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Abstract. Tensile failure of metals often occurs through void nucleation, growth and
coalescence. In high-purity metals, void nucleation often operates at the nanoscale and
is followed by plastic cavitation when the void attains the critical size for dislocation
emission. This work is concerned with the study of plastic nanovoid cavitation in face-
centered cubic (fcc) crystals at finite temperature. In particular, the Quasicontinuum
(QC) method, suitably extended to finite temperatures (HotQC), is taken as the ba-
sis for the analysis. The Quasicontinuum method is a multiscale modeling scheme that
seamlessly links continuum and atomistic descriptions. HotQC is a method for system-
atically coarse-graining atomistic models at finite temperature. We specifically focus on
nanovoids in copper single crystals deforming in uniaxial and triaxial tension. The re-
sults of the calculations provide a detailed characterization of the cavitation mechanism,
including the geometry of the emitted dislocations, the dislocation reaction paths and
attendant macroscopic quantities of interest such as the cavitation pressure as a function
of triaxiality.
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1 INTRODUCTION

In order to understand the mechanical response of materials subject to dynamical
loads, the knowledge of the physical and thermodynamical properties of materials is re-
quired.Tensile failure of metals often occurs through void nucleation, growth and coales-
cence. This process, known as spallation, has been the subject of extensive metallurgical
investigation [1]. In high purity metals, void nucleation often operates at the nanoscale
and is followed by plastic cavitation when the void attains the pressure and temperature
dependent critical size for dislocation emission. The voids grow through nucleation and
motion of dislocations.

Molecular dynamics (MD) techniques have been used by many authors to understand
the mechanical response of materials based on the mechanisms controlling the growth and
evolution of nanovoids [2, 14]. However, a correct simulation of plastic phenomena requires
the use of very large systems and appropriate boundary conditions, which may result in
complex MD models. Computed plastic work during void growth indicate that there is
a growth threshold controlled by the stress required to nucleate dislocation activity. The
time-scale for complete dynamic fracture (0.1−1 µs) is several orders of magnitude beyond
the current limitations of molecular dynamics simulations. The study of slower strain
rates, in the experimental range, requires much larger system sizes or a special continuum
boundary condition. In this sense, multiscale modelling provides an alternative to MD
simulation, especially for this type of problems.

The Quasicontinuum method (QC) is a multiscale modelling scheme that seamlessly
links continuum and atomistic descriptions. In this paper we are going to use an exten-
sion of the static QC theory developed by [4] and subsequently adapted by [5], to systems
in thermodynamic equilibrium and non-equilibrium (HotQC) established in [6]. Previ-
ous to this work, a number of finite-temperature extensions of QC were proposed within
the framework of equilibrium statistical mechanics and thermodynamics [7, 8]. Whereas
these formulations are effective for equilibrium problems, systems at uniform temperature,
they cannot be applied to systems away from equilibrium. In [6] the probability density
function of finding the system in a certain state is directly approximate by recourse to
variational mean-filed theory and the maximum-entropy formalism. Every atom within
the system has its own local statistical parameters, temperature and entropy. Therefore,
the net result of the procedure is to define a non-equilibrium free energy depending on the
positions and temperatures of all atoms. Conveniently, for several interatomic potentials
of interest, including Lennard-Jones (LJ) and Embedded-Atom Method (EAM), the non-
equilibrium free energy can be computed explicitly up to numerical quadratures, and the
result may be regarded as a temperature-dependent interatomic potential. This structure
greatly facilitates implementation, which is reduced to replacing ordinary interatomic po-
tentials by temperature-dependent ones. It is worth emphasis that at no time in this
procedure equilibrium statistical mechanics is invoked to define temperature and entropy
or to determine the probability density function of the system. Thus, unlike the conven-
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tional temperature and entropy defined in equilibrium thermodynamics and statistical
mechanics, the local temperatures and entropies that arise in this theory are parameters
that the mean-field probability density function is endowed with. For non-interacting
atoms, the local temperatures and entropies do indeed coincide with the equilibrium val-
ues of each one of the atoms regarded as an isolated system in thermodynamic equilibrium,
which justifies the use of terminology. Likewise, the non-equilibrium free energy is defined
formally from the mean-field probability density function and reduces to the equilibrium
free energy of the system when the temperature field is uniform.

Although experimental investigations [9, 10] indicate the existence of strong void size
effects in plastic deformation of ductile materials with the growth of nanovoids, its ex-
perimental quantification remains an open problem. This size effect has been studied by
[11] for periodic single crystals under different load conditions using discrete dislocation
plasticity combined with a continuum strain gradient crystal plasticity theory. Similar
techniques were applied by [12] to simulate the effect of lattice orientation on an isolated
crystal with a cylindrical void.

