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Abstract 

In the field of aquaculture, the main microalgae application is animal nutrition, in which they 

can be used as an unprocessed component, or as dried material for feed preparations. Also, 

microalgae can have the potential to assimilate the main nutrients dissolved in aquaculture 

wastewater and therefore can help in the treatment and at the same time producing valuable 

biomass. The aim of this study was to calibrate the microalgae-bacteria model BIO_ALGAE 

to simulate the uptake of nutrients (nitrogen, phosphorus) and the biomass production of 

Tetraselmis suecica and Dunaliella tertiolecta grown in aquaculture wastewater. The 

microalgae were cultivated in batch conditions for 7 days using 120 L vertical column 

photobioreactors. In the first 4 days, after which the algal density reached a steady state the 

average biomass production was 83.7 ± 4.4 mg/L/d for T. suecica and 56.4 ± 5.1 mg/L/d for 

D. tertiolecta. The two species were able to remove more than 96% of Dissolved Inorganic 

Nitrogen (DIN) and Dissolved Inorganic Phosphorus (DIP). The total lipid content was 

analyzed at the end of the 7 days, T. suecica and D. tertiolecta had different lipid content: 

75.8 ± 1.6% and 23.2 ± 2.0%, respectively.  

The BIO_ALGAE model fits very well the experimental data of both species in terms of 

biomass and nutrient uptake and could be an effective tool to predict the production of 

microalgae using aquaculture wastewater as growth media, obtaining at the same time the 

removal of nutrients from wastewater and the production of biomass to be used as feed. 
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1. Introduction 

In the last four decades microalgae based biotechnology has developed constantly [1]. 

Microalgae have the capacity to remove the macronutrients dissolved in wastewater, in 

particular, nitrogen and phosphorus, and produce at the same time biomass that can be used as 

such or as source of valuable compounds [2, 3]. 

Recently, some studies have been carried out to explore the use of microalgae for the treatment 

of aquaculture wastewater and the production of biomass [4-10]. Aquaculture wastewater is 

composed in particular of nitrogenous components (ammonia, nitrite, nitrate), phosphorus and 

organic carbon [11,12,7,13]. Its composition is related to the nature and quantity of feed, from 

the species being reared, and from the type of system in operation. In aquaculture, microalgae 

are used also as feed additive in the commercial rearing or as live food for many aquatic 

animals in freshwater and in marine systems [14,15]. Microalgae are therefore the source of 

fatty acids, proteins, essential amino acids and pigments and for this reason, they have an 

important nutritional role for marine animals [16]. The composition of microalgal cells depends 

on the conditions of the culture [17-22], in particular on the culture age, on the light 

characteristics and intensity, on nutrient source and availability, and on the cell density [23]. 

The yield of commercially valuable products from microalgae could be improved by inducing 

environmental stress conditions [9]. It was demonstrated that lipid accumulation in microalgae 

cells increases under nutrient-deficient conditions [24] and can reach 85% of the dry weight 

[25-27]. Mata et al. [14] reported that for marine microalgae the total lipid content per dry mass 

values is species-specific and can vary from 22.7 to 29.7% in Nannochloropsis oculata, from 

7% to 40% in Isochrysis galbana and from 8.5 to 23% in Tetraselmis suecica. Other studies 

showed that the macromolecular content is related to the growth phase of the culture [28-30]. 

Due to their nutritional value, two unicellular green marine microalgae Dunaliella and 

Tetraselmis have been used in aquaculture as feed for live preys of fish larvae, for Peneid 
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shrimp larvae, and Tetraselmis also for bivalve mollusk larvae [1]. Dunaliella tertiolecta is 

simple to cultivate, is highly salt tolerant, [31] and has been reported to have a lipid 

concentration of 36–42% [32]. In addition, it was demonstrated that Dunaliella spp. are able to 

increase their lipid accumulation when nitrogen starvation occurs [33,34,31]. Chen et al. [31] 

identified the nutritional requirements for D. tertiolecta growth and neutral lipid production in a 

synthetic medium and showed that this organism was able to use either ammonium or nitrate as 

a nitrogen source. As to phosphorus, starvation seems to have little effect on growth and lipid 

accumulation, apparently due to intracellular phosphate storage [31]. 

Tetraselmis spp. are able to accumulate lipids (approximately 20-30% on dry weight basis) 

and tolerate a wide range of environmental conditions [35,27]. 

In aquaculture wastewater T. suecica and D. tertiolecta showed a similar pattern of nutrient 

assimilation, being able to remove more than 90% inorganic nitrogen and inorganic 

phosphorus after 2 and 1 days, respectively [10]. 

Due to the influence of many parameters, such as nutrient availability, light, oxygen, and 

temperature, it is not easy to predict the growth of microalgae, but mathematical models offer 

the possibility to study microalgae growth in different bioreactors [38]. Several models have 

been developed to predict algal productivity and nutrient removal efficiency in synthetic 

media and in urban wastewater [39-44]. For aquaculture wastewater, fewer experiences are 

reported [45,46], and a mathematical model has not yet been implemented and calibrated. 

The aim of this study was, therefore, to implement and calibrate the microalgae-bacteria 

mechanistic model BIO_ALGAE [44] for aquaculture wastewater in order to simulate the 

uptake of nutrients (N, P) and the biomass production of T. suecica and D. tertiolecta. The 

total lipid content was also investigated at the end of the experiment. 

 

2. Materials and methods 
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2.1. Microalgae and wastewater 

Microalgae were obtained from the Agency for Agricultural Research in Sardinia (AGRIS, 

Italy) and sourced from the Culture Collection for Algae and Protozoa (CCAP: Oban, Scotland, 

UK). 

Inocula were grown in fully controlled photobioreactors (6 L volume), with natural seawater 

(NSW) enriched with Guillard F/2 medium [47,48]. The culture procedures and the 

photobioreactors operation were carried out according to Saiu et al. [49].  

The aquaculture wastewater (AW) was obtained from a grey mullet fish hatchery located in the 

International Marine Centre - IMC Foundation (Oristano, Sardinia, Italy), where fish were 

reared in a recirculating aquaculture system (RAS) consisting of 4 tanks of 2000 L volume each 

[10]. The tanks were monitored daily, the seawater temperature was maintained at 20.3 ± 1.9 

°C, salinity was 36.6 ± 1.0 g/L, DO (dissolved oxygen) 8.1 ± 1.2 mg/L and pH 7.5 ± 0.1. 

