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Abstract. The numeric simulation of the mechanical behaviour of industrial materials
is widely used in the companies for viability verification, improvement and optimization
of designs. The eslastoplastic models have been used for forecast of the mechanical be-
haviour of materials of the most several natures (see [1]). The numerical analysis from this
models come across ill-conditioning matrix problems, as for the case to finite or infinites-
imal deformations. A complete investigation of the non linear behaviour of structures it
follows from the equilibrium path of the body, in which come the singular (limit) points
and/or bifurcation points. Several techniques to solve the numerical problems associated
to these points have been disposed in the specialized literature, as for instance the call
Load controlled Newton-Raphson method and displacement controlled techniques. Al-
though most of these methods fail (due to problems convergence for ill-conditioning) in
the neighbour of the limit points, mainly in the structures analysis that possess a snap-
through or snap-back equilibrium path shape (see [2]). This work presents the main ideas
formalities of Tikhonov Regularization Method (for example see [12]) applied to dynamic
elastoplasticity problems (J2 model with damage and isotropic-kinetic hardening) for the
treatment of these limit points, besides some mathematical rigour associated to the for-
mulation (well-posed/existence and uniqueness) of the dynamic elastoplasticity problem.
The numeric problems of this approach are discussed and some strategies are suggested to
solve these misfortunes satisfactorily. The numerical technique for the physical problem
is by classical Gelerkin method.
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1 INTRODUCTION

Elastoplastic models have been widely used to forecast the behaviour of rate indepen-
dent (in deformation sense) materials (see [1]). The numerical solution of these models
involves handling of ill-conditioned matrices, for finite or infinitesimal deformations (see
[?]). Such instabilities are due to the tangent operator being close to an identically null
forth order tensor operator at the neibourhood of critical or limit points.

A complete investigation of non linear structural behaviour involves following the bod-
ies equilibrium path through singular (limit) points and/or bifurcation points. In order
to solve the numerical problems associated to these points several techniques have been
considered in the specialized literature, for instance the so-called load controled Newton-
Raphson method and displacement controled techniques. Due to ill-conditioning con-
vergence problems, most of these methods fail, specially in the case of structures which
present (λ-load factor,u-displacement) snap-through or snap-back equilibrium paths ([2]),
as shown in figure (Fig.1).

Figure 1: Snap-through and snap-back behaviour

Aiming at transposing these difficulties, this study proposes use of the L-curve Tikhonov
regularization method ([14], [15], [6] and [12]). One of the objectives of the study is to
investigate the potential of this approach in the solution of elastoplastic problems of in-
finitesimal strain. An overview of elastoplastic contitutive model is shown in section 2.
Details about incremental approach are presented in section 3. In sections 4 and 5, it is
presented the L-curve Thikhonov regularization method and main properties are shown.
In section 6, a numerical problem case are presented to verify the efficacy of this proposed
approch and concluding remarks are made in section 7.

2 YIELDING AND HARDENING LAWS (THE ELASTOPLASTIC CON-
STITUTIVE MODEL)

A complete characterization of general elastoplastic model request definition of evolu-
tionary laws of internal variables, i. e., variables associated to dissipative phenomena (εp

and αk - associated with the kinematic hardening mechanism). The first point in this
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analysis is determination of the plastic multiplier λ̇ which is computed from consistence
condition (F = 0 and λ̇ > 0). Hence, from definition of αk, we obtain

λ̇ =
∂F
∂σ

: Dε̇
{

∂F
∂σ

: DN− ρ ∂F
∂αk

.
[
∂2Ψp

∂β2

k

]

H
} . (1)

More details about constitutive Lemaitre’s elastoplastic-damage simplified model with
isotropic hardening can be found in [4] and [3]. In this sense, the elastoplastic constitutive
model is described in following steps

Elastoplastic Constitutive Model
1. Strain Tensor Additive Decomposition

ε = εe + εp.
2. Free Energy Potential Definition

Ψ
(
εe, r, αD, D

)
= Ψe (εe, D) + Ψp

(
r, αD

)

where αD is the deviator part of α (backstrain tensor), r is the accumulated plastic strain,
D is the isotropic damage variable.
3. Constitutive equation for σ and thermodynamics forces βk

σ = ρ∂Ψe

∂εe
and βk = ρ∂Ψp

∂αk
.

