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Abstract
Within this paper we discuss a numerical strategy to solve the elasticity problem upon 
unstructured and non conforming meshes, allowing all kinds of flat-faced elements 
(polygons in 2D and polyhedra in 3D). The core of the formulation relies on two numerical 
procedures 1) the Control Volume Function Approximation (CVFA), and 2) the polynomial 
interpolation in the neighborhood of the control volumes, which is used to solve the surface 
integrals resulting from applying the divergence theorem. By comparing the estimated 
stress against the analytical stress field of the well known test of an infinite plate with a 
hole, we show that this conservative approach is robust and accurate.
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1. Introduction
One of the main aims in engineering is creating tools, structures and systems to enhance the quality of life in our 
society. In the course of the creation process, the design stage is critical for the final outcome. During this stage the 
engineer have to predict the prototype response when interacting with the physical world. Many of the observed 
phenomena in the physical world, such as solid mechanics, fluid dynamics, heat diffusion, and others, can be 
described with Partial Differential Equations (PDEs) by assuming time and space as a continuum.

Computational Continuum Mechanics (CCM) is the area dedicated to develop numerical methods and heuristics to 
solve these PDEs. Most of the methods can be classified into these two families: 1) weighted residual and 2) 
conservative methods. The Galerkin formulations are popular and widely used weighted residual methods, such as the 
Finite Element Method (FEM), which is a well established technique in Computational Solid Mechanics (CSM). 
Alternatively, the Finite Volume Method (FV) and the Control Volume Function Approximation (CVFA) are common 
approaches of conservative methods. The main difference between both families is that weighted residuals methods 
do not conserve quantities locally, but globally instead, resulting in linear systems with commendable numerical 
properties (symmetrical and well-conditioned matrices, for example). Nevertheless, due to its conservative nature, the 
second group is more attractive for fluid structure interaction [1,2] and multiphysics simulations [3,4], where several 
PDE-solvers must be coupled. For that reason, in recent years FV has been subject of interest for solving CSM 
problems.

Most of the CSM non-linear strategies depend on the accuracy of the estimated stress field for the elasticity problem, 
such as those for plasticity and damage [5,6]. Hereafter we refer as elasticity-solver to the numerical computation that 
calculates the displacement and stress fields for a given domain and boundary conditions.

In his influential papers, Oñate et al. propose a FV format for structural mechanics based on triangular meshes [7,8], 
discussing the cell vertex scheme, the cell centred finite volume scheme and its corresponding mixed formulations, 
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showing that the cell centred strategy produces the same symmetrical global stiffness matrix that FEM using linear 
triangular elements. Analogously, Bailey et al. develop a similar approach, but using quadrilateral elements to produce 
cell-centred volumes [9,10]. Even though, the shapes of the volumes in both formulations are completely defined by the 
FEM-like mesh (triangular or quadrilateral) and it is not possible to handle arbitrary polygonal shapes, as we might 
expect when receiving the mesh as a read-only input.

Slone et al. [11] extends the investigation of [7] by developing a dynamic solver based on an implicit Newmark scheme 
for the temporal discretization, with the motivation of coupling an elasticity-solver with his multi-physics modelling 
software framework, for later application to fluid structure interaction.

Another remarkable algorithm is the proposed by Demirdzic et al. [12,13,14,15,16]. The numerical procedure consists 
in decoupling the strain term into the displacement Jacobian and its transpose in a cell-centred scheme. The Jacobian is 
implicitly estimated by approximating the normal component of each face as the finite difference with respect to the 
adjacent nodes, while the Jacobian transpose is an explicit average of Taylor approximations around the same 
adjacent nodes. This decoupling produces a smaller memory footprint than FEM because the stiffness matrix is the 
same for all the components. The solution is found by solving one component each iteration in a coordinate descent 
minimization. This line of work has shaped most of the state of the art techniques in FV for coupling elasticity-solvers 
to Computational Fluid Dynamics (CFD) via finite volume practices (usually associated to CFD), such as the schemes 
proposed by [17,18,19]. However, this segregated algorithm may lead to slow convergence rates when processing 
non-linear formulations, for example, when it is required to remove the positive principal components of the stress 
tensor in phase-field damage formulations [20]. In addition, if some non-linear strategy requires multiple iterations of 
the linear elasticity-solver, such as finite increments in damage models, the nested iterations will increase the 
processing requirements for simple problems. To circumvent this drawback Cardiff et al. presents a fully block coupled 
direct solution procedure [21], which does not require multiple iterations, at expense of decomposing the 
displacement Jacobian of any arbitrary face into a) the Jacobian of the displacement normal component, b) the 
Jacobian of the displacement tangential component, c) the tangential derivative of the displacement normal 
component and d) the tangential derivative of the displacement tangential component. This decomposition 
complicates the treatment of the stress tensor in the iterative non-linear solvers mentioned before for plasticity and 
damage.