Weekly, 30% of the water in the tanks was discharged and replaced by clean seawater, and a 

part of the outflowing 30% (AW) was used as culture medium for microalgae experiments. 

Average concentrations of nitrate nitrogen (mg/L), nitrite nitrogen (mg/L), ammonium nitrogen 

(mg/L) and orthophosphate (mg/L) were 3.32 ± 0.17, 0.11 ± 0.02, 0.28 ± 0.05 and 0.63 ± 0.01, 

respectively. 

 

2.2. Analyses  

NO3
--N, NO2

--N, NH4
+-N and PO4

3—P concentrations were measured by an automatic chemical 

analyzer μCHEM based on Loop Flow Analysis (Systea, Italy). Microalgal concentration was 

measured as mg TSS/L, according to the method used by Saiu et al. [49] for seawater culture 

samples. Algal growth was assessed by following the TSS data collected during the exponential 

growth phase. The specific microalgal growth rate (µmax in d-1) was calculated as the slope of 

the line fitting the TSS mg/L data plotted in a log [TSS(t)/TSS(0)] versus time graph. 
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Lipids were extracted from the biomass collected at the end of each experiment. 100 mg of 

microalgae, previously lyophilized at -80 °C, were suspended in 10 mL of chloroform-

methanol 2:1 according to Folch et al. [50]. The solution was vortex mixed for 30 s, sonicated 

for other 30 s and then centrifuged at 3.000 rpm for 5 min. The liquid fraction was filtered 

using GF/C filter paper in a funnel and the remaining solids were re-extracted with 5 mL of 

chloroform–methanol 2:1 [51]. The solvent was removed by evaporation and after that the lipid 

content was determined gravimetrically. The percent lipid content was calculated with 

reference to the weight of dry biomass [51]. 

The lipid productivity in mg/L/d was calculated according to Singh et al. [52]: 

Lipid productivity (mg/L/d) = Biomass productivity (mg/L/d) * (Lipid content % /100). 

 

2.3. Culture systems and photobioreactors 

To start the experiments, aliquots of microalgae suspensions were collected from the 6 L 

photobioreactors in the exponential growth phase when the microalgal concentration was 

approximately 0.13 g TSS/L.  

Two completely mixed bubble column photobioreactors of 120 L were used in batch condition 

for 7 days. Four consecutive replicates for each species were done. 

As the experiments were carried out in different periods, the nutrient concentrations of AW 

used for the two species were not exactly the same, as shown in Table 1. 

Table 1. Nutrient concentrations in the AW used for the two microalgal species (mg/L). Values are 

expressed as mean ± SE (n=4). 

 
T. suecica D. Tertiolecta

NO2
-
 -N 0.073±0.001 0.156±0.009 

       NO3
-
 -N 3.755±0.016 2.878±0.038

NH4
+-N 0.144±0.001 0.408±0.031

PO4 
3-P 0.657±0.002 0.613±0.018
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Light was provided by fluorescent lamps (Cool Daylight - 58W/865 Lumilux) for 24/24. 

Photosynthetically active radiation (PAR) was 150 (μmol/s/m2) in the external part of 

photobioreactor. The cultures were maintained at constant temperature (23°C). Dissolved 

oxygen (DO) concentration was 8.0 ± 2 mg/L and pH was 8.0 ± 2. PH and were measured 

every 10 minutes. The airflow was constant at 2 m3/h. 

A sample of each culture was collected daily to analyze the microalgae growth and the nutrient 

concentrations in the culture medium. 

2.4. Statistical analysis 

Data analysis was performed using R Studio (Version 1.0.153 – © 2009-2017 R Studio, Inc.). 

Differences in the removal efficiencies and biomass as mg TSS/L among microalgae species 

were analyzed using all 4 replicates (R1 to R4). Normality and homogeneity of data were 

examined using Shapiro Wilk’s W test. The statistical significance of differences between the 

two algal species was determined for all the measured parameters by the Kruskal-Wallis test (p-

values <0.05). 

All data are expressed as mean±SE. 

 
2.5. BIO_ALGAE model 

BIO_ALGAE model has been described in Solimeno et al. [44] and was used to simulate mixed 

cultures of microalgae and bacteria. This model was implemented in COMSOL Multiphysics™ 

v5.3 software and was basically constructed through the RWQM1 [53], with modifications of 

ASM3 [54]. The kinetic expressions of BIO_ALGAE are based on Monod type functions for 

carbon, nitrogen and phosphorus limitation. C was included as limiting factor because in some 

cases, namely when intense photosynthesis raises pH to very high values, CO2 can be no more 

available as it turns to carbonate. This model is applicable for waste stabilization ponds, high 
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rate algal ponds, and photobioreactors.  

The model considers the 19 components (6 particulate and 13 dissolved) included in the 

common nomenclature of the International Water Association (IWA) model [44]. Particulate 

and dissolved components implicated as variables in the physical, chemical and biokinetic 

processes are described in our previous works Solimeno et al. [43, 44, 55]. 

To simplify presentation of the simulation results, Tables S1 and S2 in Supplementary Material 

(SM) present the biokinetic processes and the matrix of stoichiometric parameters. Values of 

biokinetic, physical and chemical parameters are shown in SM, Tables S3-S4. Mathematical 

expressions of the stoichiometric coefficients of each process are also shown in SM, Table S5.  

 

3. Results  

3.1. Nutrient removal and biomass production 

At the beginning of experiments, the concentrations of T. suecica and D. tertiolecta were 96.9 

± 4.7 mg TSS/L and 88.1 ± 6.7 mg TSS/L, respectively. As shown in Figure 1, the growth of 

the two microalgae had similar trends, but the statistical analysis demonstrated a significant 

difference between them for biomass production (p < 0.05).  
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Fig. 1. Biomass algal concentration measured as mg TSS/L (mean (n=4) ± standard error) for T. suecica and D. 

tertiolecta during the experiments. 