4. Elastic-damage Coupling σ = (1−D)Dεe.
5. Yield Function/Dissipation Potential(Associative Approach)

Fp = ‖σ̃D − χD‖ − (R + σy) where σ̃D
eq =

{
3
2
σ̃D : σ̃D

} 1

2 ;
σ̃D = 1

(1−D)
{σ − σHI} and σH = 1

3
tr(σ).

6. Hardening and Evolutionary Plastic Laws

ε̇p = λ̇∂Fp

∂σ
, ṙ = −λ̇∂Fp

∂R
and Ḋ = λ̇∂FD

∂Y

where

F = Fp + FD with Fp = ‖σ̃D − χD‖ − (R + σy) and FD = Y 2

2S(1−D)
H(p− pd).

From these potentials it follows that

ε̇p = 3
2

λ̇
(1−D)

σD

σD
eq
, χ̇ = γ(χ∞ε̇p − χλ̇), Ṙ = b(R∞ −R)λ̇ and Ḋ = Y

S
ṗ H(p− pd).

Then

ṗ = λ̇
(1−D)

and Y =
(σ̃D)

2

2E

{

2
3
(1 + ν) + 3 (1− 2ν)

(
σH

σD
eq

)2
}

.

7. Consistence Condition under Plastic Yielding
(

λ̇ �= 0
)

F (σ, αk) ≤ 0, λ̇ ≥ 0, F (σ, αk) λ̇ = 0

and λ̇ Ḟ (σ, αk) = 0.
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3 INCREMENTAL FORMULATION

In this section we describe the incremental formulation of the problem between tn and
tn+1 instants. We consider that all state variables are known on Ωn and equilibrium
equations are imposed in Ωn+1. In this way, on tn+1, the weak formulation of the problem
can be written as:

Problem 1. Determine un+1 ∈ Kinu
o such that

� (un+1; v̂) = 0, ∀ v̂ ∈ V aruo , (2)

where

� (un+1; v̂) =

∫

Ωo

P (un+1) : ∇v̂dΩo −
∫

Ωo

ρo
(
b̄− ün

)
· v̂dΩo −

∫

Γt
o

t · v̂dAo. (3)

To solve above non linear problem in terms of un+1 is used the Newton method. Hence,
taking

u0
n+1 = un, k = 0 (4)

where k denotes the Newton method iteration step. Supposing the initial condition is
given by last increment step converged solution un, then on k-th iteration we have

uk+1
n+1 = uk

n+1 +∆uk
n+1. (5)

To determine ∆uk
n+1, one has

D�
(
uk
n+1; v̂

) [
∆uk

n+1

]
= −�

(
uk
n+1; v̂

)
, (6)

with

D�
(
uk
n+1; v̂

) [
∆uk

n+1

]
=

∫

Ωo

d

dε

[
P
(
uk
n+1 + ε∆uk

n+1

)]

ε=0
: ∇v̂ dΩo, (7)

where Ωo is fixed in space and it is supposing that ton+1
and b̄n+1 are non depended of u.

After some algebraic manipulations, we obtain

D�
(
uk
n+1; v̂

) [
∆uk

n+1

]
=

∫

Ωo

[
A
(
uk
n+1

)]
∇

(
∆uk

n+1

)
: ∇v̂ dΩo, (8)

where A (fourth order tensor) is the global tangent modulus, that is given by

[
A
(
uk
n+1

)]

ijkl
=

∂Pij

∂Fkl

∣
∣
∣
∣
u
k
n+1

. (9)

On the other hand,observing the problem from an Eulerian approach, it is defined a
couple of sets for each t ∈ S

Kinu(Ω) =
{
ui : Ω → R | ui ∈ H1(Ω), u (x, t) = ū (x, t) , ∀x ∈ Γu

}
; (10)

V aru(Ω) =
{
v̂i : Ω → R | v̂i ∈ H1(Ωt), v̂i (x) = 0, ∀x ∈ Γu

}
. (11)

Hence, the weak formulation of the problem can be written as
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Problem 2. Determine u (x, t) ∈ Kinu(Ω), for each t ∈ S, such that

∫

Ω

σ : ∇v̂dΩ =

∫

Ω

ρ (b− ü) · v̂dΩ +

∫

Γt

t · v̂dA, ∀ v̂ ∈ V aru(Ω), (12)

and in this case the tangent operator (or the global tangent modulus) can be described
as

[
A
(
uk
n+1

)]

ijkl
=

∂σij

∂εkl

∣
∣
∣
∣
u
k
n+1

. (13)

It is important to comment that in bouth cases (Lagrangian or Eulerian approach) the
global tangent modulus is defined by a rate of conjugated pairs.

