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Abstract. Finite element method was successfully applied in the simulation of several 
forming processes; however, it does not represent an absolute reference point. In fact, large 
deformation corresponds to a heavy mesh distortion. Powerful rezoning-remeshing algorithms 
strongly reduce the effects of such a limitation but the computational time significantly 
increases and additional errors occur. Nodal Integration is a recently introduced technique that 
allows finite element method to provide reliable results also when meshes becomes distorted 
in traditional FEMs. Furthermore, volumetric locking problems seem to be avoided using this 
integration technique instead of other methods such as coupled formulations. Nevertheless, 
spurious low-energy modes appear due to the nodal averaging of strain. For this reason 
stabilizing methods application seems to be suitable. What is more, different nodal integration 
techniques have been proposed, although spurious modes are a common problem. In this 
paper the performances of three different nodal integration techniques and the effects of a 
recently introduced stabilization methodology are studied simulating a classical forming 
process. 
 
 
1 INTRODUCTION 

Finite element method is surely the referential numerical technique in the analysis of solid 
mechanics problems. It has been successfully used in the simulation of several phenomena, 
providing excellent results. 

Nevertheless, FEM requires an adequate discretization of the computational domain in 
terms of node and elements since the final results are sensible to the distribution and 
regularity of this decomposition [1]. In small deformation problems, such as linear elasticity, 
it is quite easy to obtain a reliable discretization and very accurate solutions, also with a low 
computational cost. The situation suddenly changes in problems characterised by large 
deformations, such as the material forming processes. In this case, if a Lagrangian 
formulation is used, the mesh moves with material and elements become so distorted that 
numerical results lose their validity. 

Different techniques have been developed across the last years to overcome this problem. 

XI International Conference on Computational Plasticity. Fundamentals and Applications 
COMPLAS XI 

E. Oñate, D.R.J. Owen, D. Peric and B. Suárez (Eds) 



1467

F.Greco, L.Filice, E.Cueto and I.Alfaro 

2

Among them, Eulerian formulations, arbitrary Lagrangian-Eulerian (ALE) and remeshing 
techniques are the most known. In any case, additional drawbacks appeared especially when 
the remeshing techniques are applied. Remeshing-rezoning approach avoids the results 
worsening but, at the same time, the computational time increases and supplementary errors 
are introduced.  

A possible alternative is the use of meshless methods [2] but in many cases the 
improvement of the results quality, with the same number of degrees of freedom, is vanished 
by the very high computational time for the shape functions calculation. 

In the FEM environment the performances of the analysis depend on the used element. The 
constant strain elements (triangle with 3 nodes or tetrahedrons with 4 nodes in the 3D case) 
would be preferable for different reasons, especially when non-linear problems are 
investigated. Nevertheless their poor performances force the researchers to use high-order 
elements, such as 8 nodes tetrahedral or hexahedral. However, these formulations are not free 
from the results worsening due to the mesh deterioration and, besides, the remeshing 
procedure is very costly to be implemented, particularly for the hexahedral elements.  

A great drawback of conforming FEM is that the numerical model is always more stiff 
than the studied material. What is more, any mesh distortion gives a further spurious stiffness 
to the model. Introducing a Nodal Integration scheme the FEM model is not necessarily stiffer 
than the real material; on the contrary, in many applications the initial model is less stiff and a 
distorted mesh could paradoxically have a beneficial effect on the performances.  

The basics of nodal integration in FE analysis were firstly introduced by Dohrmann et al. 
[3]. They showed that applying the new technique the performances of the constant strain 
elements are significantly improved in the study of acute bending problems. Moreover the 
method was shown to be free from volumetric locking in the simulation of quasi-
incompressible materials. 

The nodal integration (NI) has been introduced also in the meshless environment [4-5], as 
an alternative to the standard integration, due to its efficiency and applicability in large 
deformations problems. 

Puso and Solberg [6] noted that the formulation proposed in [3] was prone to spurious low 
energy modes and introduced a new stabilized nodal integrated tetrahedral element. They also 
analytically showed that their new element was stable and consistent for linear elasticity. 

In [7] the stabilizing technique proposed in [6] was further analyzed and extended to the 
meshless methods, since spurious modes were detected also in this case. 