 

T. suecica showed a better performance in terms of biomass productivity in batch culture 

(reaching a maximum of 460.0 ± 29.8 mg TSS/L at the end of the experiment) than D. 

tertiolecta (329.4 ± 11.0 mg TSS/L). This is also confirmed by the daily biomass production 

during the 7 days, that was 65.7 ± 4.3 mg/L/d for T. suecica and 47.1 ± 1.6 mg/L/d for D. 

tertiolecta. In both cases, the exponential phase lasted 96 hours. In that time range, the density 

reached 433.8 ± 17.4 and 313.8 ± 15.8 mg TSS/L for T. suecica and for D. tertiolecta, 

respectively (Figure 1). The biomass production per day in this phase was 83.8 ± 4.4 mg/L/d 

for T. suecica and 56.4 ± 5.1 mg/L/d for D. tertiolecta. 

The specific microalgal growth rate (µ in d-1) was 0.16 d-1 for T. suecica and 0.15 d-1 for D. 

tertiolecta. 

Figures 2 and 3 show the decrease of dissolved inorganic nitrogen (DIN) and phosphorus (DIP) 

concentrations, during the 7 days of treatment, for the two cultures, respectively. DIN was the 

sum of NO2
- -N, NO3

- -N and NH4
+-N in mg/L, while DIP was the total dissolved 

orthophosphate (PO4
3--P mg/L). 

 
Fig. 2. Decrease in concentration (mg/L) of Dissolved Inorganic Nitrogen (DIN) for Tetraselmis suecica and 

Dunaliella tertiolecta, (n=4). 
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Fig. 3. Decrease in concentration (mg/L) of Dissolved Inorganic Phosphorous (DIP) for Tetraselmis suecica and 

Dunaliella tertiolecta 
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In 7 days, the total DIN removal efficiency % was 98 ± 0.6% for T. suecica, and 97 ± 1.5% for 

D. tertiolecta. During the exponential growth phase, the daily removal rate was 0.88 ± 0.05 mg 

N /L/d T. suecica, and 0.96 ± 0.01 mg N /L/d for D. tertiolecta (p > 0.05). The complete 

removal occurred after 72 hours in the case of D. tertiolecta and after 120 hours in the case of 

T. suecica. The total DIP removal efficiency was similar for the two species: 97 ± 1.2% for T. 

suecica and 99 ± 0.7 % and D. tertiolecta respectively (p > 0.05). As also shown in Figure 3, 

the DIP was completely removed after 24 hours in both cases, with a removal rate in the 

exponential phase of 0.81 ± 0.05 and 0.93 ± 0.02 mg/L/d for T. suecica and D. tertiolecta, 

respectively.  

The total lipid content after 7 days was very different in the two species, being 75.8 ± 1.6% in 

the biomass of T. suecica, while only 23.2 ± 2.0% in the biomass of D. tertiolecta. The lipid 

accumulation rate was also lower for D. tertiolecta (11.1 mg/L/d) than for T. suecica (49.8 

mg/L/d). 
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3.2. Implementation of BIO_ALGAE model 

The model was calibrated using the data for the 7 days of batch experimentation and it was 

conducted comparing simulated and experimental data curves. For the calibration, only two 

replicates of experimental data (R1-R2) were used. Unlike the original model [44] that 

considers relevant features such as light attenuation, photorespiration and temperature 

dependency, for this experiment, light and temperature were constant and, thus, were not 

considered as growth limiting factors. The initial values of the parameters of concern are shown 

in Table 2. 

Table 2. Values of the parameters of concern at the beginning of the experiment. All components are 
described in Solimeno et al. [44]. 

 
Component Concentration Units 

SNO3 2.98 gN-NO3 m-3 

SNO2 0.14 gN-NO2 m-3 

SNH3 0.41 gN-NH3 m-3 

SNH4 1.6 gN-NH4 m-3 
SPO4 0.65 gP-PO4 m-3 
SCO2 0.145 gC-CO2 m-3 

SCO3 0.866 gC-CO3 m-3 

SHCO3 35.00 gC-HCO3 m-3 

SH 1.78 10-9 gH m-3 

SOH 4.69 10-6 gH-OH m-3 
SS 2 gCOD m-3 
SO2 8.74 gO2 m-3 

SI 8 gCOD m-3 

XH 1 gCOD m-3 

XI 10 gCOD m-3 

XS 1 gCOD m-3 

XAOB 0.05 gCOD m-3 

XNOB  0.05 gCOD m-3 

XALG 80 gTSS m-3 
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The kinetic expressions of BIO_ALGAE are based on Monod type functions. The Monod 

equations do not consider the variable “cell quota” (intracellular nutrient concentration), as the 

Droop model does [56]. This variable is important if the growth depends also (or chiefly) on a 

stored intra-cellular pool of nutrient, and not only on the nutrients available in the growth 

media, as in the Monod equations. In fact, BIO_ALGAE has been developed for microalgae 

growing in urban wastewaters, where normally the availability of nutrients is high. Nutrients in 

AW have much lower concentrations than in urban wastewater, so they can have a completely 

different influence on growth than in urban wastewaters. In fact, in most experimental works 

microalgae cultivation in AW included nutrient addition to increase production [5,57]. On the 

contrary, in our work N and P in AW were depleted in few days, but no nutrient addition was 

provided and algal growth did not stop. This suggested that growth was more closely related to 

the intra-cellular nutrient concentration than to the external one [58] and this, in turn, could 

depend on the fact that the algal biomass used for the experiment had been previously grown in 

a nutrient-rich medium. The use of nutrient rich inoculum for batch experiments could preclude 

to find the correct relationships between external nutrient concentrations and algal growth. As 

one of the aims of the work was to calibrate BIO_ALGAE model in order to use it to predict 

algal growth in batch experiments as a function of nutrient availability, the theoretical initial 

concentrations able to sustain the observed growth were calculated according to external data 

[58]. The model has been programmed to have an input of N and P in the system. Various 

concentrations were tested to obtain the amount of biomass indicated in the experimental data. 

The obtained data (19 mg NO3
--N /L and 8 mg PO4

3--P /L) were then used as input for the 

calibration of the model.  

