cage obtained19

from
∧
Hoffman–Singleton graph by deleting two Petersen graphs.20

Next, we prove some useful properties of these graphs.21

Lemma 4.2. The graph S2t (P,Q ; k1, . . . , kw) defined over Z2t is (w+2)-regular and has at most w+2 Cayley colors. Moreover,22

the girth of S2t (P,Q ; k1, . . . , kw) is at least 5 if and only if the following conditions hold:23

(i) The numbers 3P, 4P, 3Q , 4Q are different from 0 in Z2t .24

(ii) All the numbers ki − kj are different for i ̸= j and 1 ≤ i, j ≤ w.25

(iii) No relation ki − kj = a− a′ holds for any pair a, a′ ∈ Ω = {0,±P,±Q }.26

The result also holds when Z2t = Z.27

Proof. According to Lemma 4.1, the graph B = S2t (k1, . . . , kw) is an w-regular bipartite graph with girth at least 6 iff item28

(ii) is satisfied. The partite sets of B are the set of even vertices, denoted by Ev, and the set of odd vertices, denoted by Od,29

of Z2t . Consider T0 and T1 the circulant graphs whose vertices are Ev and Od respectively, and whose edges are {2v, 2v + P}30

and {2v+ 1, 2v+ 1+Q }, respectively. Clearly, T0 and T1 are 2-regular and condition (i) that 3P, 4P, 3Q , 4Q ̸= 0means that31

T0 and T1 have girth at least five. Denote G = S2t (P,Q ; k1, . . . , kw) and observe that the graph G is an amalgamation B(T0, T1)32

obtained by adding to Ev all the edges of T0 and by adding to Od all the edges of T1. Hence G is (w + 2)-regular. Let us see33

that G has girth five.34

Suppose that C is a cycle in G of size 3 or 4 which must contain even and odd vertices. If C has only one even vertex, then35

ki−kj+a = 0 for a ∈ {±Q ,±2Q }, depending on the size of C , contradicting (iii). If C contains two even and two odd vertices,36

we have ki + a− kj − a′ = 0, for a, a′ ∈ {±P,±Q }, again contradicting (iii). Therefore G has girth at least 5 iff conditions (i),37

(ii), (iii) are satisfied. ■38

Notice that it is useful to take Q = 2P because in this case there are only four differences±{P, 2P, 3P, 4P} to be avoided.39

Furthermore, if S2t (P,Q ; k1, . . . , kw) has girth g ≥ 5, the (infinite) graph S∞(P,Q ; k1, . . . , kw) also satisfies g ≥ 5. We are40

interested in the converse result.41

Definition 4.2. We call span D of a graph S∞(P,Q ; k1, . . . , kw) the maximum element of the set {|ki|, ki − kj, a − a′}, with42

a, a′ ∈ {0,±P,±Q }.43

Lemma4.3. Let P ̸= Q be twopositive even integers and k1, . . . , kw different odd integers. Consider a graph S∞(P,Q ; k1, . . . , kw)44

with girth g ≥ 5 and span D. If t ≥ D+ 1, then S2t (P,Q ; k1, . . . , kw) is (w + 2)-regular and has girth at least 5.45

Proof. By definition, 0 < P,Q ≤ D and −D ≤ ki ≤ D. As t ≥ D + 1, then 0 < P,Q , |k1|, . . . , |kw|< t and clearly46

S2t (P,Q ; k1, . . . , kw) is (w + 2)-regular. Let us see that S2t (P,Q ; k1, . . . , kw) has girth g ≥ 5. Since S∞(P,Q ; k1, . . . , kw) has47

girth g ≥ 5, it follows that ki − kj ̸= kp − kq in Z. Also, from the definition of D, we have−D ≤ ki − kj, kp − kq ≤ D, yielding48

that−2t < (ki − kj)− (kp − kq) < 2t . Hence, ki − kj ̸= kp − kq in Z2t . The same argument shows ki − kj ̸= a− a′ in Z2t for49

a, a′ ∈ {±P,±Q }. These are the requirements (ii), (iii) of Lemma 4.2. Notice that (i) of Lemma 4.2 has been explicitly stated,50

since 2t ≥ 2(D+ 1) ≥ max{2(2P + 1), 2(2Q + 1)}, which implies that 3P, 4P, 3Q , 4Q are different from 0 in Z2t . ■51

