Dear Author,

Please check your proof carefully and mark all corrections at the appropriate place in the proof (e.g., by using on-screen annotation in the PDF file) or compile them in a separate list. Note: if you opt to annotate the file with software other than Adobe Reader then please also highlight the appropriate place in the PDF file. To ensure fast publication of your paper please return your corrections within 48 hours.

Your article is registered as a regular item and is being processed for inclusion in a regular issue of the journal. If this is NOT correct and your article belongs to a Special Issue/Collection please contact p.kumar.7@elsevier.com immediately prior to returning your corrections.

For correction or revision of any artwork, please consult http://www.elsevier.com/artworkinstructions

Any queries or remarks that have arisen during the processing of your manuscript are listed below and highlighted by flags in the proof. Click on the ‘Q’ link to go to the location in the proof.

<table>
<thead>
<tr>
<th>Location in article</th>
<th>Query / Remark: click on the Q link to go Please insert your reply or correction at the corresponding line in the proof</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q1</td>
<td>AU: The author names have been tagged as given names and surnames (surnames are highlighted in teal color). Please confirm if they have been identified correctly.</td>
</tr>
<tr>
<td>Q2</td>
<td>AU: Please validate the authors affiliation for correctness.</td>
</tr>
</tbody>
</table>

Thank you for your assistance.
The p-restricted edge-connectivity of Kneser graphs

C. Balbuena, X. Marcote

Abstract

Given a connected graph G and an integer $1 \leq p \leq \lfloor |V(G)|/2 \rfloor$, a p-restricted edge-cut of G is any set of edges $S \subseteq E(G)$, if any, such that $G - S$ is not connected and each component of $G - S$ has at least p vertices; and the p-restricted edge-connectivity of G, denoted $\lambda_p(G)$, is the minimum cardinality of such a p-restricted edge-cut. When p-restricted edge-cuts exist, G is said to be super-λ_p. If the deletion from G of any p-restricted edge-cut S of cardinality $\lambda_p(G)$ yields a graph $G - S$ that has at least one component with exactly p vertices. In this work, we prove that Kneser graphs $K(n,k)$ are super-λ_p-connected for a wide range of values of p. Moreover, we obtain the values of $\lambda_p(G)$ for all possible p and all $n \geq 5$ when $G = K(n,2)$. Also, we discuss in which cases $\lambda_p(G)$ attains its maximum possible value, and determine for which values of p graph $G = K(n,2)$ is super-λ_p.

© 2018 Published by Elsevier Inc.

1. Introduction

For other terminology and notation not defined here, we refer the reader to the book by Chartrand and Lesniak [9].

All graphs are considered hereafter as finite and simple, that is, with a finite number of vertices and without loops or multiple edges. If G is such a graph, its sets of vertices and edges are denoted as $V(G), E(G)$, respectively. For a nonempty subset of vertices $X \subseteq V(G)$, $G[X]$ stands for the subgraph of G induced by X. The clique number of G is the maximum cardinality of $X \subseteq V(G)$ such that $G[X]$ is a complete graph. The connectivity (or vertex-connectivity) of G is written $\kappa(G)$, and the edge-connectivity of G is denoted as $\lambda(G)$. For nonempty disjoint sets $X, Y \subseteq V(G)$ let $X \cup Y$ be the set of edges with one end in X and the other end in Y. Clearly, $[X \setminus V(G)]X$ is an edge-cut of G. Denote $\omega_{\Delta}(X) = |X \setminus V(G) \setminus X|$. The degree of a vertex $x \in V(G)$ is $\deg_G(x) = |\omega_{\Delta}(x)|$, and $\delta(G)$ stands for the minimum degree of G.

In [12,13] Fàbrega and Fiol proposed the concept of p-restricted edge-connectivity. Given a connected graph G and an integer $1 \leq p \leq \lfloor |V(G)|/2 \rfloor$, a p-restricted edge-cut of G is any set of edges $S \subseteq E(G)$, if any, such that $G - S$ is not connected and all components of $G - S$ have at least p vertices. If p-restricted edge-cuts of G exist, then G is said to be super-λ_p-connected. When G is λ_p-connected, the p-restricted edge-connectivity of G, $\lambda_p(G)$, is defined as follows:

$$\lambda_p(G) = \min_{S \subseteq E(G)} \{ |S| \mid S \text{ is a } p\text{-restricted edge-cut of } G \}.$$

If G is λ_q-connected for some $q > p$, note that G is λ_p-connected and $\lambda_p(G) \leq \lambda_q(G)$ holds. When $p = 1$, $\lambda_p(G) = \lambda_1(G)$ is the standard edge-connectivity $\lambda(G)$; and for the case $p = 2$, $\lambda_2(G)$ is usually known as the edge-superconnectivity of G (also denoted $\lambda^*(G)$). A p-restricted edge-cut of cardinality $\lambda_p(G)$ is called a λ_p-cut. When p-restricted edge-cuts of G exist, G is

Corresponding author.
E-mail addresses: m.camino.balbuena@upc.edu (C. Balbuena), francisco.javier.marcote@upc.edu (X. Marcote).

https://doi.org/10.1016/j.amc.2018.09.072
0096-3003/© 2018 Published by Elsevier Inc.

said to be super-λ_p if the deletion from G of any λ_q-cut S yields a graph $G - S$ that has at least one component with exactly p vertices. If G is super-λ_p and also λ_q-connected for some $q > p$, observe that $\lambda_p(G) < \lambda_q(G)$ necessarily. For the case $p = 1$, saying that G is super-λ_1 and that G is edge-supercritical are synonyms.

The optimization of $\lambda_p(G)$ requires an upper bound. Let

$$\xi_p(G) = \min_{X \subseteq V(G)} \left| \{V(G) \setminus X \} : |X| = p, \, G[X] \text{ is connected} \right|.$$

It has been shown that $\lambda_p(G) \leq \xi_p(G)$ for many graphs \cite{4,6,16,21,28,30} and sufficient conditions to establish that $\lambda_p(G) = \xi_p(G)$ have been given in \cite{4,18,26} among others.

It is worth noting that attaining super-λ_p property implies minimizing the number of minimum p-restricted edge-cuts (see \cite{23} for the case $p = 1$). In general, to determine whether a graph is super-λ_p is a hard problem, and only some special graphs have been shown to possess the super-λ_p property.

Fábrega and Fiol also proposed the concept of p-restricted (vertex-)connectivity κ_p and some results for this kind of connectivity have been obtained in \cite{2,3,27,29}. Other kind of connectivity measures involving both vertices and edges are studied in \cite{11,19}, for instance. Hellwig and Volkmann \cite{17} provide a comprehensive survey of sufficient conditions for a graph to achieve lower bounds on other index of connectivities.