A generalized finite volume framework for elasticity problems on rectangular domains is proposed by Cavalcante et al. 
[22]. They use higher order displacement approximations at the expense of fixed axis-aligned grids for discretization.

Nordbotten proposes a generalization of the multi-point flux approximation (MPFA), which he names multi-point stress 
approximation (MPSA) [23]. The MPSA assembles unique linear expressions for the face average stress with more than 
two points in order to capture the tangential derivatives. The stress field calculated with this procedure is piece-wise 
constant.

In this work, we propose an elasticity-solver based on CVFA techniques [24,25], using piece-wise polynomial 
interpolators for solving the surface integrals on the volumes boundaries. The polynomials degree can be increased 
without incrementing the system degrees of freedom, which make this method more suitable for non-linear models 
and dynamic computations. Furthermore, this algorithm can handle polygonal/polyhedral, unstructured and non 
conforming meshes, and does not require the decomposition of the stress tensor.

2. Mathematical model

We consider an arbitrary body, Ω ∈ ℝdim, with boundary ∂Ω. The displacement of a point x ∈ Ω is denoted by 
u (x) ∈ ℝdim. The subscript brackets ( ⋅ )[] indicates the component of the vector or matrix. By assuming small 
deformations and deformation gradients, the infinitesimal strain tensor, denoted ε (x) ∈ ℝdim×dim, is given by

ε = 1
2 (∇u + [∇u ]T ) . (1)

Moreover, by considering isotropic elastic materials, the stress tensor, σ (x) ∈ ℝdim×dim, is defined as

σ = 2με + λtr (ε )I, (2)

where I is the identity matrix, tr ( ⋅ ) is the trace, and λ  and μ  are the Lamé parameters characterizing the material. 
These parameters are related with the Young's modulus, E , and the Poisson's ratio, ν , by the following equivalences
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μ = E
2(1 + μ ) ,

(3)

and

λ = νE
(1 + ν )(1 − λν ) , (4)

where λν = ν  for plane stress analysis, and λν = 2ν  for plane strain and the 3D cases.

The strong form of the static linear elasticity equation is

∇ ⋅ σ = 0, (5)

The domain boundary ∂Ω = ΓN ∪ ΓD  is the union of the boundary with Neumann conditions, denoted ΓN , and the 
boundary with Dirichlet conditions, denoted ΓD . Equation (5) must be satisfied for the given forces bN  and 
displacements uD  along the boundary. The following equations remark these user defined boundary conditions,
 

σn = bN (x), x ∈ ΓN , (6.a)
u = uD (x), x ∈ ΓD , (6.b)

Figure 1 illustrates the initial body with the boundary conditions, and the distorted body after equilibrium is solved in 
the elasticity equation.

Figure 1. (a) The initial body, Ω, with its boundary conditions ∂Ω=ΓN ∪ΓD . (b) The distorted body resulting from 
solving equilibrium in the elasticity equation, with the boundary conditions given by bN  and uD . The 

boundaries where there are not conditions indicated explicitly, correspond to Neumann conditions bN =0

3. Numerical method
On this section we go into the details of the numerical procedure by discussing: 1) the discretization with CVFA, 2) the 
control volumes integration, 3) the subfaces integrals, 4) the simplex-wise polynomial approximation, 5) the pair-wise 
polynomial approximation, 6) the homeostatic splines used within the shape functions, 7) the linear system 
assembling, 8) how to impose boundary conditions and 9) two special cases of the formulation.

For the sake of legibility, in some parts of the text we unfold the matrices only for the bidimensional case, but the very 
same procedures must be followed for the 3D case.

3.1 Discretization of domain into control volumes
The domain Ω is discretized into N  control volumes, denoted Vi , using the Control Volume Function Approximation 
(CVFA) proposed by Li et al. [24,25]. The partition Ph  of Ω is defined by
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Ph = ⋃
i =1

N

Vi ,    with   Vi ∩ Vj = ∅,    i ≠ j ,

(7)

where the boundary of each control volume, ∂Vi , is composed by Ni  flat faces, denoted eij ,

∂Vi = ⋃
j =1

Ni

eij ,    with   eij ∩ eik = ∅,    j ≠ k .

(8)

Figure 2 illustrates the partition Ph  of Ω into N  control volumes defined in the equations (7) and (8).

Figure 2. The partition Ph  is the discretization of the domain Ω into N  control volumes. The boundary of the 
control volumes, ∂Vi , is conformed by Ni  flat faces, denoted eij . The unit vector nij  is normal to the face eij . The 

faces of the volumes adjacent to the boundary ΓN  are integrated using the condition bN

 Figure 3 shows a three dimensional control volume.