As an example, let us mention that the graph S∞(2, 4; 3,−7) has girth 5 and span D = 10. Therefore, the graph52

S2t (2, 4; 3,−7) is a 4-regular with girth 5 for orders 2t ≥ 22.53

In the next subsection we construct a pair of regular graphs of girth 5 suitable for amalgamation into Lq for some prime54

powers q.55
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4.2. Amalgamating into elliptic semiplanes of type L 1

Following the terminology of Funk in [17] we say that two r-regular graphs G0 and G1 with girth at least five are suitable 2

for amalgamation into the elliptic semiplaneLq if they are labeledwith the elements of the cyclic group (Zq−1,+) with disjoint 3

sets of Cayley colors in this group. When q is odd, the fact that Zq−1 has q − 1 elements suggests the use of this semiplane, 4

because r-regular graphs with odd degree have even order. 5

As in Section 4, the amalgamation of a pair of r-regular suitable graphs into the elliptic semiplane Lq gives a (q + r, 5)- 6

graph Lq(G0,G1). It has 2(q2 − 1) vertices and deleting pairs of blocks of vertices from Lq(G0,G1), for regularities k ≤ q+ r , 7

we have 8

n(k, 5) ≤ 2(q− 1)(k− r + 1). (2) 9

For q = 19 there is a unique 4-regular graph with girth 5, the (4, 5)-cage due to Robertson in [24]. The use of the highest 10

value of r ≥ 4 for a given q > 19 increases the accuracy of the inequality (2). Funk in [17] constructs the best possible 11

regular amalgams for q ∈ {23, 25, 27}. Next, we give a construction of graphs which provide accurate amalgams for 12

q ∈ {29, 31, 37, 41, 43, 47}. 13

Construction 2: 14

• For q = 29: 15

Consider the graphs G0 = S28(4, 8; 1,−1) and G1 = S28(2, 6; 3,−7). It is a suitable pair, that is, both graphs are 4-regular, 16

have girth five and have disjoint sets of Cayley colors, concretely ±{1, 4, 8} and ±{2, 3, 6, 7}, respectively. Hence, the 33- 17

regular graph L29(G0,G1) has girth 5, order 1680 and diameter 4. Deletion provides entries k = 32, 33 of Table 2. 18

• For q = 31: 19

There exist four (5, 5)-cages (see [22,25,30,32,33]) one of them being the graph G0 = S30(6, 12; 1,−1, 9). Another graph 20

G1 has been found with the following relabeling of the vertices. 21

G0 ↔ G1 G0 ↔ G1 G0 ↔ G1 G0 ↔ G1 G0 ↔ G1 G0 ↔ G1

0↔ 0 1↔ 28 2↔ 1 3↔ 27 4↔ 2 5↔ 19
6↔ 4 7↔ 7 8↔ 5 9↔ 22 10↔ 6 11↔ 3
12↔ 8 13↔ 24 14↔ 9 15↔ 20 16↔ 10 17↔ 15
18↔ 12 19↔ 23 20↔ 13 21↔ 11 22↔ 14 23↔ 29
24↔ 16 25↔ 21 26↔ 17 27↔ 25 28↔ 18 29↔ 26

22

Since the Cayley colors of G1 are the elements of the set Z30 − {0,±1,±6,±9,±12}, the graphs G0 and G1 have disjoint 23

Cayley colors, and therefore, L31(G0,G1) has girth 5, regularity 36 and order 2(312
− 1) = 1920. Block deletion provides 24

n(35, 5) ≤ 1860 and n(34, 5) ≤ 1800. 25

• For q = 37: 26

Consider the graphs G0 = S36(8, 14; 1,−1, 11) and G1 = S36(2, 4; 3,−7, 15) defined on the cyclic group (Z36,+). Both 27

graphs are 5-regular, have girth five and disjoint Cayley colors, concretely±{1, 8, 11, 14} and±{2, 3, 4, 7, 15}, respectively. 28