In this work a comparison was done between the two nodal integration schemes proposed 
in [3] and the scheme proposed in [4], whose usage is suitable also in the FEM. The three 
techniques will be applied to the simulation of extrusion, as a typical example of a forming 
process where significant deformations are present.  

Moreover the effect of the stabilization technique presented in [6] was studied. 

2 THE NODAL INTEGRATION FORMULTIONS 

Let  be a 2D computational domain, discretized by a cloud of nodes, from 1 to  denoted 
by  and a mesh of triangular elements, from 1 to , denoted by . In a traditional finite 
element code, the strain is calculated using the gradient matrix , that, if ,  … .  are 
the shape functions, is defined as: 
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 =


 0
0  

⋯…⋯
 0
0   


 (1) 

Thus, if  is the vector containing the (unknown) nodal displacements, the strain is given by:  =  (2) 

If three-node triangular elements are used, the shape functions derivates are constant in every 
element, and also the matrix . Thus element strain could be expressed as:  =  (3) 

and, if  is the matrix that relates strain and stress vectors, a stiffness matrix  is assembled, 
in order to solve the approximated problem: 

 =  = × 


(4) 

Where A is the area of each element. 
When the nodal integration is applied to FEM a constant strain field  is assumed within a 

particular volume , associated to each node. 
The easiest to interpret NI scheme is the one proposed in [4], that is based on the Voronoi 
diagram [8]. As it is shown in Figure 1, the Voronoi diagram is a subdivision of the 
computational domain in regions , where each region is associated with a node , so that 
any point in  is closer to the node  than to any other node in the domain. 

Figure 1: An example of Voronoi Diagram 

In this case the nodal volume  is, for each node, the area  of the corresponding cell in the 
diagram and the assumed strain is the average strain in this cell:  = 1  

(5) 
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Since constant strain elements are used, equation 5 could be rewritten as: 

 = 1   × 


 ∩  (6) 

We will call this scheme Global Voronoi Integration (GV). Observing that ∑  ∩ = , the strain  is a weighted average of the strain of the elements. The two NI 
schemes proposed in [3] provide also a strain averaging, but the weights are different. In 
particular it is imposed that the strain  depends only on the strain of the set of elements 
that contain the node . According to this constraint, one of the two schemes is also based on 
the Voronoi Diagram, but in this case the Diagram is locally calculated in each triangle. In 
particular each triangle  is divided in three zones , associated to its nodes, so that every 
point in  is closer to the node  than to any other node in . Then the nodal volume and the 
assumed strain are calculated as:  =  ∈

(7) 

 = 1   × ∈
 (8) 

We will refer to this scheme as Local Voronoi Integration (LV). The other technique proposed 
in [3] is not based on geometrical considerations but provides a heuristic calculation of the 
assumed strain, imposing that the area of the triangles is divided in three equal parts, 
associated to its nodes. Hence:  =  3∈

(9) 

 = 1   × 3∈
 (10)

The latter scheme is called Direct Averaging Integration (DA). 

3 IMPLEMENTATION OF THE METHOD AND COMPUTATIONAL TIMES 
Similarly to a traditional FE interpolation the assumed strain could be related to the 

displacement field using an equivalent gradient matrix:  =  (11)

It is easy to demonstrate that the matrixes  will be a weighted average of the element 
matrixes , calculated using the same weight coefficients of the strain case, depending on the 
specific NI scheme. Thus, in the implementation of the method, the matrixes  are calculated 
and the global stiffness matrix is assembled as: 
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 = × 


(12)

This last calculation takes an additional computational time that is negligible respect to a 
traditional FEM code when DA scheme is used. In fact, only the volume of the elements has 
to be calculated and the equivalent gradient matrixes are directly calculated as a linear 
combination of the element gradient matrixes. 

The situation changes in the Voronoi-based (GV and LV) techniques. In particular in the 
GV case all the areas of the intersections between a given Voronoi cell and the elements have 
to be calculated. In this work this operation has been carried out describing both the cells and 
the elements as convex polygons and then applying the Lasserre algorithm [9]. Although the 
computational complexity is linear with the number of nodes this is a significant time 
consuming operation that could take a computational time of the same order or slightly higher 
than the total time consumed for the analysis by a traditional FEM code. Anyway, the 
asymptotical linear complexity ensures that for clouds composed by a high enough number of 
nodes this time tends to be smaller than the time requested for the resolution of the equations. 

