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Summary. It is well known that metals behave anisotropically on their microstruc-
ture due to their crystalline nature. FE-simulations in the metal forming field however
sometimes lack the right macroscopic anisotropies as their type can be unspecific.

In order to find a suitable effective elastoplastic material model, a finite crystal plas-
ticity model is used to model the behaviour of polycrystalline materials in representative
volume elements (RVEs) representing the microstructure, taking into account the plastic
anisotropy due to dislocations occurring within considered slip systems. A multiplicative
decomposition of the deformation gradient into elastic and plastic parts is performed, as
well as the split of the elastic free energy into volumetric and deviatoric parts resulting
in a compact expression of the resolved Schmid stress depending on the slip system vec-
tors. In order to preserve the plastic incompressibility condition, the elastic deformation
gradient is updated via an exponential map scheme. To further circumvent singularities
stemming from the linear dependency of the slip system vectors, a viscoplastic power-law
is introduced providing the evolution of the plastic slips and slip resistances.

The model is validated with experimental microstructural data under deformation.
Through homogenisation and optimisation techniques, effective stress-strain curves are
determined and can be compared to results from real manufacturing and fabrication
processes leading to an effective elastoplastic material model which is suitable for metal
forming processes at finite strains.
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1 INTRODUCTION

Phenomenological macroscopic observations of metals do not acknowledge actual het-
erogeneities in the microstructure at once. For some time, the mechanics of heteroge-
neous and polycrystalline materials have been limited to the formulation of simplified
models taking into account some aspects of the microstructural characteristics. However,
the proceeding increase of computational capabilites enables a more elaborated approach
towards the development of a suitable material model for specific requirements and nu-
merical simulations in the forming field. At the same time, modeling the microstructure
is already a complex task as certain microstructural properties have to be considered.
On the microscopic level of metals, anisotropies have to be taken into account stemming
from dislocations occurring on the atomic lattice within considered slip systems. Such
mechanisms are macroscopically observed as plastic anisotropic yielding.

In order to take into account the microstructural complexity on the one hand and aim-
ing at the ability to compute real manufacturing and forming processes on the other hand,
a macroscopic effective material model which sufficiently represents the microstructure has
to be developed. Due to the various different boundary conditions the material can be
constrained to during fabrication stages, it has to be validated for these applications. A
huge challenge appears in the attempt to fulfil the requirements of both sheet and bulk
metal forming processes. In doing so, the model approach has naturally to be performed in
a three-dimensional way, as the structure can certainly be constrained to any geometrical
limit or constitution. However, the dislocation movement on the microstructure evolves
in three required directions.

2 CONSTITUTIVE FRAMEWORK: MULTIPLICATIVE MULTISURFACE

ELASTOPLASTICITY

The deformation gradient F = ∂x
∂X

with Jacobian J = det F > 0 maps tangent vectors
of material lines in the reference configuration B ∈ R3 onto tangent vectors of deformed
lines in the current configuration Bt ∈ R3 and is decomposed into an elastic and a plastic
part. The elastic part F e contributes to stretching and rigid body rotation of the crystal
lattice, the plastic part F p characterises plastic flow caused by dislocations on defined
slip systems

F = F eF p. (1)

The multiplicative split assumes a local unstressed intermediate configuration defined
by the plastic deformation gradient, see Fig. 1, which can be determined through an
evolution assumption and whose initial condition is assumed to be F

p
0 = 1.

Further, a volumetric-deviatoric split of the deformation gradient and its constituents
is performed

F iso = J−1/3F , F e
iso = Je−1/3F e, F

p
iso = Jp−1/3F p, (2)
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Figure 1: Multiplicative elasto-plastic decomposition of the deformation gradient F

with J = Je due to fulfilling the requirement of present plastic incompressibility ex-
pressed through Jp = 1.

2.1 Thermodynamical considerations

The deformation power per unit undeformed volume can be written as

P : Ḟ = P̄ : Ḟ e + Σ̄ : L̄
p
, (3)

where P̄ = PF p T is the 1st Piola-Kirchhoff stress tensor relative to the interme-
diate configuration B̄t and Σ̄ = F e T PF p T = F e T τF e−T a stress measure conjugate to
the plastic velocity gradient L̄

p
= Ḟ pF p−1 on B̄t, τ being the Kirchhoff stress tensor

on Bt. Further, it is

P̄ = F eS̄, S̄ = C̄
e−1

Σ̄, C̄
e

= F e T F e, (4)

where S̄ is the 2nd
Piola-Kirchhoff stress tensor relative to the intermediate con-

figuration B̄t which is symmetric, C̄
e

is further the elastic right Cauchy-Green tensor
on B̄t.