Hence, the 42-regular graph L37(G0,G1) has girth 5 and order 2736. Deletion provides n(41, 5) ≤ 2664, n(40, 5) ≤ 2592, 29

n(39, 5) ≤ 2520, n(38, 5) ≤ 2448. 30

• For q = 41: 31

The (6, 5)-cage is unique and it is well known (see [23]) that it can be constructed by removing the vertices of a Petersen 32

graph from the
∧
Hoffman–Singleton cage. We present a construction of the (6, 5)-cage as the graph S40(8, 16; 1,−1, 5,−13). 33

Wedenote it by G0. Due to the uniqueness of this cage, we construct a suitable graph G1 according to the following relabeling 34

of the vertices. 35

G0 ↔ G1 G0 ↔ G1 G0 ↔ G1 G0 ↔ G1 G0 ↔ G1 G0 ↔ G1 G0 ↔ G1 G0 ↔ G1

0↔ 0 1↔ 12 2↔ 1 3↔ 20 4↔ 2 5↔ 33 6↔ 3 7↔ 37
8↔ 7 9↔ 38 10↔ 8 11↔ 18 12↔ 9 13↔ 32 14↔ 10 15↔ 25
16↔ 14 17↔ 5 18↔ 15 19↔ 13 20↔ 16 21↔ 36 22↔ 17 23↔ 27
24↔ 21 25↔ 19 26↔ 22 27↔ 11 28↔ 23 29↔ 35 30↔ 24 31↔ 39
32↔ 28 33↔ 26 34↔ 29 35↔ 4 36↔ 30 37↔ 34 38↔ 31 39↔ 6

36

Since G0 and G1 have no Cayley color in common, the 47-regular graph L41(G0,G1) has girth 5 and order 2(412
− 1) = 3360. 37

Deletion and inequality (2) provide entries k = 43, 44, 45, 46 of Table 2. 38
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• For q = 43, 47:1

Since we resort to 5-regularity, there exist several pairs of suitable graphs. For the sake of uniformity, we consider2

the graphs Sq−1(6, 12; 1,−1, 9) and Sq−1(2, 4; 3,−7, 15). It proves that n(48, 5) ≤ 2(432
− 1) = 3696 and n(52, 5) ≤3

2(472
− 1) = 4416. As a curiosity, let us mention that the graph S42(1,−1,−7, 11, 15) is the (5, 6)-cage and it forms a4

suitable pair with S42(2, 4; 5,−5, 17).5

Based on the above constructions and recalling that it is possible to delete blocks of points and lines we can write the6

following theorem.7

Theorem 4.1. The following upper bound on the order of a k-regular graph of girth 5 holds8

k rec(k, 5)

32, 33 56(k− 3)
34, 35, 36 60(k− 4)
38, . . . , 42 72(k− 4)
43, . . . , 47 80(k-5)
48 3696
49, . . . , 52 92(k− 4)

9

To finalize this section we prove Theorem 1.1. In this case we generate a pair of 6-regular suitable graphs to be10

amalgamated into Lq, for an odd prime power q ≥ 49. We start with q = 49; notice that this case is sharp because the11

∧
Hoffman–Singleton graph is the Moore cage that attains the lower bound n0(7, 5) = 50 (see [19]).12

Theorem 1.1. Given an integer k ≥ 53, let q be the lowest odd prime power, such that k ≤ q+6. Then n(k, 5) ≤ 2(q−1)(k−5).13

Proof. First consider q = 49. Add to the 4-regular bipartite graph S48(1,−1, 5,−13) the edges {2v, 2v + 8} over the even14

vertices of Z48, and the four cycles {1+ i, 17+ i, 41+ i, 25+ i, 9+ i, 33+ i, 1+ i}, for i = 0, 2, 4, 6, over the odd vertices.15

We call this (6, 5)-graph G0. To construct a suitable graph G1, we resort to the following relabeling of the vertices16