The LV scheme could be also implemented describing the geometrical entities by convex 
inequalities and applying the Lasserre algorithm or other similar. Nevertheless in order to 
advantage the rapidity of the simulation other more efficient strategies are possible. In 
particular, after determining the coordinates of the circumcenters of the triangular elements, 
the intersections areas could be find out calculating the areas of particular triangles. This 
operation takes a practically negligible time, as in the DA case. 

Concerning the computational times of a NI code two more aspects have to be taken into 
account. The first is that the assembled stuffiness matrix is denser that the matrix that would 
be assembled using a traditional procedure. This increases the resolution time about the 30%.  

On the contrary the second aspect advantages the new technique. In fact the use of Nodal 
Integration seems to avoid the volumetric locking problems typical of FEM when 
incompressibility is imposed. Thus, unlike in a traditional code where coupled pressure-
velocity formulations has to be used to overcome to this problem, only the velocities could be 
taken as unknowns, reducing significantly the resolution time. This second recovery offsets 
the precedent augment. 

4 THE CASE STUDY 
According to the introduction, an extrusion process has been analyzed as a typical example 

of forming process in which the large deformation stresses the classical FE formulation. A 
plain strain 2D model has been used, with the geometrical characteristics and the boundary 
conditions illustrated in figure 2. As far as the material behavior is considered, in the forming 
processes and in particular in extrusion, strains are very large as compared to elastic ones. 
Thus, it is a common practice for this kind of processes to assimilate the material behavior to 
a viscoplastic one, in which the stress depends on the strain rate [10].  
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Figure 2: Sketch of the used model 

In particular, a Northon-Hoff model has been used; it relates the effective stress to the 
equivalent strain rate in the following form:  = ̅ (13)

Together with this global relation the stress components assembled in the vector  =|  | has to be related to the strain rate components,  = |  |. In the 
used model this corresponds to define a viscosity µ in the following form:  = 3 ̅ = ̅ (14)

and to use it in the assembling of the constitutive matrix , whose expression, in plain strain, 
is given by: 

 = 21 − 2 1 −   0 1 −  00 0 1 − 22  (15)

In this work a value of the Poisson’s coefficient  = 0.49999 has been employed in order to 
impose incompressibility. 

The used values of the Northon-Hoff coefficients have been:  = 150,  = 0.2 (16)

that, according to [11], correspond to some common Aluminum alloys. 
Due to the non-linear character of the constitutive equations an iterative scheme has to be 

applied for their resolution. In particular, taking into account the strong nonlinearities given 
from the value of , the Direct Iteration Method [12] has been preferred to the Newton-
Raphson scheme, whose convergence is not ever straightforward in this type of problems. 
This iterative procedure has been combined with the stabilization technique, as it is discussed 
in the following chapter. 

5 THE STABILIZATION TECHNIQUE 

According to [6], a stabilized stiffness matrix  has to be assembled using the 
stabilization parameter  and the modified behavior matrix  that, when a linear problem is 
studied, leads to: 
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 =  +  =   − 

 +   




(17)

The influence of  on the results will be discussed in the relative section; the matrix  differs 
from  because it is assembled using a different Poisson’s coefficient, since locking problems 
would be present in the elementary term. A value of  = 0.4 has been used.  

In the resolution of the non-linear equations the stabilized stiffness matrix is then 
assembled in the form: 

 =  [ − ]

 +   




(18)

where the superscript  indicates the iteration within a time increment as well as  is  the 
viscosity calculated from the previous velocity field. The iteration method is initialized with  =  and obviously terminates when  = . Obtained the velocity values the geometry 
is updated and the following time step could be studied. 