The evolution of the plastic deformation gradient F p is defined by the plastic flow
equation, resulting from the plastic rate of deformation L̄

p
. In the presence of nsyst

systems undergoing plastic slip, represented by the plastic shear rates γ̇α, the plastic flow
equation is further generalised

L̄
p

= Ḟ pF p−1, L̄
p

=

nsyst
∑

α=1

γ̇αs̄α
⊗ m̄α, (5)

s̄α being the slip direction vector and m̄α being the slip plane normal vector of the
α-th slip system {s̄α, m̄α

}. The slip system vectors have the properties s̄ · m̄ = 0 and
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thus (s̄α
⊗ m̄α)(s̄α

⊗ m̄α) = 0. The generalisation in (5) leads to the modified evolution
equation of the plastic deformation gradient depending on the plastic slips

Ḟ p =

[∑
α

γ̇α s̄α
⊗ m̄α

]
F p. (6)

2.2 The resolved Schmid stress

The Schmid stress τα is the projection of Σ̄ onto the slip system s̄α
⊗ m̄α

τα = (dev[Σ̄] · m̄α) · s̄α = dev[Σ̄] : s̄α
⊗ m̄α. (7)

As the slip system tensor s̄α
⊗ m̄α is purely deviatoric, only the deviator of the stress

tensor contributes to the resolved stress. With the relations in (4) and some straightfor-
ward recast, it is

τα = Re T τRe : s̄α
⊗ m̄α. (8)

2.3 Elastic response

The elastic part of the deformation is gained from a Neo-Hookeean strain energy
function. Due to assumed isotropy within the elastic contribution, the description is given
in terms of the elastic left Cauchy-Green tensor be. Applying a volumetric-deviatoric
split yields

ρψ(be
iso, Je) =

µ

2
(tr be

iso − 3) +
κ

2
(ln Je)2 (9)

τ = 2 ρ
∂ψ

∂be be = µ dev(be
iso) + κ ln Je 1, dev(τ ) = µ dev(be

iso), vol(τ ) = κ ln Je 1. (10)

Because slip-system tensors are deviatoric by construction, their internal product by
the hydrostatic Kirchhoff stress components vanishes and the Schmid stress in (8)
remains

τα = µ s̄α
iso · m̄

α
iso, s̄α

iso = F e
iso · s̄

α, m̄α
iso = F e

iso · m̄
α. (11)

2.4 A rate-dependent formulation via a viscoplastic power-law

A rate-dependent theory enables the modeling of creep in single crystals and is per-
formed by the introduction of a power law-type constitutive equation for the rates γ̇α of
inelastic deformation in the slip systems

γ̇α = γ̇0
τα

τy

(
|τα

|

τy

)m−1

= γ̇0 τα
|τα

|
m−1 τ−m

y , (12)

γ̇0 and τy being the reference shear rate and slip resistance, and m being a rate-
sensivity parameter. Within an isotropic Taylor hardening model, the evolution for the
slip resistance τy is considered

τ̇y =
∑

α

H · |γ̇α
|, γ =

∫ t

0

γ̇ dt, γ̇ =
∑

α

γ̇α. (13)
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3 INCREMENTAL KINEMATICS

The slip rate is discretised with a standard backward Euler integration in order to
obtain incremental evolution equations for the update of the evolving quantities

∆γα = ∆t γ̇α (F e) . (14)

The implicit exponential integrator is then used to discretise the plastic flow equa-
tion (6)

F
p
n+1 = exp

[

∑

α

∆γαs̄α
⊗ m̄α

]

· F p
n. (15)

Due to the property det[exp(s̄α
⊗ m̄α)] = exp[tr (s̄α

⊗ m̄α)] = exp(0) = 1, it preserves
the plastic volume. Here, F e trial

n+1 = fn+1 F e
n, is the trial elastic deformation gradient with

fn+1 = F n+1 F−1
n = 1 + grad n (∆u) and Jn+1 = det F n+1, F e trial

iso = J
−1/3
n+1 F e trial

n+1 , so that
an exponential update for the new elastic deformation gradient can be obtained

F e
n+1 = F e trial

n+1 · exp

[

∑

α

−∆γαs̄α
⊗ m̄α

]

. (16)

The current trial resolved shear stress τα trial
n+1 , cf. (11), is obtained with the current

orientation of the crystal through rotation of the slip system with the trial elastic defor-
mation gradient