For the calibration, the sum of NO2
- -N and NO3

- -N was used. The experimental data on 

biomass were expressed as Total Suspended Solids (TSS), while the simulation provided both 

TSS and by XALG (mg TSS algal biomass/L). TSS is the sum of all particulate components 

including microalgae and bacteria biomass, and XALG is the concentration of microalgae (mg 
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TSS algal biomass/L) [43,44]. 

The comparison between experimental and simulated data show how for T. suecica the two 

curves XALG and TSS follow quite well the same pattern of the experimental data (R1-R2) 

(Figure 4A). After 50 hours some differences between the two curves can be observed, but 

these differences are not statistical significant (p > 0.05). After 72 hours the maximum values 

(nearly 400 mg/L) were reached and after that a slow decrease occurred, so that a true steady 

state did not take place. As previously told, at the end of the experiment the simulated and 

experimental data did not agree anymore. For D. tertiolecta (Figure 4B) the predicted curves 

were very similar to the experimental ones (p > 0.05), but their shape was different from those 

derived from T. suecica experiments. In the first 24 hours, no lag-phase was observed and the 

biomass density increased, even if slowly. Between 24 and 48 hours, the data show a sort of 

steady state while the exponential growth occurred between 48 and 96 hours, when TSS and 

XALG reached their maxima (just a little lower than for T. suecica), to keep nearly constant 

afterwards (Figure 4B). 

 

Figure 4. Trend of biomass concentration with time in the experimental trial (mg TSS/L, average of the two 
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replicates) and according to BIO_ALGAE simulation (TSS and XALG) for T. suecica (A) and for D. tertiolecta (B). 

 

As to nutrient removal, the simulations of the sum of NO3
- -N + NO2

- -N and the PO4
3--P, 

represent quite well the experimental data in T. suecica (Figure 5A). Instead, in D. tertiolecta 

the simulation curve of NO3
- -N + NO2

- -N has a rapid decrease at 24 hours, while in the real 

data the concentrations of these nutrients begins to drop after 48 hours (Figure 5B). Simulated 

phosphorus concentrations fitted well the experimental data for the two microalgae, although 

these data showed a non-constant distribution after 24 hours.  

 

Figure 5A: Nutrient removal for T. suecica, experimental data (R1, R2) and BIO_ALGAE simulation curves in mg/L. 
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Figure 5B. Nutrient removal for D. tertiolecta, experimental data (R1, R2) and BIO_ALGAE simulation curves in 

mg/L. 

 

4. Discussion 

This work has confirmed that aquaculture wastewater is suitable for the cultivation of T. 

suecica and D. tertiolecta. In a previous work with reactors of 6 L and the same AW, biomass 

production was of 86.14 ± 5 mg/L/d for T. suecica, and 54.26 ± 5 mg/L/d for D. tertiolecta 

[10], while in the present work, with 120 L reactors, biomass production was lower for T. 

suecica (65.71 ± 4.25 mg/L/d) and similar for D. tertiolecta (47.05 ±1.57 mg/L/d). This small 

variation could depend on the different nutrients concentrations of the wastewater in two 

experiments.  However, the biomass production was not affected by the low nitrogen values in 

aquaculture. This is also confirmed in a recent study, in which a D. tertiolecta cell size increase 

was observed under nitrogen starvation conditions [31]. The results obtained by Michels et al. 
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[5], instead, range between 0.46 and 0.52 g/L/d of biomass production with extra addition of 

phosphorus in the aquaculture wastewater. Gao et al. [8], cultivated Chlorella vulgaris and 

Scenedesmus obliquus in aquaculture wastewater and obtained a quite low biomass production: 

7.3 and 6.2 mg/L/d respectively. Khatoon et al. [59] made a comparison between Tetraselmis 

chuii growth in aquaculture wastewater and in a synthetic medium and observed no significant 

differences (p > 0.05) in term of biomass production in two different medium.  

In this study, AW was analyzed for presence of nitrates, nitrites, ammonia and phosphates that 

are essential for microalgae cultivation. For both species the removal efficiency exceeded 95% 

for DIN and DIP, reaching higher levels than in the previous study [10] and in various literature 

data. Michels et al. [5] showed that T. suecica has a removal efficiency of 49.4% for N and 

99.0% for P in AW, while Lowrey et al. [60] used Tetraselmis sp. in a dairy wastewater 

obtaining a reduction of 51% of total nitrogen, and of 40% of total phosphorus. Wu et al. [61] 

cultivated D. tertiolecta in a saline sewage (13±0.2 mg/L of Nitrate as nitrogen mg/L and 

14.7±0.1 mg/L of Orthophosphate) and the removal percentage was 60 ± 5.4% for nitrate and 

70 ± 13.5% for orthophosphate and after 6 days. The better results obtained in the present study 

could depend on the initial concentration of nutrients in the wastewater and microalgae strains 

used [62]. However, further studies on the microalgae growth in AW must be carried out, 

because of its suitability in effluents, that can be species-specific and no microalgae should be 

neglected [63]. For example, recent studies [64,10] demonstrated that Isochrysis galbana have 

a lower productivity than T. suecica when cultivated in the same aquaculture wastewater. On 

the contrary, instead, Freire et al. [65] and Zheng et al. [66] have successfully cultivated the 

Isochrysis genus in fish farm effluents. 

Nowadays, very few studies analyzed the microalgal biomass composition produced in 

aquaculture wastewater. Ansari et al. [9] have obtained a total lipid percentage of 30.85% for 

Scenedesmus obliquus, 31.85% for Chlorella sorokiniana, and 35.90% for Ankistrodesmus 

falcatus grown in aquaculture wastewater. Another recent study [57] extracted from C. 
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sorokiniana cultivated in aquaculture wastewater the 39.1% of lipids and calculated a daily 

production of 138.17 mg/L/d. T. suecica cultivated in artificial seawater showed a different 

response to nutrient deprivation, with a lipid content of 22% in the nitrogen-starved culture, 

27% under nitrogen and phosphorus starvation and 29% in a culture with a sufficient content of 

nutrients [67]. Furthermore, this species cultivated in f/2 culture medium has a lipid content of 

4.85% [68]. The lipid productivity for T. suecica observed in this study was higher compared to 

the previously reported studies, and this result allows us to confirm that these wastewaters are 

suitable for the production of lipids in T. suecica. Dunaliella sp is also known to respond to 

nitrogen starvation by increasing lipid production [33,34]. The nitrogen and phosphorous 

content were lower in our wastewaters than in synthetic media and this is likely to have caused 

a nutrient stress and the consequent reduction of microalgal growth and increase of lipid 

concentration [57].  