6 RESULTS 

The investigated process was simulated using a punch speed  = 1/ and considering 
50 time steps (1/. In figure 3 are reported the pressure and velocity field, using the LV 
scheme, with a regular mesh and an irregular one of about 1000 nodes. No stabilization has 
been considered. Looking at the velocity field of the regular mesh the presence of the spurious 
modes is clearly observable; what it is more the pressure field is completely wrong since it 
presents strong oscillation in the direction of the mesh. The situation is quite different when 
the irregular mesh is used; in this case the velocity field is quite more regular as well as the 
pressure field has a satisfactory trend, considering the reduced number of nodes. This 
confirms the well-known phenomenon that the regularity of the mesh favors the spurious 
deformations.  
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Figure 3: The regular and the irregular mesh and their respective pressure and velocity fieldsp 

Since a first stabilizing effect is given only by using an irregular mesh the three NI 
schemes has been preliminarily compared without introduce the stabilization technique, but 
using only the benefic effects of the irregularity of the mesh. 

In figure 4 has been reported the punch load during the process predicted with the three 
techniques, using two meshes, of 2000 and 5000 nodes respectively. 

Figure 4: Extrusion load for the three scemes with different types of mesh 
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Looking at the graphs a very slightly difference is observed between the different schemes. 
Anyway the extrusion force is a global variable whose prevision does not heavily depends on 
local phenomena that could condition the specific code prediction; for this reason a better 
comparison could be done looking at the flow stress distribution at the last step, in figure 4.

DA 

LV 

GV 

Figure 5: The flow stress distribution for the three nodal integration schemes 

In this case the Voronoi-based schemes are quite similar, while the DA presents a slightly 
lower and more irregular field. Since, according to session 3, the DA and LV schemes would 
be preferable for the computational times and considering the more regular trend of LV 
results, that are in excellent agreement with GV ones, the Local Voronoi integration scheme 
appears to be the most convenient choice. 
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Concerning the stabilization in figure 6 the velocity field at the 4th step is reported for the 
two types of mesh (again using the LV scheme with 1000 nodes) and for different values of .  = 0

 = 0.05

 = 0.10

Figure 6: Influence of the stabilization parameter on the velocity field, for the regular mesh (left) and the 
irregular one (right) 

It is very interesting to note that already a value of   = 0.05 has a significant stabilizing effect and that imposing  = 0.10 even the regular 
mesh simulation has a very regular velocity field, as in a traditional FEM. 

Even more interesting are the effects of  on the punch load. In order to compare the 
prediction capabilities of the NI techniques with a reference result, the investigated case study 
has been also simulated with the commercial FEM code DEFORM, that demonstrated in the 
last years an excellent accuracy in 2D models such as the one considered in this work; 
moreover, a very refined mesh has been used in this simulation so that the DEFORM solution 
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could be considered to be very close to the analytical one. Observing the figure 7, obtained for 
the LV scheme with an irregular mesh of 5000 nodes, two evidences are remarkable: 

• all the stabilized curves are close to the DEFORM solution, while the non-
stabilized one presents a significant lower load prediction. 

• increasing the value of  the stabilized curves cover a range that includes the 
DEFORM and presumably also the effective solution. 

Figure 7: Punch load for different values of the stabilization parameter 

The first aspect is due to the more irregular velocity field that leads to a different shape of 
the extruded material. In figure 8 a comparison is done between the shape of the non-
stabilized simulation and stabilized one with α=0.10. 

Figure 5: The predicted shape for the non-stabilized code (left) and the stabilized (right) 

In particular, when the stabilization is not applied, the extruded material has a larger shape 
and, for this reason, the requested load results to be slower. 

Concerning the second consideration, the influence of α on the load could be explained 
observing that the traditional FEM matrix  in equation 17 gives additional stiffness to 
the model with the increase of α. Analyzing the curves in figure the optimal value of α, in this 
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application, is about 0.10. Anyway, in general, the most favorable choice of its value depends 
on several aspects, such as the mesh characteristics, and could be also a lower value, since as 
it has been shown it is already sufficient to stabilize the model. 

7 CONCLUSIONS 
In this paper three nodal integration techniques have been compared in the simulation of an 

extrusion process. The Voronoi-based formulations have shown a slightly better quality of 
predictions; in particular the LV scheme appears to be the most favorable choice since it 
requires only a negligible computational time for the geometrical part. 

Furthermore the stabilization of this method has been discussed. In particular it has been 
shown that even if satisfactory results are obtainable using an irregular mesh, their quality is 
significantly improved if a stabilization is introduced; moreover varying the stabilization 
parameter the stiffness of the model can be properly tuned.  
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