Figure 3. The boundary ∂Vi  of the three dimensional control volume Vi  is subdivided into Ni  
flat faces, denoted eij . The unit vector nij  is normal to the face eij

Every control volume Vi  must have a calculation point

xi ∈ Vi ∪ ∂Vi , (9)

which is used to estimate the displacement field. Such a point is the base location to calculate the stiffness of the 
volume. In the volumes adjacent to the boundary ΓD , it is convenient to establish the calculation point over the 
corresponding boundary face,

xi ∈ ∂Vi ∩ ΓD , (10)
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in order to set the Dirichlet condition directly on the point.

3.2 Control volumes integration

The elasticity equation (5) is now integrated over the control volume

∫Vi
∇ ⋅ σ  dV = 0,

(11)

using the divergence theorem we transform the volume integral into a surface integral over the volume boundary

∫∂Vi
σn dS = 0.

(12)

The evaluation of the surface integrals is based on the approximation of the displacement field inside the 
neighborhood of the volume, denoted Bi ,

ui (x) = ∑
q ∈Bi

φq xq ,
(13)

making use of a group of piece-wise polynomial interpolators, denoted φq . We are going to discuss these interpolators 
later in this section.

For that reason, the displacement field is decoupled from the stress tensor by using the strain (1) and stress (2) 
definitions. Taking advantage of the stress tensor symmetry  σ , we rewrite the stress normal to the boundary as

σn = [σ[11] σ[12]

σ[12] σ[22]] [n[1]

n[2]] = [n[1] n[2]

n[2] n[1]] [σ[11]

σ[22]

σ[12]
] = T σ→ ,

(14)

where T is the face orientation matrix and  σ→  is the engineering stress vector. Developing the stress definition (2) 
component-wise we can decompose it into the constitutive matrix, denoted D, and the engineering strain vector, 
denoted ε→ , as follows

σ→ = [σ[11]

σ[22]

σ[12]
] = [2μ  ε[11] + λ (ε[11] + ε[22] )

2μ  ε[22] + λ (ε[11] + ε[22] )
2μ  ε[12]

] (15)

= [ (2μ + λ ) λ
λ (2μ + λ )

μ ] [ ε[11]

ε[22]

2ε[12]
] = D ε→ ,

(16)

then the components of the strain vector are retrieved from the equation (1), and it is decomposed into the matrix 
differential operator S and the displacement function u .

ε→ = [ ε[11]

ε[22]

2ε[12]
] = [

∂u[1]
∂x[1]

∂u[2]
∂x[2]

∂u[1]
∂x[2]

+
∂u[2]
∂x[1]

] = [
∂

∂x[1]

∂
∂x[2]

∂
∂x[2]

∂
∂x[1]

] [u[1]

u[2]] = Su ,

(17)

Summarizing the equations (14), (16) and (17) we have

σn = T σ→ = TD ε→ = TDSu , (18)
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where TDS is the stiffness of the volume boundary.

Once the displacement field is decoupled, we rewrite the equation (12) as

∫∂Vi
TDSu  dS = 0.

(19)

Using the fact that the control volume boundary is divided into flat faces, as in equation (8), we split the integral (19) 
into the sum of the flat faces integrals

∑
j =1

Ni

∫eij TDSu  dS = 0.

(20)

Notice that the face orientation T along the flat face, denoted Tij , is constant. Furthermore, if the control volumes are 
considered to be made of a unique material and the flat faces to be formed by pairs of adjacent volumes, then the 
constitutive matrix D along the flat face, denoted Dij , is also considered constant. The matrix Dij  is estimated from the 
harmonic average of the Lamé parameters assigned to the adjacent volumes, where λi  and μi  are the properties of the 
volume Vi ,

μij =
2μi μj
μi + μj

    and    λij =
2λi λj

λi + λj
,

(21)

with Tij  and Dij  we simplify the equation (20) as

∑
j =1

Ni

Tij Dij Hij = 0,

(22)

where Hij  is the strain integral along the flat face eij ,

Hij = ∫eij Su  dS .
(23)

The accuracy of the method depends on the correct evaluation of this integral.

3.3 Calculating face integrals

The surface integrals Hij  along the flat faces eij  are calculated using an auxiliary piece-wise polynomial approximation 
of the displacement field. This approximation is based on the simplices (triangles in 2D or tetrahedra in 3D) resulting 
from the Delaunay triangulation of the calculation points xi  from the neighborhood of Vi . The Delaunay triangulation 
is the best triangulation for numerical interpolation, since it maximizes the minimum angle of the simplices, which 
means that its quality is maximized as well. We define the neighborhood Bi  of volume Vi  as the minimum set of 
calculation points xj  such that the simplices intersecting Vi  does not change if we add another calculation point to the 
set. Observe that the neighborhood Bi  does not always coincide with the set of calculation points in volumes adjacent 
to Vi , as in most of the FV formulations. Once the neighborhood Bi  is triangulated, we ignore the simplices with angles 
smaller than 10 degrees, and the simplices formed outside the domain, which commonly appear in concavities of the 
boundary ∂Ω. The local set of simplices resulting from the neighborhood of Vi  is denoted Pα . Figure 4 illustrates the 
difference between (a) the simplices resulting from the triangulation of the calculation points in adjacent volumes and 
(b) those resulting from the triangulation of the proposed neighborhood Bi .
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Figure 4. (a) The dotted line illustrates the triangulation of the calculation points of adjacent volumes to Vi , used by most of the 
FV methods. (b) The dotted line shows the simplices forming the piece-wise approximation used to solve the integrals Hij  of the 