 

The BIO_ALGAE model was able to fit very well both species in terms of biomass and 

nutrients uptake and this meant a good agreement between our real data and simulations.  

As represented in a classical growth curve, even in this study, the biomass continues to grow 

during a few days after nutrient exhaustion. Despite this, we were able to adapt the 

BIO_ALGAE model that has been appropriate to represent also the effect of macronutrients, 

such as nitrogen or phosphorus, on the growth rate.  

After 80 hours, that corresponds approximately of the begin of the stationary phase, it was 

necessary to calculate a new input of nutrients in the culture to simulate the real data. The 

amount of internal nutrients was calculated on the basis of experimental data, according to 

confirm by Lemesle et al. [58]. Indeed, experimental data show that biomass continues to 

increase even if the nutrients are completely removed, as well as the simulation curve that has 

an exponential phase in about 50 hours. 
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In starvation conditions, as in our experimentation, the growth rate of the biomass can, 

therefore, be related to the internal concentration of the limiting element [69]. As an example, 

the correlation between maximum uptake velocities and cell quota for limiting nutrient may 

need to be modified if phosphate or iron are limiting factors because of the greater potential for 

luxury uptake of phosphorus and iron relative to nitrogen [70,71]. Chen et al. [31] have showed 

that D. tertiolecta had internal phosphate stores sufficient for the synthesis of lipids in 

phosphate-deficient cultures. This model was developed for municipal wastewater with a high 

concentration of nitrogen and phosphorous, while in AW, N and P content is limited and 

dependent on a number of factors including the area used for culture, the bred species, 

production level and the profile of the waterbody [72]. In particular, the content of these 

nutrients in the feed have decreased, especially for N [72]. Despite this, the simulation curves 

of the nutrient removal (NO3
- -N + NO2

- -N and PO4
3—P) represent accurately the experimental 

data for two microalgae.  

It is already demonstrated that these microalgae species are able to compete with other 

microorganism, in particular, ciliates [73-75, 10] and for this reason, any sterilization process 

were done. In this way, avoiding pretreatment and sterilization of wastewater, the management 

costs would be reduced, as well as energy and manual labor. 

5. Conclusion  

In this paper, it was demonstrated that T. suecica e D. tertiolecta are suitable for upscale in 

vertical column photobioreactors with a volume of 120 liters. Using aquaculture wastewater as 

culture medium it was obtained a removal of nutrient (N and P) greater than 95%. Moreover, T. 

suecica has been able of produce more than 75% of total lipid content, while D. tertiolecta only 

23% and it is possible to confirm that nitrogen stress has disproportionate effects on growth and 

lipid content, with a difference between species. These microalgae are valid candidates for a 

second use in aquaculture systems as live-feed for hatchery-grown of herbivorous and filter 

feeders [76]. Despite this, further studies are necessary to analyze the protein and lipid 
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composition of these species. 

In this study, it was also proved for the first time the applicability of the BIO_ALGAE model to 

simulate the growth of these microalgae and the assimilation of nutrients in aquaculture 

wastewater. The model was calibrated by comparing simulated results to experimental data 

during 7 days of batch experiment. The results of the calibration indicate that the model was 

able to reproduce quite well the assimilation of nutrient, but further modifications are necessary 

as concern the biomass production.  

The possibility of applying BIO_ALGAE model to predict use of microalgae for wastewater 

treatment and the biomass production using for feed in aquaculture is a new aspect that should 

be developed with further studies. The next approach in order to better understand the 

wastewater aquaculture treatment with microalgae will be to predict the growth and nutrient 

uptake using the model in a continuous system. 

 

6. Acknowledgments 

This research was supported by the Sardinia Research plan activity, Art. 26 of LR 37/98, 

“Experimental systems for microalgae biomass production, applications for aquaculture”. 

Author contributions 

V. Andreotti collected the data, interpreted the results and drafted the article, A. Chindris 

contributed in the experimental setup, microalgae production plant and laboratory analysis. F. 

Marazzi contributed to data collection and laboratory analysis. A. Solimeno applied the 

experimental data to the mathematical model. Manuscript revision and approval: F. Marazzi, A. 

Solimeno, A. Chindris,  J. Garcia. 

Conflicts of interest 

The authors declare that they have no conflicts of interest. 

Statement of informed consent 



 

 21

Authors declare that there is “No conflicts, informed consent, human or animal rights 

applicable” in this study. 

References 

[1] A. Muller-Feuga, J. Moal, R. Kaas, The microalgae of aquaculture. In book: Live Feeds in 

Marine Aquaculture (2007) DOI 10.1002/9780470995143.ch7.  

[2] L. Christenson, R. Sims, Production and harvesting of microalgae for wastewater treatment, 

biofuels, and bioproducts  Biotechnology Advances 29 (2011) 686–702. 

[3] M.K. Lam, K.T. Lee, Microalgae biofuels: A critical review of issues, problems and the way 

forward. Biotechnol Adv. 30 (3) (2012) 673-90. 

[4] Z. Guo, Y. Liu, H. Guo, S. Yan, J. Mu, Microalgae cultivation using an aquaculture 

wastewater as growth medium for biomass and biofuel production. J. Environ. Sci. 25 (2013) 

85–S88. 

[5] M.H.A. Michels, M. Vaskoska, M.H. Vermuё, R.H. Wijffels, Growth of Tetraselmis suecica 

in a tubular photobioreactor on wastewater from a fish farm. Water Res. 65 (2014) 290-296. 

[6] K. Velichkova, I. Sirakov, S. Stoyanova, Biomass production and wastewater treatment 

from aquaculture with Chlorella vulgaris under different carbon sources. Scientific Bulletin. 

Series F. Biotechnologies. 18 (2014) 83-88. 

[7] F. Lananan, S.H. Abdul Hamid, W.N.S. Din, N. Ali, H. Khatoon, A. Jusoh, A. Endut, 

Symbiotic bioremediation of aquaculture wastewater in reducing ammonia and phosphorus 

utilizing Effective Microorganism (EM-1) and microalgae (Chlorella sp.). Int. Biodeterior. 