τα trial
n+1 = µ s̄α trial

iso · m̄α trial
iso , s̄α trial

iso = F e trial
iso · s̄α, m̄α trial

iso = F e trial
iso · m̄α. (17)

3.1 Equilibrating the plastic state

Omitting the subscript n + 1, a residual based on the exponential map is defined to
equilibrate the plastic state, leading to a local Newton-Raphson algorithm through a
Taylor expansion about the reached point F e

k

R(F e) := F e
− F e trial

· exp

[

∑

α

−∆γαs̄α
⊗ m̄α

]

= 0, (18)

and

Rk + ∂F e

k
R(F e

k) : ∆F e
k = 0, (19)

∆F e
k = −

[

∂F e

k
R(F e

k)
]−1

: Rk, F e
k+1 = F e

k + ∆F e
k, (20)

with the important derivatives

[∂F e R(F e)]ijkl = δikδjl + F e trial
im Emjpq

[

∑

α

s̄α
⊗ m̄α

⊗ ∂F e ∆γα

]

pqkl

(21)

Emjpq =
∂ exp

(

[−
∑

α ∆γα(F e) s̄α
⊗ m̄α]mj

)

∂ [−
∑

α ∆γα(F e) s̄α ⊗ m̄α]pq

, (22)
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and

∂F e ∆γβ = ∆t γ̇0 m |τα
|
m−1 τ−m

y

�

Ξα β
�−1

∂Fe τα (23)

∂Fe τα = −
2

3
τα F e−T + µ J−1/3 [m̄α

iso ⊗ s̄α + s̄α
iso ⊗ m̄α] (24)

Ξα β = δα β + ∆t γ̇0 m τα
|τα

|
m−1 τ−m−1

y

�

β
H sign(∆γβ). (25)

4 MODEL OF THE POLYCRYSTAL

4.1 Voronoi cell grains

The polycrystal is modelled with three-dimensional Voronoi cell shaped grains. Through
the Delaunay triangulation of a given random point seed, a polycrystal of arbitrary size
can be obtained through stating the size of the bounding box.

(a) Polycrystal consisting of
Voronoi cell grains.

(b) Cut through polcrystalline
structure.

(c) Three-dimensional view
into the cutted polycrystal.

Figure 2: Polycrystalline model within bounding box 200×200×200 µm. The Voronoi cell
shaped crystal grains are obtained through Delaunay triangulation of a random point seed.

4.2 Euler angle rotation of the grains

In order to realise randomly orientated slip systems in each grain of the undeformed
polycrystalline structure, the slip system vectors are rotated around the cartesian axes
about three Euler angles Φ, Θ and Ψ according to a y-convention, see Fig. 3; Performed
is a rotation about the z-axis, the y-axis and the new z-axis, successively,

RΨ =





cos Ψ − sin Ψ 0
sin Ψ cos Ψ 0

0 0 1



 RΘ =





cos Θ 0 sin Θ
0 1 0

− sin Θ 0 cos Θ



 RΦ =





cos Φ − sin Φ 0
sin Φ cos Φ 0

0 0 1



 ,

(26)

R = RΨ · RΘ · RΦ. (27)
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ei = R · e′
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Figure 3: Rotation of the axes around random Euler angles

5 NUMERICAL HOMOGENISATION

5.1 Boundary conditions

Based on the construction of polycrystalline structures according to Sec. 4, polycrys-
tals of several sizes are modelled, representing the microstructure of the polycrystalline
material, see Fig. 2. The displacement field u is given through a constant displacement
gradient H on the entire boundary of the polycrystal

u|dΩ = H · X|dΩ , H = const. (28)

5.2 Volume average

In order to approach the prediction of an overall material behaviour of the representa-
tive volume element and hence of the macroscopic material, the volume averages of the
deformation gradient F and the 1st

Piola-Kirchhoff stress tensor P over the volume
V =

∫
Ω

dΩ are defined as

�F �Ω :=
1

V

∫

Ω

F dΩ (29)

�P �Ω :=
1

V

∫

Ω

P dΩ. (30)

5.3 Overall polycrystalline behaviour

Differently sized polycrystals, from a size edge range between 100 and 200 µm, see
Fig. 4, are subjected to pure shear loading through the displacement gradient H = e1⊗e2.
The number of crystal grains depend on the size and are shown in Tab. 1. The material
parameters for all the microstructures are equal; it is the bulk modulus κ = 152.2 GPa,
the shear modulus µ = 79.3 GPa, and the parameters for the viscoplastic range amount
to H = 1.0 GPa, τy 0 = 180 MPa, γ̇0 = 0.0005 and m = 3.0. In order to obtain a
statistically admissible response, 200 tests are computed for each size with body-centered
cubic crystals with 24 slip system vectors of Tab. 2.