Within the framework of MD, nanosized void growth in single crystal copper at finite
temperature and high strain rates have been analyzed extensively. MD simulations of void
growth at high strain-rate and room temperature [13], effect of stress triaxiality [14], void
coalescence [15] have been carried out using the copper embedded atom method (EAM)
potential due to [16]. More recently, [19] have studied the effect of loading orientation
and initial void size at finite temperature using LAMMPS code and the EAM potential
by [22].

Results are shown for numerical tests according to a non-equilibrium finite temperature
problem using QC method. This problem has been studied by many authors, but none
of them have included systems outside equilibrium. Also, the purpose of these tests is to
understand the nucleation of particular arrangement of atoms around a nanovoid and the
evolution of the temperature field in this process.

2 METHODOLOGY

2.1 The Quasicontinuum method (QC)

QC is a method for systematically coarse-graining lattice statics models. The method
starts with a small and complete atomistic system around a core defect. Then the rest of
the crystal is modelled in the geometry and reducing the configuration space of the crystal
trough a judicious application of a finite element-based kinematic constraints. To avoid
full lattice sums, only atoms in small clusters, surrounding the representative atoms must
be visited for computing the effective out-of-balance forces. Additionally, the selection of
representative atoms is performed adaptively based on the local strain of the elements.
The tolerance governing the adaptation process is set so that the full atomistic resolution
is attained only in the presence of dislocations.

The force among atoms is directly computed by empirical potentials. As in conventional
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continuum mechanics, QC permits the direct simulation of systems controlled through the
application of remote boundary conditions. Details of the implementation of QC used in
the present study and an analysis of convergence of the method may be found in [4].

Figure 1: Initial void and incipient dislocation structures for the uniaxial loading simulation (load is
applied in the [110] direction).

2.2 Equilibrium and Non-Equilibrium (HotQC)

The QC extension to systems in thermodynamic equilibrium and non-equilibrium
(HotQC) was developed in [6] and extended to the study of nanovoids in single crys-
tals for the first time in [20]. This extension is possible by the application of a variational
mean-field theory and the maximum-entropy (max-ent) formalism. Using this formal-
ism, we can directly approximate the probability density function to find the system in
a certain state, not necessarily an equilibrium state. In this model, every representative
atom has local state variables akin to temperature, entropy in addition to position, as
parameters that determine the local statistics of the atom. Then, the max-ent variational
principle provides the most likely probability density function within the assumed mean-
field class and consistent with all constraints on the systems.

Attention to macroscopic processes that are quasi-static is performed. Under these con-
ditions, the net result of the max-ent procedure is to define a non-equilibrium free energy
depending on the positions and temperatures of all the atoms. The non-equilibrium free
energy is computed explicitly by numerical quadratures and the result may be regarded
as a temperature-dependent interatomic potential. The stable configuration of the system
is found by minimization of the free energy for a given temperature field.

The next step in the development of the method therefore concerns the computations
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of the evolving temperature field. We accomplish this by coupling the free-energy min-
imization problem to a diffusion form of the energy-balance equation. The proper form
of the coupling is suggested by the variational formulation of coupled thermo-mechanics
problems proposed in [21].

3 NUMERICAL TEST

We have carried out simulations under uniaxial and triaxial loading, using the empirical
embedded-atom (EAM) potential due to Johnson [16]. For the uniaxial case, we consider
a computational cell of size 432a0 × 432a0 × 432a0 (ao = 0.3615nm) of copper, containing
a total of 120× 106 atoms. A spherical void of 7.5a0 radius is created in the center of the
cell with initial full atomistic resolution within a 16a0 × 16a0 × 16a0 region surrounding
the void. The initial mesh contains 4052 nodes after removing the atoms from the void.
The external load consists of a uniaxial expansion in the [110] direction which provides
the simplest dislocation configuration. We prescribe pure dilatational displacements on
the external boundary (deformation is increased by steps of 0.2% increments) with the
strain rate of 5× 107 s−1. In every step of deformation a new stable equilibrium configu-
ration is obtained by using the Polak-Ribière variant of the non-linear conjugate gradient
algorithm. Previously to loading process the sample is allowed to expand isothermally
at uniform temperature T0 = 300K. In order to capture all the defects surrounding the
void, we implement a routine that automatically remeshes the sample using the second
invariant of the deviatoric part of the Lagrangian strain tensor as adaptivity indicator.