G0 ↔ G1 G0 ↔ G1 G0 ↔ G1 G0 ↔ G1 G0 ↔ G1 G0 ↔ G1 G0 ↔ G1 G0 ↔ G1

0↔ 0 1↔ 42 2↔ 1 3↔ 39 4↔ 2 5 ↔ 23 6↔ 3 7↔ 47
8↔ 6 9↔ 4 10↔ 7 11↔ 28 12↔ 8 13↔ 34 14↔ 9 15↔ 43
16↔ 12 17↔ 35 18↔ 13 19↔ 36 20↔ 14 21↔ 29 22↔ 15 23↔ 44
24↔ 18 25↔ 37 26↔ 19 27↔ 5 28↔ 20 29↔ 40 30↔ 21 31↔ 10
32↔ 24 33↔ 45 34↔ 25 35↔ 46 36↔ 26 37↔ 38 38↔ 27 39↔ 16
40↔ 30 41↔ 41 42↔ 31 43↔ 17 44↔ 32 45↔ 11 46↔ 33 47↔ 22

17

The graphs G0 and G1 have disjoint Cayley colors, namelyw(G0) = ±{1, 5, 8, 13, 16, 24} andw(G1) = Z48− (w(G0)∪{0}).18

Hence, G0 and G1 is a suitable pair of graphs to be amalgamated into L49. Using these graphs and also the fact that we can19

delete blocks of points and lines we prove the theorem for 53 ≤ k ≤ 55.20

When q ∈ {53, 67, 71, 79, . . .} is an odd prime power, we consider the 6-regular graphs G0 = Sq−1(8, 16; 1,−1, 5,−13)21

and G1 = Sq−1(2, 4; 3,−7, 15,−21). Direct checking shows their suitability over Lq for q = 53, 67, 71. When q ≥22

79, the suitability of G0 and G1 is a consequence of Lemma 4.3, because the infinite graphs S∞(8, 16; 1,−1, 5,−13)23

and S∞(2, 4; 3,−7, 15,−21) have girth 5 and spans 32 and 37, respectively. When q ∈ {59, 61, 73}, the graph G0 =24

Sq−1(8, 16; 1,−1, 5,−13) and G1 = Sq−1(2, 4; 3,−7, 15, α), where α = −23 for q = 59, 73 and α = −25 for q = 61,25

is a suitable pair of graphs over Lq. Therefore, for q ≥ 49, the (q+ 6)-regular graph Lq(G0,G1) has girth at least 5 and order26

2(q2 − 1). Also, according to inequality (2), n(k, 5) ≤ 2(q− 1)(k− 5), for regularities 56 ≤ k ≤ q+ 6. ■27

Remark 4.1. Notice that Theorem 1.1 improves Jørgensen’s result n(q+ ⌊
√
q−1
4 ⌋, 5) ≤ 2(q2 − 1) (see [20]) for q ≤ 571 and28

ties with it for 578 ≤ k ≤ 779.29

5. General constructions for q = 2m
30

In this last section we amalgamate into Cq for q = 2m when m ≥ 5 applying Theorem 3.1 on regular graphs. The case31

m = 4 was considered in Section 3, where we amalgamated bi-regular graphs. First, we deal with m = 5 or q = 32. Since32

an r-regular graph with 32 vertices and girth 5 can reach at most 5-regularity, we have the following sharp result.33

Theorem 5.1. There exists a 37-regular graph with girth 5 and order 2048.34

Proof. As in the case q = 16, denote the elements of (F32,+) ∼= ((Z2)5,+) by defgh instead of {d, e, f , g, h}. Let G0 be the35

(5, 5)-graph with order 32 and with the following adjacency list:36
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Vertex Adjacent vertices Vertex Adjacent vertices