In this paper, we are interested in studying the p-restricted edge-connectivity of Kneser graphs, which are a class of graphs introduced by Lovász \cite{20} to prove Kneser’s conjecture. Given integers $n \geq k \geq 1$, the Kneser graph $K(n,k)$ is the graph whose vertices are the k-subsets of the set $\{1, \ldots, n\}$, two vertices being adjacent if and only if they correspond to disjoint subsets. Therefore, $K(n,k)$ has $\binom{n}{k}$ vertices, and has no edges in case that $n < 2k$. When $n \geq 2k$, $K(n,k)$ is $\left(\binom{n}{k}\right)$-regular, then it has $\left(\binom{n}{k}\right)/2$ edges; hence for the case $n = 2k$, $K(n,k)$ consists of a set of $\left(\binom{n}{k}\right)/2$ independent edges. Note that $K(n,1)$ is the complete graph on n vertices and also that $K(5,2)$ is the Petersen graph.

A number of structural properties are known for $K(n,k)$. Chen and Li [10] showed that Kneser graphs are vertex- and edge-transitive. Valencia-Pavon and Vera \cite{25} showed that the diameter of $K(n,k)$ is equal to $\left\lceil \left(\binom{n-1}{k-1}\right)/(n-k+1) \right\rceil$. When $n > 2k$, Lovász \cite{20} proved that the chromatic number of $K(n,k)$ is $n - 2k + 2$. Many of these results can be checked in the book by Aigner and Ziegler \cite{1}; for instance, the clique number of $K(n,k)$ is $\lceil n/k \rceil$, and its independence number is $\lceil (n-k)/2 \rceil$. It has long been conjectured that $K(n,k)$ is Hamiltonian (with the exception of $K(5,2)$), and this was verified by Shields and Savage \cite{22} for $n \leq 27$. It is also worth noting that the Kneser graph $K(n,2)$ is distance-regular with intersection array $(n-2(n-2))/2, 2(n-8), 1, (n-3)(n-4)/2$ (see \cite{24}, p. 86). Brouwer and Haemers proved in \cite{8} that distance-regular graphs are edge-supercritical, then $K(5,2)$ is edge-supercritical.

Concerning the connectedness of Kneser graphs the following results were obtained in \cite{7}. Note that $K(n,k)$ is connected whenever $n > 2k+1$, since it has a finite diameter (see again \cite{25}).

Theorem 1.1 \cite{7} Let n, k be two integers, $n \geq 2k+1 \geq 5$. The following statements hold:

(i) the graph $K(n,k)$ is maximally connected; that is, its (vertex-)connectivity is equal to $\binom{n}{k}$;

(ii) the graph $K(n,2)$ is (vertex-)superconnected;

(iii) the (vertex-superconnectivity of $K(n,2)$ is equal to $\binom{n}{2} - 6$.

The paper (Section 2) is organized into two subsections as follows. Section 2.1 is devoted to prove $G = K(n,k)$ that there exists some $n_0 \geq 2k+1$ such that G is λ_p-connected and satisfies $\lambda_p \leq \xi_p$ for all $n \geq n_0$ and all $1 \leq p \leq |V(G)|/2$; moreover, we prove that $n_0 = 5$ when $k = 2$. In Section 2.2 we focus on $G = K(n,2)$, approaching the problem of finding for which values of $1 \leq p \leq |V(G)|/2$ the optimal result $\lambda_p = \xi_p$ holds, and we study if G is super-λ_p in the affirmative case. This is done by computing the exact values of ξ_p for all $1 \leq p \leq |V(G)|/2$, from where all the values of λ_p will follow.

For the sake of simplicity, most of quantities defined for a graph G will be written from now on without any explicit reference to G, unless it is necessary; for instance, κ, λ, $\omega(X)$ will be written instead of $\kappa(G)$, $\lambda(G)$, $\omega_G(X)$, respectively.

2. Results

2.1. $\lambda_p \leq \xi_p$ for $K(n,k)$

Let G_1, \ldots, G_s be s copies of a complete graph K_t. The graph denoted as G^t_s is obtained by adding a new vertex u and joining u to every vertex in $V(G_i)$, $i = 1,\ldots, s$. In \cite{30} it is proved the following result.

Theorem 2.1 \cite{30}. Let G be a connected graph with order at least $2(\delta(G) + 1)$ which is not isomorphic to any G^t_s with $t = \delta(G)$. Then for any $p \leq \delta(G) + 1$, G has p-restricted edge-cuts and $\lambda_p \leq \xi_p$.

In the following statement we prove a similar result for graphs of order less than $2(\delta(G) + 1)$.

Lemma 2.1. Let G be a connected graph with vertex connectivity κ and order $\nu \leq 2\kappa - 1$. Then G is λ_p-connected and $\lambda_p \leq \xi_p$ for all integer p such that $1 \leq p \leq |V(G)|/2$.

Proof. Let $X \subseteq V(G)$ satisfying $|X| = p \leq |V(G)|/2$. Then $G - X$ is connected because $|X| = p \leq |V(G)|/2 \leq (\nu - 1)/2 = \kappa - 1$. Moreover, $|V(G) \setminus X| = \nu - p \geq \nu - |V(G)|/2 \geq |V(G)|/2$ holds. Hence, $\omega(X) = |V(G) \setminus X|$ is a p-restricted edge-cut yielding that G is λ_p-connected and $\lambda_p \leq \xi_p$. \square

We now apply the above results to Kneser graphs $K(n, k)$.

Theorem 2.2. Let n, k be two integers, $n \geq 2k + 1 \geq 5$, $G = K(n, k)$, and p be an integer. Then G is λ_p-connected and $\lambda_p \leq \xi_p$ if

(i) $\binom{n-k}{k} \geq 2\left(\frac{n-k}{k}\right) + 2$ for $1 \leq p \leq \left(\frac{n-k}{k}\right) + 1$.

(ii) $\binom{n-k}{k} \leq 2\left(\frac{n-k}{k}\right) + 1$ for $1 \leq p \leq \lfloor |V(G)|/2 \rfloor$.

Proof. Since $n \geq 2k + 1$, $G = K(n, k)$ is connected. Let $\nu = \binom{n-k}{k}$ and $\delta = \binom{n-k}{k}$ be the order and degree of G, respectively. If $\nu \geq 2d + 2$, then G is λ_p-connected and $\lambda_p \leq \xi_p$ for $p \leq d + 1$ by Theorem 2.1 because clearly G is not isomorphic to G_3^*.

Hence item (i) holds. If $\nu \leq 2d - 1$, then G is λ_p-connected and $\lambda_p \leq \xi_p$ by Lemma 2.1, as $k = d$ by Theorem 1.1. Therefore it remains to study for item (ii) the case when either $\nu = 2d$ or $\nu = 2d + 1$. The former case (ii) is not possible because $\binom{n-k}{k} = \sum_{i=1}^{n-k} \binom{k}{i-1} + \binom{n-k}{k}$ and $\sum_{i=1}^{n-k} \binom{k}{i-1} \neq \binom{n-k}{k}$. The latter case (ii) is $\binom{n-k}{k} + 1$ only holds when $n = 7$ and $k = 2$.