control volume Vi

 The face eij  is subdivided into Nij  subfaces, denoted eijk ,

eij = ⋃
k =1

Nij

eijk ,    with   eijk ∩ eijl = ∅,    l ≠ k ,

(24)

these subfaces result from the intersection between Pα  and the control volume Vi . Figure 4 (b) illustrates six key points 
of this approach: 1) the simplices are used to create a polynomial interpolation of u (x) over the boundary of the 
control volume, 2) most of the faces are intersected by several simplices, such faces must be divided into subfaces to 
be integrated, 3) some few faces are inside a single simplex, as illustrated in the face formed by Vi  and Vk , 4) there are 
volumes that require information of non-adjacent volumes to calculate its face integrals, such as Vi  requires Vk , 5) the 
dependency between volumes is not always symmetric, which means that if Vi  requires Vk  does not implies that Vk  
requires Vi , and 6) non conforming meshes are supported, as shown in the faces formed by Va , Vb , Vc , Vd  and Vj .

The integral (23) is now rewritten in terms of the subfaces

Hij = ∑
k =1

Nij

 ∫eijk Su  dS ,

(25)

Each subface eijk  is bounded by a simplex, where the displacement uijk , and it derivatives,  (Su )ijk , are a polynomial 
interpolation. Hence the integrals in equation (25) are solved exactly by using the Gauss-Legendre quadrature with the 
required number of integration points, denoted Ng , depending on the polynomial degree,

∫eijk Su  dS = ∑
g =1

Ng

  wg (Su )ijk |xg .

(26)

where wg  is the corresponding quadrature weight and (Su )ijk |xg  is the strain evaluation of the Gauss point with the 
proper change of interval, denoted xg . Figure 5 shows the change of interval required for a 2D face. A 3D face (a 
polygon) must be subdivided to be integrated with a triangular quadrature.
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Figure 5. (a) The shaded volume Vi  is being integrated. The integral over the subface eijk  is calculated using the 

polynomial approximation of the shaded simplex. The integration point must be mapped to (b) the normalized 
space [−1,1] in order to use the Gauss- Legendre quadrature

 Most of the cases, the displacement  uijk  is interpolated inside the simplices, but in some geometrical locations these 
can not be created, in consequence, the displacement  uijk  is interpolated pair-wise using the volumes adjacent to the 
subface  eijk . We discuss both strategies in the following subsections.

3.4 Simplex-wise polynomial approximation

In the general case, the simplices are formed by  (dim + 1)  points. The points forming the simplex that is bounding the 
subface eijk  are denoted xq , and its displacements uq .

The shape functions used for the polynomial interpolation are defined into the normalized space. A point in such space 
is denoted ξ , its dth  component is denoted ξ[d ], and the qth  point forming the simplex is expressed ξq . The nodes of the 
normalized simplex are given by the origin, 0, and the standard basis vectors,

ξq = {eq ,  for  q ∈ [1,  dim],
0,  if  q =  dim + 1

(27)

where eq  is the qth  standard basis vector. Figures 6 and 7 illustrates the original and the normalized simplices with the 
corresponding node numeration for 2D and 3D respectively.

Figure 6. (a) The simplex formed by the points x1, x2 and x3 in the original space contains an 

interior point xg  that is mapped to (b) ξg  into the normalized 2D-simplex formed by the points 
ξ1, ξ2 and ξ3
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Figure 7. (a) The 3D-simplex formed by the points x1, x2, x3 and x4 in the original space contains an interior 
point xg  that is mapped to (b) ξg  into the normalized 3D-simplex formed by the points ξ1, ξ2, ξ3 and ξ4

 The shape functions, denoted φq , are used to interpolate the displacement field inside the normalized simplex. Such 
functions are non-negative and are given by
 

Pc (ξ[q ] ) ,     if  q ∈ [1,  dim], (28.a)

1 − ∑
d =1

dim

Pc (ξ[d ] ) ,     for  q =  dim + 1,
(28.b)

where Pc ( ⋅ ) is the homeostatic spline, which is the simplest polynomial defined in the interval [0, 1] that have  c   
derivatives equal to zero in the endpoints of the interval. We will discuss this spline later.

The set of shape functions is a partition of unity, which means that the sum of the functions in the set is equal to one 
into the interpolated domain

∑
q =1

dim+1

φq (ξ ) = 1    for any ξ  inside the simplex,

(29)

furthermore, these functions are equal to one in its corresponding node, which implies that

φq (ξq ) = 1     for any ξq  forming the simplex, (30)

φq (ξp ) = 0     for any ξp ≠ ξq  forming the simplex, (31)

The gradients of the shape functions with respect to the normalized space are denoted ∇ξ φq . The norm of the sum of 
such gradients is zero

| | ∑
q =1

dim+1

∇ξ φq (ξ ) | | = 0    for any ξ  inside the simplex,

(32)

which means that there are not numerical artifacts into the strain field.