4 THE TIKHONOV REGULARIZATION METHOD

After the Galerkin method discretization the problem described above belongs

min
f∈Rn

‖Af − g‖2, A ∈ R
n×n g ∈ R

n, (14)

where A (matrix representation for discretized tangent operator
[
A
(
uk
n+1

)]

ijkl
) has high

condition number (ill-conditioned and singular values decreasing to zero without a gap
on spectrum) on limit points neighbourhood (∂σij�∂εkl ≈ null fourth order tensor) due
to the shape of the equilibrium path response. The g consists to discretized vectorial
representation of −�

(
uk
n+1; v̂

)
. Unfortunately for the standard least square (LS) the

solution can be presented as fls = A†g (where A† denotes the pseudoinverse of A) has
serious numerical spurious error. In this sense, the Tikhonov regularization method is a
natural way to computate a solution less susceptible to numerical errors. The classical
Tikhonov method ([5] and [6]) consists in

min
f∈Rn

� (f) (15)

where � (f) = ‖Af−g‖2+ λ̃‖f‖2 and λ̃ > 0 is the regularization parameter. This problem
(15) is equivalent to research solution of the regularized normal equation

(ATA+ λ̃In)f = ATg, (16)

whose solution is fλ̃ = (ATA + λ̃In)
−1ATg, and In is the identity matrix n × n. Now

the problem is how to determine λ̃ parameter such that fλ̃ be the nearest solution of
the solution without numeric errors. A lot of techniques for the regularization parameter
choice were developed and they are presented in the specialized literature. hese techniques
can be organized in two classes: techniques that involves the pre-known (or estimative) of
the norm error e behaviour, as discrepancy principle (DP) evidenced in Morozov [8], and
techniques that do not explore this information. In this second class it can be cited the
L-curved method (see [9]), generalized cross-validation (GCV) (see [10]), weighted-GCV
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(W-GCV) (see [11]), and a fixed point method (FP-method) (see [12]). For an overview
of parameter-choice techniques for Tikhonov regularization method see [6] and recently
[12].

Considering SVD ofA, A = Ŝ1Ŝ2Ŝ
T
3 , where Ŝ2 ∈ R

n×n is a singular value diagonal ma-
trix, and Ŝ1, Ŝ3 ∈ R

n×n are unitary matrixes, with Ŝ3 non sigular matrix, the Thikhonov
problem (15) can be written as

(ATA+ λ̃In)fλ̃ = ATg ∴ fλ̃ = Ŝ3(Ŝ
2
2 + λ̃In)

−1Ŝ2Ŝ
T
1 g, (17)

or fλ̃ =
∑n

i=1

Ŝ2

2i

Ŝ2

2i
+λ̃2

Ŝ
T
1i
g

Ŝ2i

Ŝ3i with Ŝ2
2i

representing the i-th singular value, Ŝ1i is the i-th

colum vector of Ŝ1 and Ŝ3i is the i-th colum vector of Ŝ3.
Observing the problem (15), it is expected that the solution of this optimization prob-

lem converges to the solution of the equation Af = g as λ̃ tends to zero. In this sense,
some properties of Tikhonov regularization method are shown in following theorem

Theorem 1. Let A : R
n → R

n be bounded. For every λ̃ > 0 there exists a unique
minimum fλ̃ of (15). Furthermore, fλ̃ satisfies the normal equation

λ̃ 〈fλ̃, ω〉+ 〈Afλ̃ − g,Aω〉 = 0, ∀ω ∈ R
n, (18)

or, using the adjoint A∗ = AT : Rn → R
n of A,

(ATA+ λ̃In)fλ̃ = ATg. (19)

If, in addition, A is one-to-one and f ∈ R
n is the (unique) solution of the equation Af = g

then fλ̃ → f as λ̃ tends to zero. Finally, if f ∈ AT (Rn) or f ∈ ATA(Rn), then ∃c > 0

with ‖fλ̃ − f‖ = c
√

λ̃ or ‖fλ̃ − f‖ = cλ̃, respectively.