00000 10000, 11010, 11100, 00001, 11111 00001 00000, 10001, 11011, 11101, 11110
10000 00000, 01011, 01101, 01110, 11001 10001 00001, 01010, 01100, 01111, 11000
01000 01001, 10010, 10101, 10110, 11000 01001 01000, 10011, 10100, 10111, 11001
11000 00011, 00100, 00111, 01000, 10001 11001 00010, 00101, 00110, 01001, 10000
00100 00101, 10100, 11000, 11010, 11110 00101 00100, 10101, 11001, 11011, 11111
10100 00100, 01001, 01011, 01111, 11101 10101 00101, 01000, 01010, 01110, 11100
01100 01101, 10001, 10011, 10110, 11100 01101 01100, 10000, 10010, 10111, 11101
11100 00000, 00010, 00111, 01100, 10101 11101 00001, 00011, 00110, 01101, 10100
00010 00011, 10010, 11001, 11100, 11110 00011 00010, 10011, 11000, 11101, 11111
10010 00010, 01000, 01101, 01111, 11011 10011 00011, 01001, 01100, 01110, 11010
01010 01011, 10001, 10101, 10111, 11010 01011 01010, 10000, 10100, 10110, 11011
11010 00000, 00100, 00110, 01010, 10011 11011 00001, 00101, 00111, 01011, 10010
00110 00111, 10110, 11001, 11010, 11101 00111 00110, 10111, 11000, 11011, 11100
10110 00110, 01000, 01011, 01100, 11111 10111 00111, 01001, 01010, 01101, 11110
01110 01111, 10000, 10011, 10101, 11110 01111 01110, 10001, 10010, 10100, 11111
11110 00001, 00010, 00100, 01110, 10111 11111 00000, 00011, 00101, 01111, 10110

1

The set w(G0) = {00001, 01001, 10000, 11010, 11011, 11100, 11101, 11110, 11111} contains the Cayley colors of G0. 2

As graph G1, consider the isomorphic graph of G0 with the following relabeling of the vertices: 3

G0 ↔ G1 G0 ↔ G1 G0 ↔ G1 G0 ↔ G1 G0 ↔ G1 G0 ↔ G1

00000↔ 00000 00001↔ 00011 00010↔ 00010 00011↔ 00001 00100↔ 00100 00101↔ 00111
00110↔ 00110 00111↔ 01110 01000↔ 11001 01001↔ 11100 01010↔ 11111 01011↔ 11011
01100↔ 10011 01101↔ 11101 01110↔ 11010 01111↔ 11110 10000↔ 01111 10001↔ 10100
10010↔ 01100 10011↔ 10000 10100↔ 01000 10101↔ 10001 10110↔ 01010 10111↔ 11000
11000↔ 10110 11001↔ 01101 11010↔ 10101 11011↔ 01001 11100↔ 00101 11101↔ 01011
11110↔ 10111 11111↔ 10010

4

Since the set of Cayley colors of G1 is w(G1) = F32 − (w(G0) ∪ {0000, 00110}), the graphs G0 and G1 have disjoint Cayley 5

colors, and therefore, the amalgam graph C32(G0,G1) has girth 5, regularity 37 and order 2 · 322
= 2048. ■ 6

To give a general result for m ≥ 6 we need some equivalences and definitions. As usual we identify the elements of 7

F2m ∼= (Z2)m with a number of Z2m in the following way: 8

(vm−1, . . . , v0) ←→
m−1∑
i=0

2ivi 9

for every i = 0, . . . ,m − 1 and vi ∈ Z2. This induces a bijection φ : Z2m → (Z2)m such that the elements of 10

(Z2)m can be represented either by a vector or by a number. This bijective relationship allows us to translate the graph 11

S2m (P,Q ; k1, . . . , kw) with vertex set Z2m into a new graph with vertex set (Z2)m defined as follows: 12

Definition 5.1. Given an integer m ≥ 4, a sequence k1, . . . , kw of different odd elements from Z2m and two even elements 13

0 < P,Q < 2m−1, we denote by S̄2m (P,Q ; k1, . . . , kw) the graph with vertex set (Z2)m obtained by translating the vertices 14

and edges of S2m (P,Q ; k1, . . . , kw) by means of the bijection φ : Z2m → (Z2)m. 15

Clearly, graphs S2m (P,Q ; k1, . . . , kw) and S̄2m (P,Q ; k1, . . . , kw) are isomorphic. Notice that the Cayley colors of the graph 16

