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Abstract. To make possible the description of deformation of materials with different
resistance to tension and compression, the rheological method is supplemented by a new
element, a rigid contact, which serves for imitation of a perfectly granular material with
rigid particles. By using a rigid contact in combination with conventional rheological
elements the constitutive equations of granular materials and soils with elastic-plastic
particles and of porous materials, like metal foams, are constructed.

1 INTRODUCTION

The theory of granular materials is among the most intensively developing fields of
mechanics because the area of its application is very wide. In spite of the fact that
the foundations of this theory have been laid even at the dawn of the development of
continuum mechanics in the classical works by Coulomb and Reynolds, by now the theory
is still far from completion. The main difficulties are caused by drastic difference in
behaviour of granular materials in tension and compression experiments. Essentially
all of known natural and artificial materials possess this property of heteroresistance
(heterostrength) to some extent. For some of them, differences in modulus of elasticity,
yield point, or creep diagram obtained with tension and compression are small to an
extent that they should be neglected. However, in the studies of alternating-sign strains
in granular materials, these differences may not be neglected. In addition, mechanical
properties of granular materials, as a rule, depend on a number of side factors such
as inhomogeneity in size of particles and in composition, anisotropy, fissuring, moisture
etc. This results in low accuracy of experimental measurements of phenomenological
parameters of models.

At the present time, two classes of mathematical models corresponding to two different
conditions of deformation of a granular material (quasistatic conditions and fast motion
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ones) have been formed [1]. The first class describes behaviour of a closely packed medium
at compression load on the basis of the theory of plastic flow. In the space of stress
tensors conical domains of admissible stresses rather than cylindrical ones, as in the
perfect plasticity theory, satisfy these conditions. In the second class, a loosened medium
modeled as an ensemble of a large number of particles in the context of the kinetic gas
theory is considered.

To study quasistatic conditions of deformation, the stress theory in statically determi-
nate problems which is applied in soil mechanics is developed. The case of plane strain is
best studied by Sokolovskii [2], and the axially symmetric case – by Ishlinskii [3]. Velocity
fields in these problems are defined according to the associated flow rule considered by
Drucker and Prager [4]. Mróz and Szymanski [5] showed that the special nonassociated
rule provides more accurate results in the problem on penetration of a rigid stamp into
sand. A common disadvantage of these approaches lies in the fact that, when unloading,
in the kinematic laws of the plastic flow theory a strain rate tensor is assumed to be zero,
hence, deformation of a material is possible only as stresses achieve a limiting surface.
From this it follows, for example, that a loosened granular material whose stressed state
corresponds to a vertex of admissible cone can not be compressed by hydrostatic pressure
since to any state of hydrostatic compression there corresponds an interior point on the
axis of the cone. This is in contradiction with a qualitative pattern.

Kinematic laws turn out to be applicable in practice in the case of monotone loading
only. Constitutive equations of the hypoplasticity in application to soil mechanics have
a similar disadvantage [6, 7], because tension and compression states in them differ from
one another in sign of instantaneous strain rate rather than in sign of total strain.

The equations of uniaxial dynamic deformation of a granular material, correct from
the mechanical point of view, being a limiting case of the equations of heteromodular
elastic medium [8], were studied by Maslov and Mosolov [9]. Phenomenological models
of a spatial stressed-strained state of a cohesive soil for finite strains were proposed by
Grigoryan [10] and Nikolaevskii [11]. The works [12, 13] are devoted to generalization of
fundamentals of the plasticity theory for description of dynamics and statics of granular
materials.

A spatial model of fast motions was proposed by Savage [14], who compared the solution
of the problem on channel flow with experimental results, in particular, with those of
Bagnold. Goodman and Cowin [15] developed a model for the analysis of gravity flow of
a granular material. Nedderman and Tüzün [16] constructed a simple kinematic model
which allows one to simulate an experimental pattern of steady-state outflow from funnel-
shaped bunkers.

Nevertheless there is no a simple mathematical model which can be applicable both in
the case of quasistatics and in the case of fast motions to describe the stagnant zones in
a granular flow. The efforts to construct such model give only some limited applications
for one-dimensional shear motions.
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Porous metals are new artificial materials that can find wide application in engineering,
thanks to the low density and good damping properties. The ability of porous metals
effectively absorb energy during plastic deformation opens up the prospects of their use
for production of the car bumpers and elements of the car body, so called “crushed”
zones. They can be also used in reducers and drives as destructible fuses which dissipate
the energy of dynamic impact, preventing the destruction of all mechanical system.

Similar to granular materials, their deformation properties significantly differ in ten-
sion and compression, which is typical virtually for all porous materials. Under tension,
the stages of elastic deformation of the skeleton and plastic flow up to fracture are distin-
guished. Under compression, the stages of elastic and plastic deformation of the skeleton
up to the collapse of pores, and the subsequent stage of elastic or elastic-plastic deforma-
tion of a solid, non-porous material are distinguished. In the case of small pore sizes, the
collapse may occur in the elastic stage with the appearance of plasticity only at sufficiently
high levels of loading at the last stage.

Currently the technology of production of metal foams on the basis of aluminum,
copper, nickel, tin, zinc and other metals is worked out. Extensive experimental researches
of mechanical properties of such materials are carried out. The diagrams of uniaxial
tension and uniaxial compression on an example of aluminum foam and porous copper
were obtained in [17, 18]. The paper [19] deals with problems of the wear resistance and
the cyclic fatigue of porous metals.

Theoretical results related to the construction of constitutive equations and to the
analysis on this basis of a spatial stressed-strained state of structural elements of a metal
foam, according to available publications, are practically not studied. Still more dif-
ficult to construct a universal model for the description of a spatial stressed-strained
state. Performing of adequate computations based on discrete models of a metal foam
as a structurally inhomogeneous material is possible only with using the multiprocessor
systems which have high speed and large amounts of RAM.