Biodegrad. 95 (2014) 127–134. 

[8] F. Gao, C. Li, Z.H. Yang, G.M. Zeng, L.J. Feng, J.Z. Liu, M. Liu, H.W. Cai, Continuous 

microalgae cultivation in aquaculture wastewater by a membrane photobioreactor for biomass 

production and nutrients removal. Ecol. Eng. 92 (2016) 55–61. 

[9] F.A. Ansari, P. Singh, A. Guldhe, F. Bux, Microalgal cultivation using aquaculture 

wastewater: integrated biomass generation and nutrient remediation. Algal Res. 21 (2017) 169–



 

 22

177. 

[10] V. Andreotti, A. Chindris, G. Brundu, D. Vallainc, M. Francavilla, J. García, 

Bioremediation of aquaculture wastewater from Mugil cephalus (Linnaeus, 1758) with 

different microalgae species. Chem. Ecol. 33 (8) (2017) 750–761. 

[11] W.T. Mook, M.H. Chakrabarti, M.K. Aroua, G.M.A. Khan, B.S. Ali, M.S. Islam, M.A. 

AbuHassan, Removal of total ammonia nitrogen (TAN), nitrate and total organic carbon (TOC) 

from aquaculture wastewater using electrochemical technology: a review. Desalination 285 

(2012) 1–13. 

[12] N.M. Nasir, N.S. Bakar, F. Lananan, S.H. Abdul Hamid, S.S. Lam, A. Jusoh, Treatment of 

African catfish, Clarias gariepinus wastewater utilizing phytoremediation of microalgae, 

Chlorella sp. with Aspergillus niger bio-harvesting. Bioresour. Technol. 190 (2015) 492–498. 

[13] S.C. Wuang, M.C. Khin, P.Q.D. Chua, Y.D. Luo, Use of spirulina biomass produced from 

treatment of aquaculture wastewater as agricultural fertilizers, Algal Res. 15 (2016) 59–64. 

[14] T.M. Mata, A.A. Martins, N.S. Caetano, Microalgae for biodiesel production and other 

applications: a review. Renew Sust Energ Rev. 14 (2010) 217–32. 

[15] A.C. Guedes, F.X. Malcata, Nutritional Value, and Uses of Microalgae in Aquaculture. 

(2012) In: Muchlisin, Z.A. (ed.): Aquaculture; DOI: 10.5772/1516, pp. 59–78 

[16] K.I. Reitan, J.R. Rainuzzo, G. Øie, Y. Olsen, A review of nutritional effects of algae 

in marine fish larvae. Aquaculture 118 (1997) 257-275. 

[17] N. J. Antia, B.R. Berland, D.J. Bonin, S.E. Maestrini, Effects of urea concentration in 

supporting growth of certain marine microplanktonic algae. Phycol. 16 (1) (1977) 105-111. 

[18] J. Fabregas, C. Herrero, J. Abalde, B. Cabezas, Growth, chlorophyll a  and protein of the 

marine microalga Isochryrsis galbana in batch cultures with different salinities and high 

nutrient concentrations, Aquacul. 50 (1985a) 1-11. 

[19] J. Fabregas, C. Herrero, B. Cabezas, J. Abalde, Mass culture and biochemical variability of 

the marine microalga Tetraselmis suecica (Kylin) Butch with high nutrients concentrations. 



 

 23

Aquacul. 49 (1985b) 231-244. 

[20] J. Fabregas, C. Herrero, B. Cabezas, J. Abalde, Biomass production and biochemical 

composition in mass cultures of the marine microalga Isochrysis galbana Parke at varying 

nutrient concentrations. Aquacul. 53 (1986) 101-113. 

[21] G. N. Melo, R. Sassi, T.F.H. Araújo, Crescimento de Phaeodactylum tricornutum  

BOHLIN (Bacillariophyta) em água do mar enriquecida com soluções derivadas da 

decomposição de algas arribadas com meio de cultura. R. Nord. de Bio. 8 (1993) 45- 53. 

[22] S.O. Lourenço, U.M.L. Marquez, J. Mancini-Filho, E. Barbarino, E. Aidar, Changes in 

biochemical profile of Tetraselmis gracilis I. Comparision of two culture media. Aquacul. 148 

(1997) 153-158. 

[23] N. DePauw, G. Persoone, Micro-algae for aquaculture. In: Micro-algal Biotechnology. 

M.A. Borowitzka, L.J. Borowitzka (Eds.), Cambridge University Press, Cambridge, U.K., 

1988, pp. 197-221. 

[24] L. Xin, H. Hong-Ying, G. Ke, S. Ying-Xue, Effects of different nitrogen and phosphorus 

concentrations on the growth, nutrient uptake, and lipid accumulation of a freshwater microalga 

Scenedesmus sp. Bioresour. Technol. 101 (14) (2010) 5494-5500. 

[25] Y. Chisti, Biodiesel from microalgae. Biotechnology Advances 25 (2007a) 294–306. 

[26] Y. Chisti, Biodiesel from microalgae beats bioethanol. Trends Biotechnol. 26 (3) (2007b) 

126-131. 

[27] L. Rodolfi, G.C. Zittelli, N. Bassi, G. Padovani, N. Biondi, G. Bonini, M.R. Tredici, 

Microalgae for oil: Strain selection, induction of lipid synthesis and outdoor mass cultivation in 

a low-cost photobioreactor. Biotechnol Bioeng. 102 (2009) 100-112. 

[28] M.R. Brown, C.D. Garland, S.W. Jeffrey. I.D. Jameson, J.M. Leroi, The gross and amino 

acid compositions of batch and semi-continuous cultures of Isochrysis sp. (clone T.ISO), 

Pavlova lutheri and Nannochloropsis oculata, J Appl Phycol. 5 (1993) 285-296. 

[29] M.R. Brown, S.W. Jeffery, J.K. Volkman, G.A. Dunstan, Nutritional Properties of 



 

 24

Microalgae for Mariculture. Aquaculture 151 (1–4) (1997) 315–331. 

[30] S.M. Renaud, L.V. Thinh, D.L. Parry, The gross composition and fatty acid composition 

of 18 species of tropical Australia microalgae for possible use in mariculture, Aquaculture, 170 

(1999) 147-159. 