For the rest of values of n, k we also have $\sum_{i=1}^{n-k} \binom{k}{i-1} \neq \binom{n-k}{k} + 1$. When $n = 7$ and $k = 2$ let us take the following set of vertices:

$$X = \{x_1 = \{1, 2\}, x_2 = \{3, 4\}, x_3 = \{5, 6\}, x_4 = \{1, 7\}, x_5 = \{2, 4\}, x_6 = \{3, 5\}, x_7 = \{6, 7\}, x_8 = \{2, 7\}, x_9 = \{1, 6\}, x_{10} = \{4, 5\}\}.$$

It is not difficult to check that for all $p = 1, \ldots, \lfloor |V(G)|/2 \rfloor = 10$, both $X_p = \{x_1, \ldots, x_p\} \subseteq X$ and $G - X_p$ induce connected subgraphs of G, with $\omega(X_p) = \xi_p$. Hence, item(ii) holds, and the proof is complete. □

Observe from the above theorem that for all $k \geq 2$ there exists an integer $n_0 \geq 2k + 1$ such that for all $n \geq n_0$, $G = K(n, k)$ is λ_p-connected and $\lambda_p \leq \xi_p$ for all p with $1 \leq p \leq |V(G)|/2$. In the following corollary we prove that $n_0 = 5$ when $k = 2$.

Corollary 2.1. Let $n \geq 5$ be an integer, $G = K(n, 2)$, and p be an integer such that $1 \leq p \leq |V(G)|/2$. Then G is λ_p-connected and $\lambda_p \leq \xi_p$.

Proof. The result follows from Theorem 2.2 (ii) when $n \geq 7$. When $n = 5, 6$, from Theorem 2.2 (i) we have that G is λ_p-connected and $\lambda_p \leq \xi_p$ for $p \leq \binom{n-k}{k} + 1$. This implies that the result is valid for $1 \leq p \leq |V(G)|/2$ when $n = 6$; and when $n = 5$ the result holds for $1 \leq p \leq 4$. Thus, the only remaining case is $n = p = 5 = |V(G)|/2$. The graph $G = K(5, 2)$ is isomorphic to Petersen graph and it can be described as two disjoint cycles of length 5 joined by a matching. Hence G is λ_5-connected and $\lambda_5 \leq \xi_5 = 5$, ending the proof. □

2.2. λ_p-optimality and super-λ_p in $K(n, 2)$

Let G be a λ_p-connected graph and let $X \subseteq V(G)$ with $|X| \geq p$ such that $\omega_G(X)$ is a λ_p-cut. Then, X is called a λ_p-fragment of G. Define

$$r_p(G) = \min \{|X| : X \text{ is a } \lambda_p\text{-fragment of } G\}.$$

Clearly, $p \leq r_p(G) \leq |V(G)|/2$. A λ_p-fragment X is called a λ_p-atom of G when $|X| = r_p(G)$. Next, we recall a result obtained by Wang et al. [28], where λ_p-connected $(q + 1)$-clique-free graphs were nicely addressed. Then a first result for the equality of $\lambda_p(K(n, 2))$ and $\xi_p(K(n, 2))$ will follow quite straightforwardly for some values of p.

Theorem 2.3. ([28]) Let G be a λ_p-connected and $(q + 1)$-clique-free graph. If $\lambda_p(G) < \xi_p(G)$, then $r_p(G) \geq \max\{p + 1, \frac{q}{q-1}\delta(G) - p - 1\}$.

Proposition 2.1. Let $n \geq 7$ be an integer and $G = K(n, 2)$. Then $\lambda_p = \xi_p$ if

$$ p \leq \begin{cases} \frac{n(n-5)}{4} - 2, & \text{if } n \text{ is even} \\ \left\lfloor \frac{(n-1)(n-4)}{4} \right\rfloor - 2, & \text{if } n \text{ is odd} \end{cases} $$

Proof. We know that G is a $(q + 1)$-clique-free graph, where $q = \lfloor n/2 \rfloor$. First, suppose that n is even. Suppose $p \leq \frac{n(n-5)}{4} - 2$ and $\lambda_p < \xi_p$. From Theorem 2.3 it follows that $r_p(G) \geq \max\{p + 1, \frac{q}{q-1}\frac{n(n-2)}{2} - p - 1\}$, yielding that $r_p(G) \geq \frac{q}{q-1}\frac{n(n-2)}{2} - p - 1 \geq \sum_{\frac{n}{2}}^{\frac{n}{2}+1} \binom{n}{k} - p - 1 \geq 1 + \sum_{\frac{n}{2}}^{\frac{n}{2}+1} \binom{n}{k} + 1$, a absurdity. Similarly, when n is odd and $p \leq \frac{(n-1)(n-4)}{4} - 2$ we have $r_p(G) \geq \frac{q}{q-1}\frac{(n-2)}{2} - p - 1 \geq \frac{n}{2} - \frac{(n-2)}{2} - p - 1 \geq \sum_{\frac{n}{2}-1}^{\frac{n}{2}+1} \binom{n}{k} + 1$ which is again a contradiction. Hence, $\lambda_p \geq \xi_p$, and by Corollary 2.1 we can conclude that $\lambda_p = \xi_p$. □

For $K(n, 2)$, our objectives now are to compute λ_p for all $1 \leq p \leq \lfloor |V(K(n, 2))/2 \rfloor$ (extending the result in Proposition 2.1), and to study when $K(n, 2)$ is super-λ_p. As we show in the following lemma for a general graph G, these objectives can be reached provided that the values of $\xi_p(G)$ are known for all $1 \leq p \leq |V(G)|/2$. In the rest of the paper, by $\binom{V(G)}{p}$ we denote the set of those subsets of $V(G)$ having cardinality p.

Lemma 2.2. Let G be a λ_p-connected graph with $\lambda_p \leq \xi_p$ for all $1 \leq p \leq |V(G)|/2$. The following statements hold:

(i) $\lambda_p = \min\{\xi_q : p \leq q \leq |V(G)|/2\}$.

(ii) For $p = |V(G)|/2$ it follows that $\lambda_p = \xi_p$ and G is super-λ_p.

(iii) For $p \leq |V(G)|/2 - 1$ it follows that:

1) $\lambda_p = \xi_p$ if and only if $\xi_p \leq \xi_q$ for all q such that $p < q \leq |V(G)|/2$.

2) $\lambda_p = \xi_p$ and G is super-λ_p if and only if $\xi_p < \xi_q$ for all q such that $p < q \leq |V(G)|/2$.