7



1591

E. Lehmann, S. Loehnert and P. Wriggers

(a) 100 µm (b) 110 µm (c) 130 µm (d) 140 µm (e) 150 µm (f) 180 µm (g) 200 µm

Figure 4: Polycrystals of different sizes. The shown cube represents a bounding box of size
200 × 200 × 200 µm.

Table 1: Number of grains for polycrystal edge sizes

bounding box size edge [µm] 100 110 130 140 150 180 200

number of grains 6 13 20 32 45 107 157
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(a) Polycrystal within the bounding box 100×
100 × 100 µm.
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(b) Polycrystal within the bounding box
150 × 150 × 150 µm.

Figure 5: Stress-strain relations of the polycrystals of different sizes.

Table 2: 24 slip system vectors for body-centered cubic crystals

s̄α m̄α s̄α m̄α s̄α m̄α s̄α m̄α

[1̄11] (01̄1) [111] (01̄1) [111̄] (011) [11̄1] (011)
[1̄11] (101) [111] (1̄01) [111̄] (101) [11̄1] (1̄01)
[1̄11] (110) [111] (1̄10) [111̄] (1̄10) [11̄1] (110)
[1̄11] (211) [111] (2̄11) [111̄] (21̄1) [11̄1] (211̄)
[1̄11] (121̄) [111] (12̄1) [111̄] (1̄21) [11̄1] (121)
[1̄11] (11̄2) [111] (112̄) [111̄] (112) [11̄1] (1̄12)

8
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Figure 6: Relative errors with respect to mean value of the computations.

As an example, the overall stress-strain relations for 200 polycrystalline structures
of edge size 100 and 150 µm, respectively, are shown in Fig. 5. Whereas the response
of the smaller polycrystal shows a rather scattering stress-strain behaviour due to the
remaining high influence of the boundary loading, the larger polycrystal presents a more
representative behaviour of the microstructure. Expressed this in terms of the relative
error in the homogenised 1st Piola-Kirchhoff stresses �P �Ω, the error reaches a level
of 20 % and more over the whole deformation, see Fig. 6. Increasing the size of the
polycrystal results in a decrease of the relative error. In order to restrict the error to 5 %,
error lines at ± 5 % are included.
The same effect applies for the normalised standard deviation σ(�Pij�Ω)/||�Pij�Ω|| with

σ(�Pij�Ω) =

√

√

√

√

1

n

n
∑

k=1

(

�Pij�
k
Ω − �Pij�Ω

)2

(31)

�Pij�Ω =
1

n

n
∑

k=1

�Pij�
k
Ω (32)

||�Pij�Ω|| =
1

n

n
∑

k=1

∣

∣

∣

∣�Pij�
k
Ω

∣

∣

∣

∣ (33)

Fig. 7(a) shows the normalised standard deviation of the component [�P �Ω]12 for dif-
ferent polycrystals over the deformation, Fig. 7(b) represents it over the polycrystal size
in terms of the crystal grain quantity. From a grain number of about 20 on, the stan-
dard deviation does not decrease significantly anymore, whereas the ± 5 % error measure
requires polycrystalline structures of 100 grains and more.

9
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Figure 7: Normalised standard deviation of the polycrystals of different sizes for a population of
200 computations.

6 CONCLUDING REMARKS AND OUTLOOK

6.1 Effective material properties

Assuming that the stresses from the volume averaging procedure are the same as from
an effective material assumption

�P �Ω = P eff = P (�F �Ω) = P (F eff), (34)

the determination of the effective material parameters can be performed based on a
least square fit between the mean stresses out of n performed computations and the
stresses from an effective constitutive assumption

Π :=

[

1

n

n
∑

k=1

(

�P �
k
Ω

)

− P (F eff(κeff))

]2

→ minimum (35)

κeff :=
[

κeff
el , κ

eff
pl

]T
. (36)

Due to the volumetric-deviatoric split of the constitution, see (10), both parts of the
deformation can be separated and reveals quite an easy way to determine first the isotropic
elastic material parameters κeff

el by remaining in the elastic range of the deformation.
Having determined the parameters with (35), also for varying elastic parameters within
the crystal grains, the assignment of the plastic parameters κeff

pl can be done. Eventually,
the gained effective material model representing the microstructural behaviour has to
be validated for different kinds of boundary conditions and constraints of real forming
processes.
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