[31] M. Chen, H. Tang , H. Ma, T.C. Holland, K.Y. Simon Ng , S.O. Salley, Effect of nutrients 

on growth and lipid accumulation in the green algae Dunaliella tertiolecta, Bioresour Technol. 

102 (2011) 1649–1655. 

[32] K. Tsukahara, S. Sawayama, Liquid fuel production using microalgae. J Jpn Petrol Inst. 48 

(2005) 251–259. 

[33] A.T. Lombardi, P.J. Wangersky, Particulate lipid class composition of 3 marine 

phytoplankters Chaetoceros gracilis, Isochrysis galbana (Tahiti) and Dunaliella tertiolecta 

grown in batch culture. Hydrobiologia, 306 (1995) 1–6. 

[34] M. Guevara, C. Lodeiros, O. Gómez, N. Lemus, P. Núñez, L. Romero, A. Vásquez, N. 

Rosales, Carotenogénesis de cinco cepas del alga Dunaliella sp. (Chlorophyceae) aisladas de 

lagunas hipersalinas de Venezuela. Revista De Biologia Tropical 55 (2005) 7. 

[35] G. Chini Zittelli, L. Rodolfi, N. Biondi, M.R. Tredici, Productivity and photosynthetic 

efficiency of outdoor cultures of Tetraselmis suecica in annular columns,Aquacult 261 (2006) 

932–943.  

[36] D.K.Y. Lim, S. Garg, M. Timmins, E.S.B. Zhang, S.R. Thomas-Hall, H. Schuhmann, Y. Li, 

P.M. Schenk, Isolation and Evaluation of Oil-Producing Microalgae from Subtropical Coastal 

and Brackish Waters. PLoS ONE 7(7) (2012) e40751. 

https://doi.org/10.1371/journal.pone.0040751. 

[37] K. Sharma, Y. Li, P.M. Schenk, UV-C-mediated lipid induction and settling, a step change 

towards economical microalgal biodiesel production, Green Chem.16 (2014) 3539. 

[38] J.P. Bitog, I.B. Lee, C.G. Lee, K.S. Kim, H.S. Hwang, S.W. Hong, I.H. Seo, K.S. Kwon, 

E. Mostafa, Application of computational fluid dynamics for modeling and designing 



 

 25

photobioreactors for microalgae production: a review, Comput Electron Agric. 76 (2011) 131–

47. 

[39] H.O. Buhr, S.B. Miller, A dynamic model of the high-rate algal bacterial wastewater 

treatment pond, Water Res. 17 (1983) 29-37. 

[40] J.U. Grobbelaar, C.J. Soeder, E. Stengel, Modeling algal productivity in large outdoor 

cultures and waste treatment systems, Biomass 21 (1990) 297–314. 

[41] S. Moreno-Grau, A. García-Sanchez, J. Moreno-Clavel, J. Serrano-Aniorte, M.D. Moreno-

Grau,. A mathematical model for wastewater stabilization ponds with macrophytes and 

microphytes. Ecological Modelling, 91 (1-3) (1996) 77–103. 

[42] P. Reichert, P. Vanrolleghem, Identifiability and uncertainty analysis of the River Water 

Quality Model No. 1 (RWQM1). Water Sci Technol. 43 (7) (2001) 329-338. 

[43] A. Solimeno, R. Samsó, E. Uggetti, B. Sialve, J.P. Steyer, A. Gabarró, J. García, New 

mechanistic model to simulate microalgae growth, Algal Res. 12 (2015) 350-358. 

[44] A. Solimeno, L. Parker, T. Lundquist, J. García, Integral microalgae-bacteria model 

(BIO_ALGAE): application to wastewater high rate algal ponds, Sci Total Environ. 601–602 

(2017a) 646–657. 

[45] F. Lamprianidou, T. Telfer, L.G. Ross, A model for optimization of the productivity and 

bioremediation efficiency of marine integrated multitrophic aquaculture, Estuar Coast Shelf Sci 

164 (2015) 253-264. 

[46] E. A. Kiridi, A. O. Ogunlela, Modelling Phytoremediation Rates of Aquatic Macrophytes 

in Aquaculture Effluent, International Journal of Environmental, Chemical, Ecological, 

Geological and Geophysical Engineering10(3) 2016 353-360. 

[47] R.R.L. Guillard, Culture of phytoplankton for feeding marine invertebrates in W.L. Smith, 

M.H. Chanley (Eds.), Culture of Marine Invertebrate Animals, Plenum Press, New York, 1975, 

pp. 26-60. 

[48] R.R.L. Guillard, J.H. Ryther, Studies of marine planktonic diatoms I. Cyclotella nana 



 

 26

(Hustedt) and Detonula confervacea (cleve), Can. J. Microbiol. 8 (1962) 229-239. 

[49] G. Saiu, A. Pistis, A. Chindris, M, Grosso, M. Baroli, E.A. Scano, Study of the growth 

parameters of the Nannochloropsis oculata for the nitrogen and phosphorus removal from 

wastewater through design of experiment approach. Chem Eng Trans. 49 (2016) 553–558. 

[50] J. Folch, M. Lees, G.H. Sloane Stanley, A simple method for the isolation and purification 

of total lipides from animal tissues. J. Biol. Chem. 226 (1957) 497–509. 

[51] E. Ryckebosch, K. Muylaert, I. Foubert, Optimization of an analytical procedure for 

extraction of lipids from microalgae, J. Am. Oil Chem. Soc. 89 (2012) 189–198, 

http://dx.doi.org/10.1007/s11746-011-1903-z. 

[52] P. Singh, A. Guldhe, S. Kumari, I. Rawat, F. Bux, Investigation of combined effect of 

nitrogen, phosphorus and iron on lipid productivity of microalgae Ankistrodesmus falcatus 

KJ671624 using response surface methodology, Biochem. Eng. J. 94 (2015) 22–29. 

[53] P. Reichert, D. Borchardt, M. Henze, W. Rauch, P. Shanahan, L. Somlyódy, P. 

Vanrolleghem, River water quality model no. 1 (RWQM1): II. Biochemical process equations, 

Water Sci. Technol. J. Int. Assoc. Water Pollut. Res. 43 (5) (2001) 11–30. 