Proof. (i) Let $t = t_p(G)$ be the cardinality of a λ_p-atom of G. Clearly $p \leq t \leq |V(G)|/2$. Let $X \in \binom{V(G)}{p}$ be such that $\omega(X)$ is a λ_p-cut (note that $|V(G) \setminus X| = |V(G)| - t \geq |V(G)| - |V(G)|/2 \geq |V(G)|/2 \geq p$), then $\lambda_p = |\omega(X)| = \xi_t$. But $\lambda_p \leq \lambda_t \leq \xi_t$, hence $\xi_t = \xi_p$. Suppose next that there exists some integer q such that $p \leq q \leq |V(G)|/2$ and $\xi_q < \xi_t$. Then $\xi_q < \xi_t = \xi_p \leq \xi_q$, that is, $\xi_q < \xi_q$, an absurdity. As a consequence, $\xi_t \leq \xi_q$ for all $p \leq q \leq |V(G)|/2$ and therefore $\lambda_p = \xi_t = \min\{\xi_q(G) : p \leq q \leq |V(G)|/2\}$.

as claimed in (i).

When $p = |V(G)|/2$ we have $\lambda_p = \xi_p$ by (i), and note that every p-restricted edge-cut $\omega(Y)$ is such that $|Y| = p$ or $|V(G) \setminus Y| = p$. As a consequence, G is super-λ_p. This proves item (ii).

Item (iii.1) follows directly from (i). For (iii.2), if $\lambda_p = \xi_p$ and G is super-λ_p then $\xi_p = \lambda_p < \lambda_q \leq \xi_q$ for all $q > p$, hence $\xi_p < \xi_q$. Conversely, suppose that $\xi_p < \xi_q$ for all $q > p$. Then $\lambda_p = \xi_p$ follows from (i). Moreover, if G is not super-λ_p, we can consider some $Y \subseteq V(G)$ such that $|Y| \geq p + 1$. $|V(G) \setminus Y| \geq p + 1$. $G|Y$ and $G - Y$ are both connected and $|\omega(Y)| = \lambda_p$. Setting $m = \min\{|Y|, |V(G) \setminus Y|\}$ it follows that $\xi_p = \lambda_p \geq \xi_m > \xi_p$.

again an absurdity. Then G must be super-λ_p, ending the proof of (iii.2). \square

As $G = K(n, 2)$ is a regular graph, minimizing the cardinality of $\omega(X)$ among all sets $X \subseteq V(G)$ on p vertices that induce a connected subgraph is equivalent to finding such a set X which maximizes $|E(G[X])|$. In the following result we present a set X_p^* of p vertices (for each $1 \leq p \leq |V(G)|/2$) with large $|E(G[X_p^*])|$, for which we will finally prove that $\xi_p(G) = |\omega(X_p^*)|$.

Proposition 2.2. Let $n \geq 5$ be an integer, and let $G = K(n, 2)$. For all integers $1 \leq p \leq |V(G)|/2$ there exists a set $X_p^* \in \binom{V(G)}{p}$ such that $G[X_p^*]$ is connected and

$$|E(G[X_p^*])| = \frac{1}{2} \left(p^2 + \left(2p/|n| \right) \left(1 + \left(2p/|n| \right) \right) - n - \left(1 + \left(2p/|n| \right) \right) \right).$$

Proof. Suppose first that $n \geq 6$ is even. The following partition of $V(K(n, 2))$ is direct from some related known results, see for instance Baranyai’s Theorem ([5]):

$$V(K(n, 2)) = E_1 \cup \cdots \cup E_{n-1},$$

where the following statements hold for all $i = 1, \ldots, n - 1$:

- $E_i \cap E_j = \emptyset$, for all $j \neq i$;
- $|E_i| = n/2$;
- $e_k \in E_i$, $e_k \in E_j$, for all distinct $e_k, e_j \in E_i$;
- the union of all elements of E_i is equal to $\{1, \ldots, n\}$.

Let p be an integer, $1 \leq p \leq |V(G)|/2$, and set $c = [p/(n/2)] = [2p/n]$, for which $0 \leq c \leq n/2 - 1 < n - 1$. Hence we write $p = c + r$, where $0 \leq r < n/2 - 1$. Suppose $c \geq 1$ and consider the set X_p^* of p vertices defined as

$$X_p^* = E_1 \cup \cdots \cup E_c \cup R,$$

where $R \subseteq E_{n-1}$ is any subset of cardinality r. Observe that each E_i induces a clique in G of cardinality $\frac{n}{2}$, and R (if nonempty) induces a complete graph on r vertices. Hence

$$|E(G[E_i])| = \frac{1}{2} \left(\frac{n}{2} \right) \left(\frac{n}{2} - 1 \right), |E(G[R])| = \frac{1}{2} r(r - 1).$$

As the union of all elements of E_i is equal to $\{1, \ldots, n\}$, note that each vertex in E_i is adjacent to exactly $\frac{n}{2} - 2$ vertices in E_i, for $i \neq j$, and analogously, each vertex in R is adjacent to exactly $\frac{n}{2} - 2$ vertices in E_i. As a consequence we have:

$$|E(G[X_p^*])| = \sum_{i=1}^{c} |E(G[E_i])| + |E(G[R])| + \sum_{i=1}^{c} |E_i|$$

$$+ \sum_{1 \leq i < j \leq c} |E_i \cap E_j|.$$
last expression obtained after replacing c by $[2p/n]$ and r by $p - [2p/n]$. Note that this expression for $|E(G[X_p^n])|$ still holds when $c = 0$, where $X_p^n = R$. Observe that $G[X_p^n]$ is connected by construction. Hence the proof is complete when n is even.

Next we consider the case when $n \geq 5$ is odd. Note that (1) can be applied to $V(K(n,1,2))$ yielding $V(K(n,1,2)) = \mathcal{E}_1 \cup \cdots \cup \mathcal{E}_n$. Observe that after a suitable relabeling of the elements of $\{1, \ldots, n+1\}$ and, if necessary, a reordering of sets $\mathcal{E}_1, \ldots, \mathcal{E}_n$, we can assume that

$$\{i, n+1\} \in \mathcal{E}_i \text{ for all } i = 1, \ldots, n; \text{ and } \mathcal{E}_n = \{t_j = \{2j-1, 2j\} : j = 1, \ldots, (n+1)/2\}.$$

By defining $\mathcal{O}_i = \mathcal{E}_i \setminus \{i, n+1\}$ for all $i = 1, \ldots, n$, from (1) we can write

$$V(K(n,2)) = \mathcal{O}_1 \cup \cdots \cup \mathcal{O}_n,$$

where $\mathcal{O}_i = \{t_j = \{2j-1, 2j\} : j = 1, \ldots, (n-1)/2\}$ and where the following statements hold for all $i = 1, \ldots, n$:

- $\mathcal{O}_i \cap \mathcal{O}_j = \emptyset$, for all $j \neq i$;
- $|\mathcal{O}_i| = (n-1)/2$;
- $e_k \cap e_j = \emptyset$, for all distinct $e_k, e_j \in \mathcal{O}_i$;
- the union of all elements of \mathcal{O}_i is equal to $\{1, \ldots, n\} \setminus \{i\}$.