Any point inside the simplex can be formulated as a function of a point in the normalized space, p (ξ ) , by using the 
shape functions and the points forming the simplex
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p (ξ ) = ∑
q =1

dim+1

φq (ξ )xq ,

(33)

In order to calculate the normalized point, denoted ξg , associated to the integration point xg = p (ξg ) , we use the 
shape functions definitions to rewrite the equation (33) in matrix form

p (ξ ) = [x3[1]

x3[2]] + [ (x1[1] − x3[1] ) (x2[1] − x3[1] )
(x1[2] − x3[2] ) (x2[2] − x3[2] ) ] [Pc (ξ[1] )

Pc (ξ[2] ) ]
⏟

2D case (triangle)

(34)

= x(dim+1) + JΔ Pc (ξ ) , (35)

where Pc (ξ )  is the vector resulting from evaluating the spline for ξ  component-wise, and JΔ  is the distortion matrix 
given by the concatenation of the following column vector differences

JΔ = [ (x1 − x(dim+1)), . . . , (xdim − x(dim+1)) ] (36)

Now, from equation (35) we retrieve the point xg  as

xg = p (ξg ) = x(dim+1) + JΔ Pc (ξg ) , (37)

and solving for ξg  we obtain

ξg = Qc ( ( JΔ )−1 (xg − x(dim+1) ) ) , (38)

where Qc  is the inverse function of Pc  applied component-wise to the product of the matrix-vector operation.

Similar to the approximation in equation (33), within the simplex enclosing the subface eijk , the displacement field 
evaluated at xg  is defined as,

uijk |xg = ∑
q =1

dim+1

φq (ξg )  uq

(39)

Hence, when calculating the quadrature of equation (26), the strain evaluated at the integration point is given by

(Su )ijk |xg    = ∑
q =1

dim+1

Sφq (ξg )  uq ,

(40)

= [ ∂φ1
∂x[1]

∂φ1
∂x[2]

∂φ1
∂x[2]

∂φ1
∂x[1]

     

∂φ2
∂x[1]

∂φ2
∂x[2]

∂φ2
∂x[2]

∂φ2
∂x[1]

     

∂φ3
∂x[1]

∂φ3
∂x[2]

∂φ3
∂x[2]

∂φ3
∂x[1]

]
|xg

[
u1[1]

u1[2]

u2[1]

u2[2]

u3[1]

u3[2]
]

(41)

= Bijk |xg    u→ ijk , (42)

where Bijk |xg  captures the deformation at xg , and u→ ijk  is the vector with the concatenated displacement components 
of the points forming the simplex.

In order to calculate the deformation matrix Bijk , we require the derivatives of the shape functions with respect to x, 
denoted ∇φq . These derivatives are calculated by solving the linear systems resulting from the chain rule
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∇ξ φq = [ ∂φq

∂ξ[1]

∂φq

∂ξ[2]
] = [ ∂x[1]

∂ξ[1]

∂x[2]

∂ξ[1]

∂x[1]

∂ξ[2]

∂x[2]

∂ξ[2]
] [ ∂φq

∂x[1]

∂φq

∂x[2]
] = (∇ξ p )T  ∇φq ,

(43)

where ∇ξ p  is the geometric jacobian evaluated at ξ . This jacobian relates both spaces, captures the distortion of the 
simplex, and is derivated from equation (33),

∇ξ p = ∑
q =1

dim+1

xq (∇ξ φq )T ,

(44)

The gradients of the shape functions with respect to ξ  inside the sum are obtained straightforward once we have the 
spline first derivative Pc′ . Notice that the geometric jacobian is equivalent to the distortion matrix JΔ  if and only if the 
homeostatic spline is Pc (z ) = z .

3.5 Pair-wise polynomial approximation

Since we are not making any assumption about the volumes distribution through the mesh, neither about the internal 
location of its calculation points, then we have to deal with portions of the mesh that are no covered by any simplex. 
Figure 8 illustrates the two most common cases. The first case takes place in meshes where the calculation points of 
volumes contiguous to the boundary are in the interior of such volumes, producing subfaces not intersected by any 
simplex, and the second case occurs when elongated sections of the domain are discretized with a queue of aligned 
volumes, where each volume has only two neighbors on opposite faces and no simplex can be formed.