5 THE L-CURVE TECHNIQUE

In this section it is presented some ideas about the L-curve thechnique for choosing the
regularization parameter. In this sense, let fλ̃ for be the family of solutions of the method
of Tikhonov problem (15) and set

ϑ1λ̃ := ‖Af λ̃ − g‖2 and ϑ2λ̃ := ‖fλ̃‖
2. (20)

It can be verified that fλ̃ is a solution of the method of residuals (e1λ̃ :=
√
ϑ1λ̃) and

quasisolutions (e2λ̃ :=
√

ϑ2λ̃). Defining the bounded set

C :=
{
(c1, c2) ∈ R

2|∃f ∈ R
n with ‖Af − g‖ ≤ c1 and ‖f‖ ≤ c2

}
, (21)

it can be shown that the function λ̃ �→ e1λ̃ is increasing, λ̃ �→ e2λ̃ is decreasing and C
is a convex set with boundary given by the curve λ̃ �→ (e1λ̃, e2λ̃). Although if it cannot
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determine the rate
e1λ̃
e2λ̃

, it must be have to specify a method/technique to determine λ̃

in an optimal sense with using ϑ1λ̃ and ϑ2λ̃. In this way, the L−curve criterion consists
in determine λ̃ which maximizes the curvature in the typical L-shaped curve � : λ̃ ∈
(0,∞) �→ (ln (e1) , ln (e2)) ∈ R

2. The main motivation comes from the fact that in almost
vertical portion of �−graph for very small changes of λ̃ values corresponds to rapidly
varying to regularized solutions norm with very little change in ϑ1λ̃, while on horizontal
part of the graphic for larger values of λ̃ corresponds to regularized solutions norm where
the plot is flat or slowly decreasing, for more detail see [9]. From these arguments, the
L-curve corner is located in a natural transition point that links these two regions, for
more details and substantial results see [6].

The evaluation of second derivatives shows that curve is convex and steeper as λ̃
approaches to the smallest singular value. The L−curve consists of a vertical part where
e2 is near of the maximum value and adjacent part with smaller slope and the more
horizontal part corresponds to solutions dominated by regularization errors where the
regularization parameter is too large. In this sense, the problem is to seek the L−curve
point where the maximum curvature is reached.

Supposing L−curve is sufficiently smooth (in continuous sense) curvature κ
(

λ̃
)

can

be computed as

κ
(

λ̃
)

=
e
′
1e

′′
2 − e

′′
1e

′
2

((
e
′
1

)2
+
(
e
′
2

)2
) 3

2

, (22)

where (′) denotes a derivative with respect to λ̃ regularization parameter and any one
dimensional optimization method can be used to solve λ̃ for the maximum curvature
problem. It must be to point out that numerical effort involved in minimization is smaller
than SVD computation. Although, in many cases it is limited a finite set of points

on L−curve, hence the curvature κ
(

λ̃
)

cannot be computed as (22) . In a numerical

sense the L−curve consists of a number of discrete points corresponding to different
regularization parameter (λ̃) values at which we have evaluated e1 and e2. Thus, it is
defined a sufficiently smooth curve associated to the set of discrete points in such way
that the overall shape of L−curve is maintained. This procedure consists in determine
an approximating smooth curve for L−curve. A reasonable approach for this is a cubic
spline pair fitting for e1 and e2. Such a curve has some interesting properties as twice
differentiable, numerically differentiable in stable way and local shape preserving features.
It is important to comment that computational implementation of Tikhonov L−curve
regularization technique is based on criteria described in [7] and [9]. In the next section
we will point out the performance of proposed Tikhonov L−curve regularization method
for dynamic elastoplasticity problem.
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6 NUMERICAL EXAMPLE

The objective of presented numerical examples are to attest efficiency of the numerical
regularization technique proposed for the time evolutionary analysis in elastoplasticity
problems. Our implementation was made in MATLAB and results analysis are given
by a comparative response between regularized (Tikhonov L−curve parameter choice)
numerical solution and non-regularized numerical solution. The numerical examples pre-
sented here consists of 1-D low cycle fatigue applications and a monotonic load test. The
body initial length is 100 mm, its elasticity modulus is E = 2×105 MPa, Poisson ratio is
ν = 0.3, yielding limit is σy = 260MPa, kinematic hardening constants is χ∞ = 200MPa
(kinematic hardening amplitude) and γ = 2.0 (controls the kinematic hardening increase
rate), isotropic hardening constants is R∞ = 300 MPa (isotropic hardening amplitude)
and b = 1 (controls the isotropic hardening increase rate), and damage constants are
Pd = 0.0005 and Dc = 0.2 (critical value of damage). This last value depends upon the
material and the loading conditions. Dc represents the final decohesion of atoms is char-
acterized by a critical value of effective stress acting on the resisting area. It is important
to cite that Dc gives the critical value of the damage at a mesocrack initiation occurring
for unidimensional stress, usually Dc ∈ [0.2, 0.5]. A sketch of the problem cases may be
seen in figure below (see Fig.2).