Let p be an integer, $1 \leq p \leq |V(G)|$, and $c = \lfloor p/(n-1) \rfloor$. Suppose $c \geq 1$ and consider the set of p vertices X_p^n defined as

$$X_p^n = \mathcal{O}_1 \cup \cdots \cup \mathcal{O}_c \cup R,$$

where $R = \{t_j = \{2j-1, 2j\} : j = 1, \ldots, r \} \subset \mathcal{O}_n$. Again

$$|E(G[\mathcal{O}_i])| = \frac{1}{2} \frac{n-1}{2} (n-1/2 - 1), \quad |E(G[R])| = \frac{1}{2} \frac{r(r-1)}{2},$$

because the respective induced subgraphs are complete. Furthermore, all but one vertices in \mathcal{O}_i are adjacent to exactly $
-1/2 - 1$ vertices in $\mathcal{O}_i = \mathcal{E}_i \setminus \{i, n+1\}$, for $i \neq j$, and one only vertex in \mathcal{O}_j is adjacent to $n-1/2 - 1$ vertices in \mathcal{O}_i, precisely a vertex of the kind (i, α), with $\alpha \in \{1, \ldots, n\} \setminus \{i\}$. Then, for all $1 \leq j < i \leq c$ we have

$$|\mathcal{O}_i, \mathcal{O}_j| = 1 + \frac{n-1}{2} (n-1/2 - 2).$$

Notice now that vertex $t_j = \{2j-1, 2j\} \in R$ is adjacent to exactly $n-1/2 - 1$ vertices in \mathcal{O}_i for all $i \in \{1, \ldots, c\} \setminus \{2j-1, 2j\}$ and $t_j = \{2j-1, 2j\} \in R$ is adjacent to $n-1/2 - 1$ vertices in \mathcal{O}_{2j-1} and to $n-1/2 - 1$ vertices in \mathcal{O}_{2j} whenever $2j-1 \leq c$ or $2j \leq c$ respectively. Therefore.

$$\sum_{i=1}^c |R, \mathcal{O}_i| = \begin{cases} \frac{r(c-2)}{2} - 2r & \text{if } c > 2r \\ \frac{r(c-2)}{2} + c & \text{if } c \leq 2r \end{cases} = \frac{r (n-1/2 - 2)}{2} + \min(2r, c).$$

Then we have:

$$|E(G[X_p^n])| = \sum_{i=1}^c |E(G[\mathcal{O}_i])| + |E(G[R])| + \sum_{i=1}^c |R, \mathcal{O}_i|$$

$$= c \frac{1}{2} \frac{n-1}{2} (n-1/2 - 1) + \frac{1}{2} \frac{r(r-1)}{2} + \frac{r(n-1/2 - 2)}{2} + \min(2r, c)$$

$$= c \frac{1}{2} (p^2 + [2p/(n-1)](1 + [2p/(n-1)])n - p(1 + 4[2p/(n-1)]))$$

$$- c + \min(2r, c).$$

Observe again that this expression for $|E(G[X_p^n])|$ still holds when $c = 0$, where $X_p^n = R$. Note that $G[X_p^n]$ is connected by construction.
We continue by discussing on the sign of $c - 2r$. When $c - 2r \leq 0$ we have $\left\lfloor \frac{2p}{n} \right\rfloor n - 2p \leq 0$, that is, $\left\lfloor \frac{2p}{n} \right\rfloor \leq \frac{2p}{n}$. As $\frac{2p}{n} < \frac{2p}{n+1}$ it follows that $\left\lfloor \frac{2p}{n+1} \right\rfloor = \frac{2p}{n+1}$. Since $\min(2r, c) = c$, by replacing $\left\lfloor \frac{2p}{n} \right\rfloor$ with $\left\lfloor \frac{2p}{n+1} \right\rfloor$ in (3) we get

$$|E(G[X_p])| = \frac{1}{2} \left(p^2 + 2p \left\lfloor \frac{2p}{n+1} \right\rfloor \right),$$

and the result follows in this case.

When $c - 2r > 0$ we have $\left\lfloor \frac{2p}{n} \right\rfloor n - 2p > 0$, hence $\left\lfloor \frac{2p}{n+1} \right\rfloor > \frac{2p}{n+1}$. Since we have $0 < \frac{2p}{n+1} < \frac{2p}{n} = \frac{2p}{n(n-1)/2} \leq 1$ it follows that $\left\lfloor \frac{2p}{n+1} \right\rfloor = 1 + \left\lfloor \frac{2p}{n+1} \right\rfloor$. As $-c + \min(2r, c) = 2r - c < 2p - \left\lfloor \frac{2p}{n+1} \right\rfloor n$, replacing $\left\lfloor \frac{2p}{n+1} \right\rfloor$ with $1 + \left\lfloor \frac{2p}{n+1} \right\rfloor$ in (3) we obtain

$$|E(G[X_p])| = \frac{1}{2} \left(p^2 + (1 + \left\lfloor \frac{2p}{n+1} \right\rfloor) (2 + \left\lfloor \frac{2p}{n+1} \right\rfloor) n - p(1 + 4(1 + \left\lfloor \frac{2p}{n+1} \right\rfloor)) + 2p - (1 + \left\lfloor \frac{2p}{n+1} \right\rfloor)n \right),$$

proving the result also in this case. The proof is so complete. □

The following theorem makes use of the adjacency matrix of $K(n, 2)$, and its proof follows similar lines of reasoning as those used for this topic in the literature (see, for instance, [14,15]). With this theorem we deduce the exact value of $\xi_p(K(n, 2))$ for all possible p.

Theorem 2.4. Let $n \geq 5$ be an integer, $G = K(n, 2)$, and let p be an integer such that $1 \leq p \leq \lfloor |V(G)|/2 \rfloor$. Then it follows that

$$\max \left\{ |E(G[X])| : X \in \binom{V(G)}{p} \right\} = |E(G[X_p])|,$$

where $X_p \in \binom{V(G)}{p}$ is the set of vertices given in Proposition 2.2. As a consequence,

$$\xi_p = p \left(\frac{n - 2}{2} \right) - p^2 - \left\lfloor \frac{2p}{n+1} \right\rfloor (1 + \left\lfloor \frac{2p}{n+1} \right\rfloor) n + p(1 + 4 \left\lfloor \frac{2p}{n+1} \right\rfloor) .$$

Proof. Note that G is connected because $n \geq 5$. Set $V(G) = \{v_1, \ldots, v_N\}$, with $N = |V(G)| = n(n - 1)/2$, and consider some $X \in \binom{V(G)}{p}$. Let us represent set X of cardinality p as $Z_X = [t_1, t_2, \ldots, t_N]^T$, with $t_j = 1$, if $v_j \in X$; 0, if $v_j \not\in X$ for all $j = 1, \ldots, N$.