S̄2m (P,Q ; k1, . . . , kw) are computed in the additive group (Z2)m, which implies that edges of S̄2m (P,Q ; k1, . . . , kw) associated 17

to an element of {P,Q ; k1, . . . , kw}might have different Cayley colors in (Z2)m. 18

At this point we are able to prove Theorem 1.2, mentioned in the Introduction. 19

Theorem 1.2. Given an integer k ≥ 68, let q = 2m be the lowest even prime power such that k ≤ q+6. Then n(k, 5) ≤ 2q(k−6). 20

Proof. Consider q = 2m for an integer m ≥ 6. Due to the bijection φ described above, we represent the elements of (Z2)m 21

by the numbers of Z2m and vice versa. 22

For q = 64 we consider the 6-regular graph G0 = S̄64(4, 8; 1, 3, 41, 47) of girth five and set of Cayley colors w(G0) = 23

{1, 3, 4, 7, 8, 12, 15, 19, 23, 24, 25, 28, 31, 41, 47, 51, 55, 56, 57, 60, 63}. To obtain the graph G1 we consider the following 24

relabeling of the vertices: 25

G0 ↔ G1 G0 ↔ G1 G0 ↔ G1 G0 ↔ G1 G0 ↔ G1 G0 ↔ G1 G0 ↔ G1 G0 ↔ G1

0↔ 0 1↔ 44 2↔ 2 3↔ 39 4↔ 5 5 ↔ 41 6↔ 7 7↔ 19
8↔ 12 9↔ 50 10↔ 14 11↔ 28 12↔ 1 13↔ 52 14↔ 3 15↔ 21
16↔ 4 17↔ 25 18↔ 6 19↔ 22 20↔ 57 21↔ 20 22↔ 59 23↔ 31
24↔ 24 25↔ 45 26↔ 26 27↔ 56 28↔ 61 29↔ 48 30↔ 63 31↔ 29
32↔ 32 33↔ 10 34↔ 34 35↔ 8 36↔ 49 37↔ 23 38↔ 51 39↔ 27
40↔ 36 41↔ 62 42↔ 38 43↔ 54 44↔ 9 45↔ 35 46↔ 11 47↔ 43
48↔ 40 49↔ 46 50↔ 42 51↔ 30 52↔ 53 53↔ 33 54↔ 55 55↔ 17
56↔ 16 57↔ 58 58↔ 18 59↔ 60 60↔ 13 61↔ 47 62↔ 15 63↔ 37

26
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The Cayley colors of G1 are w(G1) = {1, . . . , 63}−w(G0)−{50} and hence the (70, 5)-graph C64(G0,G1) has order 2 · 642.1

In general for q = 2m andm ≥ 7we use the previous graphs G0 and G1 defined over (Z2)6 to construct new graphs Gm
0 and2

Gm
1 with vertex set (Z2)m in the following way: The neighbors of a vertex (um−1, . . . , u0) in Gm

0 are the six vertices of the set3

{(um−1, . . . , u6, v5, . . . , v0) : (u5, . . . , u0)(v5, . . . , v0) ∈ E(G0)}. Similar definition holds for Gm
1 . Graphs G

m
0 and Gm

1 are formed4

by 2m−6 disconnected copies of G0 and G1, respectively, and therefore, both graphs are 6-regular with girth 5. Also, the sets5

of Cayley colors w(Gm
0 ) = {(0, . . . , 0, α5, . . . , α0) ∈ (Z2)m : (α5, . . . , α0) ∈ w(G0)} and w(Gm

1 ) = {(0, . . . , 0, β5, . . . , β0) ∈6

(Z2)m : (β5, . . . , β0) ∈ w(G1)} are disjoint because w(G0) ∩ w(G1) = ∅. Clearly, the graphs Gm
0 and Gm

1 are suitable for7

amalgamation into Cq and the graph Cq(Gm
0 ,Gm

1 ) has regularity q+6, order 2q2 and girth at least five. For k ≤ q+6 removing8

q + 6 − k blocks of points and q + 6 − k blocks of lines we obtain a graph of order 2q2 − 2q(q + 6 − k) and consequently9

n(k, 5) ≤ 2q(k− 6). ■10
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