Figure 8. (a) When the calculation points of volumes contiguous to the boundary are in the interior of such volumes, there will 
arise subfaces next to the boundary that can not be covered by any simplex. (b) Portions of the mesh formed by a queue of 

aligned volumes do not allow the formation of simplices through that queue and there will be whole faces not covered by any 
simplex

 In such cases, the displacement field within the subface eijk  is a pair-wise polynomial approximation between the 
adjacent volumes, xi  and xj , regardless the dimension

uijk (xg ) = (1 − Pc (zg ) )⏟
φi

 ui + Pc (zg )⏟
φj

 uj , (45)

where φi  and φj  are the shape functions, and zg  is the normalized projection of the integration point xg  into the vector 
which goes from xi  to xj , denoted x

ij
→ = (xj − xi ) ,

zg =
(xg − xi )T x

ij
→

||x
ij

→||2 .
(46)

When calculating the quadrature of equation (26), the pairwise strain is given by
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(Su )ijk |xg    = Sφi (ξg ) ui   +   Sφj (ξg ) uj , (47)

= [ ∂φi
∂x[1]

∂φi
∂x[2]

∂φi
∂x[2]

∂φi
∂x[1]

     

∂φj

∂x[1]

∂φj

∂x[2]

∂φj

∂x[2]

∂φj

∂x[1]

]
|xg

[
ui [1]

ui [2]

uj [1]

uj [2]
]

(48)

= Bijk |xg    u→ ijk , (49)

 In the general case, the gradient is not constant along the face eij , since its normal is not necessary aligned with x
ij

→, as 
illustrated in Figure 9. 

Figure 9. The gradient of the pairwise approximation is not constant along the face eij , since its normal is not 

necessary aligned with x
ij

→. The integration point is projected into x
ij

→ to evaluate the deformation matrix

 This pairwise approximation must be used only when necessary because it can not capture the deformation 
orthogonal to x

ij
→.

3.6 Homeostatic spline

The homeostatic spline is a function of a single variable defined from z = 0 to z = 1, denoted Pc (z ), and curved by the 
parameter  c , which indicates the level of smoothness. This spline is the simplest polynomial with  c   derivatives equal to 
zero at the endpoints z = 0 and z = 1. The polynomial degree is given by 2c + 1, and such a polynomial requires Ng =
c + 1 integration points to calculate the exact integral in equation (26) using the Gauss-Legendre quadrature.

When designing this spline, we wanted to gain accuracy by building a piece-wise bell-shaped interpolation function 
around the calculation points, inspired on the infinitely smooth kernels used in other numerical techniques. Therefore, 
we force the derivatives of the polynomial to be zero over such points in order to homogenize the function. For that 
reason, we use the term homeostatic spline when referring to this spline.

To fulfill the smoothness requisites commented before, we solved a linear system for calculating the 2c + 2 coefficients 
of the polynomial. The equations of this system were obtained by forcing the  c  derivatives to be zero at the endpoints. 
Once we solved the coefficients for the first twenty polynomials, from c = 0 to c = 19, we found out that the first half of 
such coefficients are null, and the entire polynomial can be calculated directly as

Pc (z ) = 1
bc

∑
k =1

1+c

( − 1)k  bk   z(k +c ),

(50)

where bk  is the kth  not null coefficient

bk = 1
k + c (∏

l =1

Ck

(1 + c )
l − 1),

(51)
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Ck  is the number of factors needed to calculate bk

Ck = (c /2) − |1 + (c /2) − k |, (52)

and bc  is accumulation of the coefficients for normalizing the spline

bc = ∑
k =1

1+c

( − 1)k bk ,

(53)

The first derivative is simply calculated as

Pc′ (z ) = 1
bc

∑
k =1

1+c

( − 1)k  bk   (k + c )  z(k +c −1)

(54)

Figure 10 (a) shows the evolution of the spline as we increase the smoothness parameter from c = 0 to c = 6, and 
Figure 10 (b) the evolution of it first derivative. Smoother splines produces higher order polynomials which increases 
the accuracy of the stress field approximation. This feature is specially important when solving non-linear problems 
sensibles to the stress field.

Figure 10. (a) The evolution of the homeostatic spline from c =0 to c =6 illustrates the smoothness 
requirements at the endpoints of each spline and its (b) first derivatives

 Since the derivatives of the homeostatic spline 50 are zero at the endpoints of the interval [0, 1], the inverse function is 
not defined in that points. However, we estimate a pseudo-inverse within this interval, Qc ≈ Pc

−1, by finding the 
coefficients of a polynomial of the same degree, 2c + 1, such that the endpoints coincide with the spline and the first 
derivative at the midpoint is equivalent to the inverse of the spline first derivative, that is

Qc (0) = Pc (0) = 0,    Qc (1) = Pc (1) = 1,    and   Qc′ (0.5) = 1
Pc′ (0.5) (55)

The higher derivatives in the midpoint are forced to be zero. Once we calculated the coefficients for the first twenty 
polynomials, from c = 0 to c = 19, we found out that the pseudo-inverse can be approximated directly from the 
following formulae

Q (z ) =  a1 z   +   (a1 − 1)(2c + 1) ∑
k =1

2c

( − 1)k  ak  z(k +1)

(56)

where a1 is the coefficient for z , and ak  is the factor that distinguish higher order coefficients. Such terms are 
calculated as

a1 = ( c
2 2

+ 1)2,    and   ak = 2(k −1) ∏
l =1

k −1

( 2c − l
2 + l ) ,

(57)
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respectively. Figure 11 exhibits the curves for the first seven levels of smoothness. The null higher derivatives 
requirement is noticeable at the midpoint.