If A is the adjacency matrix of G, it is known (see [15] for a proof) that its eigenvalues are

$$\lambda_1 = \left(n - 2 \right) > \lambda_2 = \cdots = \lambda_{m+1} = 1 > \lambda_{m+2} = \cdots = \lambda_N = -(n - 3),$$

where $m = \lfloor n(n - 3)/2 \rfloor$. Then, we can write

$$Z_X = Z_1 + Z_2 + Z_3, \quad \text{with} \quad \begin{cases} \ Z_1^T Z_j = 0, \quad \text{for all} \ i \neq j \\ \ Z_1 = \frac{p}{n} 1 \\ \ AZ_1 = (\binom{n-2}{2})Z_1, \quad AZ_2 = Z_2, \quad AZ_3 = -(n - 3)Z_3, \end{cases}$$

(4)

where 1 is a column matrix full of ones, with N rows. Notice that

$$p = Z_1^T Z_X = Z_1^T Z_1 + Z_1^T Z_2 + Z_1^T Z_3, \quad \text{hence} \quad Z_1^T Z_2 = p - Z_1^T Z_1 - Z_1^T Z_3.$$

Since $AZ_X = (\binom{n-3}{2} Z_1 + Z_2 - (n - 3)Z_3)$, it turns out that

$$2|E(G[X])| = Z_X^T AZ_X = \binom{n-3}{2} Z_1^T Z_1 + Z_1^T Z_2 - (n - 3)Z_1^T Z_3$$

$$= (\binom{n-3}{2} Z_1^T Z_1 + (p - Z_1^T Z_1 - Z_1^T Z_2) - (n - 3)Z_1^T Z_3$$

$$= p + (\binom{n-2}{2} - 1)Z_1^T Z_1 - (n - 2)Z_1^T Z_3,$$

once replaced $Z_1^T Z_2$ with $p - Z_1^T Z_1 - Z_1^T Z_3$. As $Z_1^T Z_1 = \frac{p}{n} 1^T \cdot \frac{p}{n} 1 = \frac{p^2}{n}$, we get

$$2|E(G[X])| = |p + (\binom{n-2}{2} - 1) \frac{p^2}{n} - (n - 2)Z_1^T Z_3$$

$$= |p + (1 - 4/n)p^2 - (n - 2)Z_1^T Z_3|,$$

(5)

Let us next compute $Z_1^T Z_3$ in a more useful manner. To this end, for all $j \in \{1, \ldots, n\}$, let Y_j be a column matrix on N rows, with i-row entry equal to one if $j \in v_i$ (that is, when $v_i = \{j, \ell\}$ for some $\ell \neq j$), and zero otherwise (note that Y_j has exactly $n - 1$ ones). Since for all $j \in \{2, \ldots, n\}$ we have

$$(Y_j - Y_1)^T \cdot 1 = Y_j^T \cdot 1 - Y_1^T \cdot 1 = (n - 1) - (n - 1) = 0,$$
following [14] (p. 34) we conclude that
\[\{Y_j - Y_1 : j = 2, \ldots, n\} \] is a basis of the eigenspace associated to eigenvalue \(-n - 3\).

Therefore, there must exist some \(\mu_2, \ldots, \mu_n \in \mathbb{R}\) such that
\[Z_3 = \sum_{j=2}^{n} \mu_j (Y_j - Y_1). \]

Since \((Y_i - Y_1)^T (Y_j - Y_1) = \begin{cases} 2(n-2), & \text{if } i = j \\ n-2, & \text{if } i \neq j \end{cases}\), we can write
\[Z_3^T Z_3 = \sum_{i=2}^{n} \sum_{j=2}^{n} \mu_i \mu_j (Y_i - Y_1)^T (Y_j - Y_1) = (n-2) [\mu_2 \ldots \mu_n] (I + J) \begin{bmatrix} \mu_2 \\ \vdots \\ \mu_n \end{bmatrix}, \]

where \(I\) is the identity matrix of order \(n-1\), and \(J\) is a square matrix of order \(n-1\) full of ones. In order to obtain the values of \(\mu_2, \ldots, \mu_n\), we compute next \((Y_i - Y_1)^T Z_3\) in two different ways, for all \(i = 2, \ldots, n\). First,
\[(Y_i - Y_1)^T Z_3 = \sum_{j=2}^{n} \mu_j (Y_i - Y_1)^T (Y_j - Y_1) = (n-2) \left(2\mu_i + \sum_{j=2, j \neq i}^{n} \mu_j \right). \]

Secondly, taking into account that \((Y_i - Y_1)^T Z_1 = (Y_i - Y_1)^T Z_2 = 0\) by (4):
\[(Y_i - Y_1)^T Z_3 = (Y_i - Y_1)^T Z_X = \sigma_i - \sigma_1, \]

where \(\sigma_j\) (for all \(j \in \{1, \ldots, n\}\)) is the number of elements in \(X \in \binom{V(G)}{p}\) of the kind \((j, h)\), with \(h \neq j\). Note then that \(\sum_{j=1}^{n} \sigma_j = 2p\). By combining these two expressions of \((Y_i - Y_1)^T Z_3\) we get
\[2\mu_i + \sum_{j=2, j \neq i}^{n} \mu_j = \frac{\sigma_i - \sigma_1}{n-2} \quad \text{for all } i = 2, \ldots, n; \]

or, in matrix form,
\[(I + J) \begin{bmatrix} \mu_2 \\ \vdots \\ \mu_n \end{bmatrix} = \frac{1}{n-2} \begin{bmatrix} \sigma_2 - \sigma_1 \\ \vdots \\ \sigma_n - \sigma_1 \end{bmatrix}. \]

As \((I + J)^T = I + J\) and \((I + J)^{-1} = I - \frac{1}{n}J\) it follows for \(Z_3^T Z_3\) that:
\[Z_3^T Z_3 = (n-2) \begin{bmatrix} \mu_2 \\ \vdots \\ \mu_n \end{bmatrix} (I + J) (I + J) \begin{bmatrix} \mu_2 \\ \vdots \\ \mu_n \end{bmatrix} = \frac{1}{n-2} \left(\sum_{j=2}^{n} (\sigma_j - \sigma_1)^2 - \frac{1}{n} \left(\sum_{j=2}^{n} (\sigma_j - \sigma_1) \right)^2 \right). \]

which, after some algebra, can be written as
\[Z_3^T Z_3 = \frac{1}{n(n-2)} \sum_{1 \leq i < j \leq n} (\sigma_i - \sigma_j)^2. \]