Figure 2: Isometric view of initial void and incipient dislocation structures. Stacking faults in {111}
planes, perfect dislocations 1/2[110] in {001} planes and leading dislocations are observed.

During this uniaxial simulation, the void first becomes elongated in the direction of the
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Figure 3: Initial stage of prismatic loop. This emission of dislocations is on the intersecting {111} planes
have been predicted by [17]. a) Red atoms belong to stacking faults. b) Prismatic loop initiation (red)
and perfect dislocation (yellow).

expansion without dislocation emission. In a second phase, dislocations grow around the
surface of the void. The structures of the incipient dislocations are shown in Figs. 1 and
2. The vectors [111] and [111] indicate the plane of the stacking fault for FCC crystals. In
Fig. 2 it is clearly seen the presence of stacking faults in {111} planes. On the intersection
of these {111} planes, perfect dislocations labeled with 1/2[110]{001} and 1/2[110]{001}
appear. This first result agrees with the simulations presented in [17] and is the first step
of the prismatic loop formation described in Fig. 1 in [18].
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lations results [14] and normalized void volume expansion Vvoid/V vs deformation ε of the sample.

Once the prismatic loop is formed (Fig. 3), the loop emerges and moves away from
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Figure 3: Initial stage of prismatic loop. This emission of dislocations is on the intersecting {111} planes
have been predicted by [17]. a) Red atoms belong to stacking faults. b) Prismatic loop initiation (red)
and perfect dislocation (yellow).
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Once the prismatic loop is formed (Fig. 3), the loop emerges and moves away from
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the void and is stopped when it reaches the limit of the atomistic region. This situation
is obviously due to the computational mesh used in our simulations. Fig. 4 shows the
stress-strain curve for the uniaxial loading simulation. We must note that the plotted
strains and stresses are in the loading direction [110]. A comparison has been made with
previous MD simulations of uniaxial loading in cooper [14] with loading direction [001]
(see Fig. 4). It is noteworthy that the elastic moduli are in good agreement, and the
linear regime is approximately up to 8% of deformation for both cases. In the plastic
region, there is a difference probably due to the differences in the void size, the potential
used and the loading direction, that activates different slip systems. The void fraction is
also plotted in Fig. 4. At low deformations, the void grows approximately linearly up
to 8% of deformation. Next, the void changes the rate of growth, and the behavior is
approximately exponential as indicated by continuum theories.

In order to study the thermoplastic behavior of the material at high strain rates the
triaxial loading case is simulated. The void dislocation emission analysis requires more
attention, for this reason this study is out of the scope of this work. Additionally, the
temperature of the atoms around the void when the fracture occurs is also studied.

Fig. 5 shows the stress-strain curves for the triaxial case. In this curve, a linear regime
is observed up to 4% of deformation, followed by a non-linear regime representing the
plastic work around the void. At this stage, the fracture mechanism is initiated and
dislocations are emitted away from the void. When the deformation reaches the 6%, the
void has a drastically change in shape and volume. This process is called cavitation.
After this point, the stiffness of the sample decreases and the fracture extends all over the
sample. The temperature evolution of this process is shown in Fig. 6. In this figure a first
linear stage up to 4% of deformation is observed and is identified with the linear stage
in the stress-strain curve. Then, up to 6% of deformation, a change in the slope occurs,
corresponding to the non-linear stage. When the deformation reaches the cavitation point,
and due to the breakage of atomic bounds the temperature increases. Atoms belonging to
the void surface and near to the void show a higher increase rate of temperature. As the
deformation increases, the temperature oscillates due to the successive breakage of bounds.
The temperature of the atoms on the void surface to the void surface is approximately
constant after cavitation. In contrast, the temperature of the atoms away from the void
increases during the cavitation process.

4 CONCLUSIONS

In this work we have applied an extension of the QC method to study the thermo-
mechanical behavior of a nanovoid under tension in copper. The extension of the Qua-
sicontinuum method to non-equilibrium systems has provided a detailed solution of the
forces, deformation, and temperature at every point of the sample, with atomistic resolu-
tion close to the defect. In this region, both adiabatic as well as isothermal simulations
indicate that a fragile fracture occurs in the material shortly after dislocation structures
appear. The multiscale resolution of the Quasicontinuum approach then serves to com-
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Figure 5: Virial stress for the triaxial loading case compared with MD results [14]. Note that at 6% of
deformation the cavitation is reached and the material loss stiffness.
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