Figure 11. Curves of the pseudo-inverse Qc  for the first seven levels of smoothness. The slope 
at the midpoint exposes the null higher derivatives requirement when increasing the 

polynomial order

 Figure 12 shows the shape functions for the 2D case. The top displays the last node function and the bottom the first 
node function, the function of the second node is equivalent to that of the first one. The columns separate the first 
three levels of smoothness. Top and bottom functions coincides at the edges in order to create a continuous field, but 
only the bottom functions decay uniformly from the node to the opposite edge. The shape functions with c = 0 are the 
only case where all the shape functions are indistinguishable, these are planes.

Figure 12. For the bidimensional case, the top displays the last node function and the bottom the first node function, the 
function of the second node is equivalent to that of the first one. The columns separate the first three levels of smoothness

 Figure 13 shows the magnitude of the gradient with respect to the normalized space. With the same tabular 
configuration of Figure 12, the columns separate the first three levels of smoothness, the top displays the last node 
gradient and the bottom the first node gradient, the gradient of the second node is equivalent to that of the first one. 
Only the gradient magnitude at the bottom has a uniform variation from the node to the opposite face, and the value 
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of the node does not contribute to the value of such a face. On the contrary, in the top can be observed that the value 
of the node contributes to the gradient at the opposite face, which means that using  c > 0  the continuity on the stress 
field is only guaranteed at the calculation points, but not in the simplices edges.

Figure 13. For the bidimensional case, the top displays the last node gradient magnitudes and the bottom the first node gradient 
magnitudes, the gradient magnitudes of the second node is equivalent to that of the first one. The columns separate the first 

three levels of smoothness

3.7 Assembling volume's equation

By using the simplex-wise (42) or the pair-wise (49) approximation, the strain face integral (25) is reformulated as

Hij = ∑
k =1

Nij

∑
g =1

Ng

  wg  Bijk |xg  u→ ijk ,

(58)

then, the volume equilibrium equation (22) is

∑
j =1

Ni

Tij Dij∑
k =1

Nij

∑
g =1

Ng

  wg  Bijk |xg  u→ ijk = 0,

(59)

reordering the terms we obtain

∑
j =1

Ni

∑
k =1

Nij

∑
g =1

Ng

  wg  Kijk |xg  u→ ijk = 0,

(60)

where the matrix

Kijk |xg = Tij Dij Bijk |xg , (61)

is the stiffness contribution at the integration point xg , within the subface eijk  when integrating the ith  volume. 
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Observe that the stiffness matrix Kijk  is rectangular and the resulting global stiffness matrix is asymmetric.

3.8 Boundary conditions

The Neumann boundary conditions are imposed over the volume faces eij  intersecting the boundary, by replacing the 
corresponding term in the sum of equation (20) with the integral of the function provided in (6.a),

∫eij TDSu  dS = ∫eij bN (x) dS
(62)

The Dirichlet conditions are imposed over the volumes calculation points by fixing the displacement as it is evaluated 
in the function given in (6.b),

ui = uD (xi ), (63)

Since the Dirichlet conditions are imposed directly on the calculation points, these points must be located along the 
face eij  which intersects the boundary with the condition ΓD .

3.9 Special cases

By making some considerations, we identify two special cases where the calculations can be simplified, in order to 
increase the performance of the total computation, at the expense of losing control over the volumes shape. These 
cases are: 1) the Voronoi mesh assumption and 2) the FV-FEM correlation.

In the first case, we assume that the initial mesh is equivalent to the Voronoi diagram and that the Voronoi centres 
correspond to the calculation points xi . Hence, the subdivision of the neighborhood Bi  is already given by the 
Delaunay triangulation which is dual to the Voronoi mesh, as illustrated in Figure 14 (a). Moreover, the integrals of 
subfaces eijk  using pair-wise approximations can be exactly integrated with the midpoint rule, since the faces are 
orthogonal to the vector joining the calculation points x

ij
→, and the derivatives along the subface are constants.