The minimum possible value of \(\sum_{1 \leq i < j \leq n} (\sigma_i - \sigma_j)^2\) occurs for the most possible balanced distribution of \(\sigma_j\)'s: when
\[([2p/n] + 1)n - 2p \] elements in \(\{\sigma_1, \ldots, \sigma_n\}\) are equal to \([2p/n]\), the remaining \(2p - [2p/n]n\) elements in \(\{\sigma_1, \ldots, \sigma_n\}\) being equal to \([2p/n] + 1\). That is,
\[\sum_{1 \leq i < j \leq n} (\sigma_i - \sigma_j)^2 \geq ([2p/n] + 1)n - 2p \cdot (2p - [2p/n]n). \]

Hence, coming back to expression (5):
\[2|E(G[X])| \leq p + (1 - \frac{4}{n})p^2 - \frac{1}{n}([2p/n] + 1)n - 2p \cdot (2p - [2p/n]n). \]
It takes a few calculations to see that the right hand side of this inequality is precisely equal to \(2|E(G[X_p])|\). As a consequence,
\[
\max \left\{ 2|E(G[X])| : X \in \binom{V(G)}{p} \right\} = 2|E(G[X_p])|.
\]

Since \(G[X_p] \) is connected and \(G \) is \((\frac{n-2}{2}) \)-regular we finally obtain
\[
\xi_p = |\omega(X_p)| = p\left(\frac{n-2}{2} \right) - 2|E(G[X_p])|.
\]

and the proof ends by replacing \(|E(G[X_p])| \) with the value given by Proposition 2.2. \(\square \)

From both Lemma 2.2 and Theorem 2.4 we get the following theorem, which constitutes the main result of this work.

Theorem 2.5. Let \(n \geq 5 \) be an integer, \(G = K(n, 2) \), and \(p \) be any integer such that \(1 \leq p \leq \frac{|V(G)|}{2} \). Then, the following statements hold:

(i) \(\lambda_p = \xi_p+1 = \xi_p-1 < \xi_p \) when \(n \equiv 1 \mod 4 \) and \(p = \lfloor |V(G)|/2 \rfloor - 1 \).

(ii) \(\lambda_p = \xi_p \) but \(G \) is not super-\(\lambda_p \) in the following cases: \(n = 6 \) and \(p = 5 \); \(n \equiv 1 \mod 4 \) and \(p = \lfloor |V(G)|/2 \rfloor - 2 \); \(n \equiv 3 \mod 4 \) and \(p = \lfloor |V(G)|/2 \rfloor - 1 \).

(iii) \(\lambda_p = \xi_p \) and \(G \) is super-\(\lambda_p \) for all values of \(n \), \(p \) not considered in (i), (ii).

Proof. By Lemma 2.2 (ii), when \(p = \lfloor |V(G)|/2 \rfloor \) it turns out that \(\lambda_p = \xi_p \) and \(G \) is super-\(\lambda_p \), so the statement holds for this value of \(p \). Suppose then \(1 \leq p \leq \lfloor |V(G)|/2 \rfloor - 1 \) from now on. By Corollary 2.1, \(G \) is \(\lambda_p \)-connected and \(\lambda_p \leq \xi_p \).

Let us consider \(n = 5, 6, 7 \), for which we get all possible values of \(\xi_p \) from Theorem 2.4. When \(n = 5 \equiv 1 \mod 4 \) and \(1 \leq p \leq \lfloor |V(G)|/2 \rfloor = 5 \):

<table>
<thead>
<tr>
<th>(p)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\xi_p)</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
</tbody>
</table>

From Lemma 2.2 (i) we get \(\lambda_1 = \xi_1, \lambda_2 = \xi_2, \lambda_3 = \xi_3 \text{ and } \lambda_4 = \xi_4 = \xi_4 - 1 < \xi_4 \); and by Lemma 2.2 (iii, ii), \(G \) is super-\(\lambda_p \) only when \(p = 1, 2 \). Hence the result holds. For \(n = 6 \) and \(1 \leq p \leq \lfloor |V(G)|/2 \rfloor = 7 \):

<table>
<thead>
<tr>
<th>(p)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\xi_p)</td>
<td>6</td>
<td>10</td>
<td>12</td>
<td>16</td>
<td>18</td>
<td>18</td>
<td>20</td>
</tr>
</tbody>
</table>

Therefore, again from Lemma 2.2 (iii) it turns out that \(\lambda_p = \xi_p \) for all \(1 \leq p \leq 6 \), and \(G \) is super-\(\lambda_p \) for all those values of \(p \) except for \(p = 5 \). And when \(n = 7 \equiv 3 \mod 4 \) and \(1 \leq p \leq \lfloor |V(G)|/2 \rfloor = 10 \) we obtain

<table>
<thead>
<tr>
<th>(p)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\xi_p)</td>
<td>10</td>
<td>18</td>
<td>24</td>
<td>30</td>
<td>36</td>
<td>40</td>
<td>42</td>
<td>46</td>
<td>48</td>
<td>48</td>
</tr>
</tbody>
</table>

Then, \(\lambda_p = \xi_p \) for all \(1 \leq p \leq 9 \), and \(G \) is super-\(\lambda_p \) for all \(1 \leq p \leq 8 \).

So the statement holds for \(n = 5, 6, 7 \). Take \(n \geq 8 \) from now on, and let us next study the sign of \(\xi_{p+1} - \xi_p \) for all \(1 \leq p \leq \lfloor |V(G)|/2 \rfloor - 1 \).

Let us write \(p = c_2^2 + r \), where \(c = \left\lfloor \frac{2p}{n} \right\rfloor \) and \(\left\{ \begin{array}{ll} 0 \leq r < \frac{n}{2} - 1, & \text{if } 0 \leq c < \frac{n-4}{2}; \\ 0 \leq r \leq \left\lfloor \frac{n}{4} \right\rfloor - 1, & \text{if } c = \frac{n-4}{2}. \end{array} \right. \)

Suppose first that \(\left\lfloor \frac{2(p+1)}{n} \right\rfloor = \left\lfloor \frac{2p}{n} \right\rfloor = c. \) Hence from Theorem 2.4 we obtain:
\[
\xi_{p+1} - \xi_p = \binom{n-2}{2} - c(n-4) - 2r. \tag{6}
\]

Observe that \(\left\lfloor \frac{2(p+1)}{n} \right\rfloor = \left\lfloor \frac{2p}{n} \right\rfloor \) implies \(r \leq \frac{n}{2} - 2 \) when \(c < \frac{n-4}{2} \). Then, for all \(c \leq \frac{n-4}{2} \) it follows easily from (6) that \(\xi_{p+1} - \xi_p > 0 \).