[54] I. Iacopozzi, V. Innocenti, S. Marsili-Libelli, E. Giusti, A modified activated sludge model 

no. 3 (ASM3) with two-step nitrification-denitrification. Environ. Model Softw. 22 (6) (2007) 

847–861. 

[55] A. Solimeno, F.G. Acién, J. García, Mechanistic model for design, analysis, operation and 

control of microalgae cultures: Calibration and application to tubular photobioreactors, Algal 

Research. 21 (2017b) 236-246. 

[56] M.R. Droop, Vitamin B12 and marine ecology. IV. The kinetics of uptake growth and 

inhibition in Monochrysis lutheri, J. Mar. Biol. Assoc. 48 (3) (1968) 689–733. 

[57] A. Guldhe, F.A. Ansari, P. Singh, F. Bux, Heterotrophic cultivation of microalgae using 

aquaculture wastewater: A biorefinery concept for biomass production and nutrient 

remediation. Ecol Eng. 99 (2017) 47–53. 



 

 27

[58] V. Lemesle, L. Mailleret, A mechanistic investigation of the algae growth “Droop” Model, 

Acta Biotheoretica, 56 (1–2) (2008) 87–102. 

[59] H. Khatoon, S. Banerjee, M.S. Syahiran, N.M. Noordin, A.M.A. Bolong, A. Endut, Re-use 

of aquaculture wastewater in cultivating microalgae as live feed for aquaculture organisms. 

Desalin Water Treat, (2016) 1–8 DOI: 10.1080/19443994.2016.1156030 

[60] J.B. Lowrey, Seawater/Wastewater Production of Microalgae-based Biofuels in Closed 

Loop Tubular Photobioreactors, (2011) 127 (MSc in Agriculture, Agricultural Engineering 

Technology, The Faculty of California Polytechnic State University, San Luis Obispo, USA 

(Unpublished). 

[61] K.C. Wu, K.C. Ho, Y.H. Yau, Effective Removal of Nitrogen and Phosphorus from 

SalineSewage by Dunaliella tertiolecta through Acclimated Cultivation Modern Environmental 

Science and Engineering (ISSN 2333-2581) 1 (5) (2015) 225-234 Doi: 10.15341/mese(2333-

2581)/05.01.2015/003 

[62] W. Zhou, M. Min, Y. Li, B. Hu, X. Ma, Y. Cheng, Y. Liu, P. Chen, R. Ruan, A hetero-

photoautotrophic two-stage cultivation process to improve wastewater nutrient removal and 

enhance algal lipid accumulation. Bioresour.Technol. 110 (2012) 448–455. 

[63] H. Milhazes-Cunha, A. Otero, Valorisation of aquaculture effluents with microalgae: The 

Integrated Multi-Trophic Aquaculture concept. Algal Research 24 (2017) 416–424. 

[64] MP Borges, P. Silva, L. Moreira, R. Soares, Integration of consumer-targeted microalgal 

production with marine fish effluent biofiltration – a strategy for mariculture sustainability. J 

Appl Phycol. 17(2005) 187–197. 

[65] I. Freire, R. Serradeiro, A. Laranjeira, J. Peña, P. Seixas, Cultivo de las microalgas 

Tetraselmis e Isochrysis T-ISO con efluentes de una piscifactoría en RAS de Portugal. XIV 

Congr Nac Acuic, 2013 (AS 2570-2013). 

[66] J. Zheng, J. Hao, B. Wang, C. Shui, Bioremediation of aquaculture wastewater by 

microalgae Isochrysis zhanjiangensis and production of the biomass material, IEEE Trans. 



 

 28

Compon. Packag. Manuf. Technol. 460–461 (2011) 491–495. 

[67] P. Bondioli, L. Della Bella, G. Rivolta, G. Chini Zittelli, N. Bassi, L. Rodolfi, D. Casini, 

M. Prussi, D. Chiaramonti, M.R. Tredici. Oil production by the marine microalgae 

Nannochloropsis sp. F&M-M24 and Tetraselmis suecica F&M-M33. Bioresour Technol. 114 

(2012) 567–72. 

[68] S.K. Kim Y.J. Jeon, W.S. Kim, H.C. Back, P.J. Park, H.G. Byun, S.C. Bai, Biochemical 

composition of Marine Microalgae and their potential antimicrobial activity, J. Fish. Sci. Tech. 

4 (2) (2001) 75-83. 

[69] O. Bernard, Hurdles and challenges for modelling and control of microalgae for CO2 

mitigation and biofuel production, J Process Control, 21 (2011) 1378– 1389. 

[70] J.J. Mccarthy, The kinetics of nutrient utilization. Can. Bull. Fish. Aquat. Sci. 210 (1980) 

211-233. 

[71] E.M.M. Morel, Kinetics of uptake and growth in phytoplankton. J. Phycol. 23 (1987) 137-

150. 

[72] M.S. Islam, Nitrogen and phosphorus budget in coastal and marine cage aquaculture and 

impacts of effluent loading on ecosystem: review and analysis towards model development. 

Mar Pollut Bull. 50 (2005) 48–61. 

[73] B. Austin, J.G. Day, Inhibition of prawn pathogenic Vibrio spp. by a commercial spray 

dried preparation of Tetraselmis suecica. Aquaculture 90 (1990) 389–392. 

[74] B. Austin, E. Bauder, M.B.C. Stobie, Inhibition of bacterial fish pathogens by Tetraselmsis 

suecica, J Fish Dis. 15 (1992) 55–61. 

[75] T. Chang, S. Ohta, N. Ikegami, H. Miyata, T. Kashimoto, M. Kondo, Antibiotic 

substances produced by a marine green alga, Dunaliella primolecta. Bioresour Technol. 44 

(1993) 149–153. 

[76] M. Alsull, W. Omar, Responses of Tetraselmis sp. and Nannochloropsis sp. isolated from 

Penang National Park Coastal Waters, Malaysia, to the combined influences of salinity, light 



 

 29

and nitrogen limitation. International Conference on Chemical, Ecology and Environmental 

Sciences (ICEES’2012); Mar 17–18; Bangkok; (2012) 142–145. 