Figure 2: Problem Case Domain Sketch

The load, in this example, is given by ū (x, t) = 0.8 sin2 (2πt) where t is in cycles. The
regularized numerical solution (rns) and the non-regularized numerical solution (nrns)
for analysis over t ∈ [0, 4] are computed under 10−4 tolerance value. A fictitious exact
solution (fes) was too construct for this application. A important fact that must be noted
is bouth numerical solution didn’t get to realize entire analysis over range t ∈ [0, 4]. The
”nrns” was capable to continue the analysis until t = 2.787 cycles. The ”rns-analysis”,
that use the Tikhonov regularization technique, can be cover range t ∈ [0, 3.137] cycles
with a excellent agreement with the ”fes” as presented in figure (Fig. 3) below.

The nrns-analysis failed due to ill-condition problems. At point t = 2.787 cycles the
condition number associated to the linearised system on Newton method iteration is
2.4 × 108. For this case the number of iteration extrapolated a lot allowed limit (500
iterations) with residual norm value oscillating in one belittles strip around 10−3. If we
grow up the allowed limit of iteration same pattern is the reached until 624710 iterations.
In following figure (4) it can be seen a good agreement between ”fes” and ”rns”. Note
that the rns-response was capable to reproduce the beginning of softening behaviour.

8
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Figure 3: Plastic Strain vs. Time

Figure 4: Total Strain vs. Time / Cauchy Stress vs. Time

In next figure (5) the hardening behaviour during analyzed time can be seen. Again,
a good agreement among the numerical results (”fes” and ”rns”) can be noted.

Figure 5: Isotropic Hardening vs. Time / Kinematic Hardening vs. Time

At this point, it is presented the responses about damage variable and storage plastic
strain (see Fig. 6). A perfect ”fes-rns” agreement has been noted in storage plastic

9
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strain behaviour. The damage variable evolutionary profile shows a little bit discrepancy
between ”fes” and ”rns” at t = 2.75 cycles (maximum difference) with 1.2% as relative
error. It is important to stand that there is a tendency to both graphs (”fes” and ”rns”)
coincides. The Tikhonov regularization process is setting to start when condition number
is equal or greater than 2.4 × 108. Other settings are tested but the same unexpected
pattern on rns-response was observed and non significant changes are noted.

Figure 6: Damage vs. Time / Storage Plastic Strain vs. Time

The Tikhonov regularization method allowed that the numerical analysis continues
until 3.06 × 108 as condition number. The regularization parameter computed for last
Newton’s iteration was λ̃ ≈ 0.0525 (see Fig. 7).

Figure 7: L−curve: e2 vs. e1/ L−curve (zoom): e2 vs. e1

7 CONCLUSION

In this work, it has discussed/analyzed the computational implementation of elasto-
plsticity problem. As mentioned above to treat the critical points on equilibrium-path
it was proposed a Thikhonov L-cruve regularization approach over Newton method. In
this sense it has prsented some theoretical results from Thikonov regularization method

10



942
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and your application over numerical dynamic elastoplastic problem as an efficient form
of transposing the numerical problems associated to ill-conditioning happened in neigh-
bourhoods of critical points.

It is important comment that the Thikonov L-curve regularization method approach
in elastoplastcity numerical analysis showed robustness, efficiency and potential as it can
be seen in the comparative numerical example here presented. The used tolerance conver-
gence criterion (10−4) was obtained after tests with larger and smaller tolerance values,
in that none differences in the pattern of the responses was noticed. In this numerical
example it was verified the consistency, performance and computational accuracy of the
approach proposed. In fact, there was an excellent agreement between the regularized nu-
merical response and fictitious exact solution, adding numerical stability and possibiliting
advances in the time of analysis over permanent deformation computational modelling.
Although, it is clear that new numerical experiments in terms of applications to explore
as problems involving time rate dependences (viscoplasticity) over permanent/plastic de-
formations.

Additionally it is important to point out that besides new applications, other choosing
parameters techniques (see [13] and [12]) must be investigated in terms of computational
efforts, accuracy and performance in relation to L-curve approach. In particular, some
experience is needed with large problems from distinct application requiring the use of
general-form Tikhonov regularization. These are the subject of a research that should be
continued.
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