Suppose next that \(\left\lfloor \frac{2(p+1)}{n} \right\rfloor = c + 1 > c = \left\lfloor \frac{2p}{n} \right\rfloor \), then \(c \leq \frac{n-4}{2} \) and \(r = \frac{n}{2} - 1 \). Theorem 2.4 yields in this case:
\[
\xi_{p+1} - \xi_p = \binom{n-2}{2} - (n-4)c - (n-2) \geq \frac{n-6}{2} > 0.
\]

Having obtained \(\xi_{p+1} - \xi_p > 0 \) for all \(p \) when \(n \geq 8 \) is even, we get
\[
\xi_1 < \cdots < \xi_{\lfloor |V(G)|/2 \rfloor - 1} < \xi_{\lfloor |V(G)|/2 \rfloor}.
\]

Please cite this article as: C. Balbuena, X. Marcote, The \(p \)-restricted edge-connectivity of Kneser graphs, Applied Mathematics and Computation (2018), https://doi.org/10.1016/j.amc.2018.09.072
Then Lemma 2.2 (iii.2) allows us to assure that $\lambda_p = \xi_p$ and G is super-λ_p for all p, and we are done for the case that n is even.

n odd:

We write $p = c\frac{n-1}{2} + r$, with $c = \left\lfloor \frac{2p}{n-1} \right\rfloor$, with $0 \leq r \leq \frac{n-1}{2} - 1$, $0 \leq c \leq \frac{n-3}{4}$; $0 \leq c \leq \frac{n-3}{4}$.

In this case, it is more convenient to use expression (3) for obtaining ξ_p, instead of applying Theorem 2.4 directly. That is, from $\xi_p = p\left(\frac{n^2}{2} - 2|E(G[X_p])|\right)$ and expression (3) we write:

$$
\xi_p = p\left(\frac{n - 2}{2}\right) - p^2 - c(n + 1)n + p(1 + 4c) + 2c - 2\min\{2r, c\}.
$$

Suppose first that $\left\lfloor \frac{2(p+1)}{n-1} \right\rfloor = \left\lfloor \frac{2p}{n-1} \right\rfloor - c$. Hence from (7) it follows that:

$$
\xi_{p+1} - \xi_p = \left(\frac{n - 2}{2}\right) - c(n - 5) - 2r + 2\min\{2r, c\} - 2\min\{2r + 2, c\}.
$$

Observe that $\left\lfloor \frac{2(p+1)}{n-1} \right\rfloor = \left\lfloor \frac{2p}{n-1} \right\rfloor$ implies $r \leq \frac{n-1}{2} - 2$ when $c \leq \frac{n-3}{4}$. Then, for $c < \frac{n-1}{2}$ it follows easily from (8) that $\xi_{p+1} - \xi_p > 0$. Except for the following cases (for which $2\min\{2r, c\} - 2\min\{2r + 2, c\} = -4$):

\[\xi_{p+1} - \xi_p = -1, \quad \text{when } n \equiv 1 \pmod{4}, \ c = \frac{n-1}{2}, \ \text{and } r = \frac{n-1}{2}; \]

\[\xi_{p+1} - \xi_p = 0, \quad \text{when } n \equiv 3 \pmod{4}, \ c = \frac{n-1}{2}, \ \text{and } r = \frac{n-3}{4}.\]

Indeed, for the former case we have:

$$
\xi_{p+1} - \xi_p = \left(\frac{n - 2}{2}\right) - \frac{(n - 1)(n - 5)}{2} - \frac{(n - 1)}{2} - 2 \leq -1 < 0;
$$

and for the latter,

$$
\xi_{p+1} - \xi_p = \left(\frac{n - 2}{2}\right) - \frac{(n - 1)(n - 5)}{2} - \frac{(n - 3)}{2} - 2 = 0.
$$

Suppose next that $\left\lfloor \frac{2(p+1)}{n-1} \right\rfloor = c + 1 > c = \left\lfloor \frac{2p}{n-1} \right\rfloor$, then $c = \frac{n-3}{4}$ and $r = \frac{n+1}{2} - 1$. In this case expression (7) yields:

$$
\xi_{p+1} - \xi_p = \left(\frac{n - 2}{2}\right) - (c + 1)(n - 3) - 2 \geq \frac{n - 7}{2} > 0
$$

because $n \geq 9$ in the odd case.

Let us gather together all these deductions for $n \geq 9$ odd. Firstly, when $n \equiv 1 \pmod{4}$ we have obtained $\xi_{p+1} - \xi_p > 0$ for all p except for the case $p = \left\lfloor |V(G)|/2 \right\rfloor - 1$, where $\xi_{p+1} - \xi_p = \xi_{\left\lfloor |V(G)|/2 \right\rfloor} - \xi_{\left\lfloor |V(G)|/2 \right\rfloor - 1} = -1$. As it is easy to compute from (3), $\xi_{\left\lfloor |V(G)|/2 \right\rfloor} - \xi_{\left\lfloor |V(G)|/2 \right\rfloor - 1} = 0$. That is,

$$
\xi_1 < \cdots < \xi_{\left\lfloor |V(G)|/2 \right\rfloor - 2} < \xi_{\left\lfloor |V(G)|/2 \right\rfloor - 1} = \xi_{\left\lfloor |V(G)|/2 \right\rfloor} = \xi_{\left\lfloor |V(G)|/2 \right\rfloor - 2}.
$$

Then from Lemma 2.2 (i) we have that $\lambda_p = \xi_p$ for all $p \neq \left\lfloor |V(G)|/2 \right\rfloor - 1$, and among these values of p graph G is super-λ_p for all $p \neq \left\lfloor |V(G)|/2 \right\rfloor - 2$, so the statement holds. Finally, when $n \equiv 3 \pmod{4}$ we have obtained $\xi_{p+1} - \xi_p > 0$ for all p except for the case $p = \left\lfloor |V(G)|/2 \right\rfloor - 1$, where $\xi_{p+1} - \xi_p = \xi_{\left\lfloor |V(G)|/2 \right\rfloor} - \xi_{\left\lfloor |V(G)|/2 \right\rfloor - 1} = 0$. Therefore,

$$
\xi_1 < \cdots < \xi_{\left\lfloor |V(G)|/2 \right\rfloor - 1} < \xi_{\left\lfloor |V(G)|/2 \right\rfloor} = \xi_{\left\lfloor |V(G)|/2 \right\rfloor - 1}.
$$

and Lemma 2.2 states that $\lambda_p = \xi_p$ holds for all p, G being super-λ_p for all those values of p except for $p = \left\lfloor |V(G)|/2 \right\rfloor - 1$.

The proof is so complete. □

References