Figure 14. (a) The initial mesh is equivalent to the Voronoi diagram and the Voronoi centres correspond to the calculation points 
xi . (b) The initial mesh is generated from a FEM-like triangular mesh. The calculation points xi  are defined to be the nodes of the 

triangular mesh, and the volume faces are created by joining the centroids of the triangles with the midpoint of the segments

 In the second case, the initial mesh is generated from a FEM-like triangular mesh and the approximations are 
assumed to be linear. In such a case, the calculation points xi  are defined to be the nodes of the triangular mesh, and 
the volume faces are created by joining the centroids of the triangles with the midpoint of the segments, as presented 
in Figure 14 (b). This particular version is equivalent to the cell-centred finite volume scheme introduced by Oñate et al. 
[7], who proved that the global linear system produced by this FV scheme is identical to that produced by FEM if the 
same mesh is used.
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4. Results
In order to test the numerical performance of the proposed method, we use the well known analytical experiment of 
an infinite plate with a circular hole in the origin [26]. In such a experiment, the plate is stretched along the horizontal 
axis with a uniform tension of f[1] = 10  kPa  from each side, as is shown in Figure 15. The material is characterized by the 
Poisson ratio, ν = 0.3, and Young modulus, E = 10  MPa . Plane stress is assumed with thickness equivalent to the unity. 
The dimensions of the computational domain are a = 0.5m  and b = 2m .

Figure 15. (a) Infinite plate with a hole being stretched along the horizontal axis with a force of f[1]=10  kPa  from each side. (b) 
Computational domain, a =0.5m  and b =2m , with axysymmetrical assumptions used to test the numerical method. The polar 

coordinates, r  and θ , for calculating the analytical stress field

 The analytical solution is given by the following formulae
  

σ[11] = f[1][1 − a2

r2 ( 3
2 cos(2θ ) + cos(4θ ) ) + 3a4

2r4 cos(4θ )] , (64)

σ[22] = f[1][ − a2

r2 ( 1
2 cos(2θ ) − cos(4θ ) ) − 3a4

2r4 cos(4θ )] , (65)

σ[12] = f[1][ − a2

r2 ( 1
2 sin(2θ ) + sin(4θ ) ) + 3a4

2r4 sin(4θ )] , (66)

where the polar coordinates,

r = x[1]
2 + x[2]

2 ,    and   θ = tan−1( x[2]
x[1] ) ,

(67)

are used within the calculus. Figure 16 (a) exhibits the discretization of the computational domain into 2411 polygonal 
volumes used to compare the numerical results against the analytical stress field. This mesh is not equivalent to the 
Voronoi diagram; Figure 16 (b) the level sets of σ[11] between 0 to 30  kPa , with steps of 1  kPa . Figure 16 (c) Level sets of 
σ[22] between − 10 and 6  kPa , with steps of 0.8  kPa  and Figure 16 (d) Level sets of σ[12] between − 10 and 2  kPa , with 
steps of 0.6  kPa .
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Figure 16. (a) Polygonal mesh used for comparison of numerical results. (b) Level sets of σ[11] between 0 to 30  kPa . (c) Level sets 
of σ[22] between −10 and 6  kPa . (d) Level sets of σ[12] between −10 and 2  kPa

 The Dirichlet conditions are imposed on the bottom and left side of the computational domain as is shown in Figure 16 
(b). Next in order, the analytic stress of equations (64), (65) and (66) is imposed as Neumann condition over the top and 
right side of the computational domain.

Figure 17 (a) presents the averaged error as a function of the volumes face length mean, denoted Δx , as we might 
expect, the error is proportional to the mesh refinement. For a mesh of 478 volumes, Figure 17 (b) shows the 
percentage of the error with respect to the error of c = 0, for different smoothing levels, c = 0 correspond the linear 
interpolator. Observe that the error of the stress field does not decreases significantly because we do not increase the 
degrees of freedom of the linear system, although we built a better field description, which can be useful when solving 
non-linear formulations.

Figure 17. (a) The averaged error decreasing as a function of mesh size, denoted Δx. (b) Using a mesh of 628 volumes, 
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percentage of error for different smoothing levels with respect to the error of c =0, which is the linear interpolator, error 
increases after c =2

5. Conclusions
In this work we discussed a numerical technique to solve the elasticity equation for unstructured and non conforming 
meshes formed by elements of any arbitrary polygonal/polyhedral shape. The elasticity-solver is based on a finite 
volume formulation that, using the divergence theorem, represent the volume integral of the stress divergence in 
terms of the surface integral of the stress over the volume boundary. For considering the unit vector normal to the 
boundary as a constant, the boundary is divided into flat faces. Conforming and non-conforming meshes are 
processed without distinction. The displacement field is a piece-wise polynomial approximation surrounding the 
volumes, built on the top of the simplices resulting from the Delaunay triangulation of the volume neighborhood. A 
pair-wise polynomial interpolation is used for neighborhoods where the simplices are not the best option, and for 1D 
problems.

We introduced the homeostatic splines and it pseudo-inverse for higher order polynomial interpolations without the 
necessity of increasing the discretization points.

Since the stress term is calculated directly on the boundary of the control volumes, this strategy can be used in 
fracture formulations where the volumes are treated as indivisible components and the rupture occurs across the 
volumes boundaries.

In future work, we will investigate the accuracy of this numerical procedure for solving non-linear and dynamic models 
when using higher order homeostatic splines.
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