In this paper a simple method for constructing constitutive equations of granular and
porous materials based on the rheological approach is suggested.

2 GRANULAR MATERIALS

Rheology is the basis of the phenomenological approach to the description of a stressed-
strained state of materials with complex mechanical properties. As a rule, for the models
obtained with the help of rheological method, solvability of main boundary-value prob-
lems can be analyzed and efficient algorithms for numerical implementation can be easily
constructed. At the same time, with the use of conventional rheological elements (a spring
simulating elastic properties of a material, a viscous damper, and a plastic hinge) only, it
is impossible to construct a rheological scheme for a medium with different resistance to
tension and compression or for a medium with different ultimate strengths under tension
and compression. To make it possible, the rheological method is supplemented by a new
element, a rigid contact (see Fig. 1a), which serves for imitation of a perfectly granular
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Figure 1: Rheological models of a granular material: rigid (a), elastic (b) and elastic-plastic (c)

material with rigid particles [20]. Under compressive stresses this element doesn’t de-
formed. If stress is equal to zero then strain may be arbitrary positive value. Tensile
stresses aren’t admissible. Rheological models of perfectly elastic and elastic-plastic gra-
nular media are represented in Figs. 1b and 1c. In the case of compression such media are
either in elastic state or in plastic one, but in the case of tension the stresses are equal
to zero. By different combining these elements with viscous element, one can construct
rheological models of more complex media.

Mathematical model of a rigid contact (perfectly granular medium with rigid particles)
is reduced to the system of relationships

σ ≤ 0, ε ≥ 0, σ ε = 0.

It is possible to represent it in the form of variational inequalities

(ε̃− ε) σ ≤ 0, ε, ε̃ ≥ 0, (σ̃ − σ) ε ≤ 0, σ, σ̃ ≤ 0,

each of which assumes the potential representation

σ ∈ ∂φ(ε), ε ∈ ∂ψ(σ). (1)

Here φ and ψ – the potentials of stresses and strains – are the indicator functions, equal to
zero on cones C =

{
ε ≥ 0

}
and K =

{
σ ≤ 0

}
respectively, and equal to infinity outside

of these cones. These functions are denoted as δC(ε) and δK(σ). The symbol ∂ serves for
designation of a subdifferential, the arbitrary variable values are denoted by a wave.

Generalization of the model, schematically represented in Fig. 1a, on the case of a
spatial stressed-strained state is easily constructed on the basis of inclusions (1). For that
it is necessary to set the convex cone C in the space of strain tensors or the cone K in
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the space of stress tensors. If one of these cones is known then another one is found as
conjugate:

K =
{

σ
�
� σ : ε ≤ 0 ∀ ε ∈ C

}

, C =
{

ε
�
� σ : ε ≤ 0 ∀ σ ∈ K

}

(the colon denotes the convolution of tensors). Corresponding potentials – the indicator
functions of cones C and K – are dual, i.e. they are determined one by another with the
help of the Young transformation

φ(ε) = sup
σ

{

σ : ε− ψ(σ)
}

, ψ(σ) = sup
ε

{

σ : ε− φ(ε)
}

.

Known experimental results on the deformation properties of compact sands confirm
the hypothesis about elastic state of a medium under stresses, close to hydrostatic com-
pression. Such stresses are interior points of the cone K. For an elastic granular medium
(Fig. 1b) ψ = σ : a : σ/2 + δK(σ), where a is the tensor of moduli of elastic compli-
ance of fourth rank, corresponding to the model of an elastic element. The constitutive
relationships (1) are reduced to the Haar–Karman inequality [20]

(σ̃ − σ) : (a : σ − ε) ≥ 0, σ, σ̃ ∈ K. (2)

Taking into account the symmetry and the positive definiteness of the tensor a, it is
possible to show that the solution of inequality (2) is the tensor of stresses σ = sπ,
equals to the projection of the conditional stress tensor s, determined from the linear
Hooke law a : s = ε, onto K with respect to the norm |σ|a =

√
σ : a : σ.

For a medium possessing plastic properties, rheological scheme of which is represented
in Fig. 1c, the strain tensor is decomposed into the sum of elastic and plastic components:
ε = εe + εp. The tensor of elastic strain satisfies the inequality (2), taking into account
the property of granularity of a medium. For the plastic strain rate tensor the constitutive
relationships of the flow theory

σ ∈ ∂η(ε̇p) (3)

are correct. Here η is the dissipative potential of stresses being a convex positive homo-
geneous function of the strain rates, the dot over a symbol serves to indicate the time
derivative. Homogeneity of this potential is the consequence of independence of the pro-
cess of plastic deformation on time scale. By virtue of this property, the dual potential
χ(σ) – the Young transformation of the function η(ε̇) – is equal to the indicator function
of the convex closed set

F =
{

σ
�
� σ : ε̇ ≤ η(ε̇) ∀ ε̇

}

.
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The boundary of F in the stress space defines the yield surface of a material. If the set F
is a cylinder with the axis of hydrostatic stresses then the volume strain of a medium
obeys the linearly elastic law. In the opposite case the model, being under consideration,
describes irreversible volumetric contraction.

The inclusion (3) in the equivalent form ε̇p ∈ ∂χ(σ) is reduced to the Mises inequality

(σ̃ − σ) : ε̇p ≤ 0, σ, σ̃ ∈ F. (4)

The variational inequality (2) for elastic part of the strain tensor and the inequality (4)
for its plastic part together with the equations of motion and the kinematic equations

ρ v̇ = ∇ · σ, 2 (ε̇e + ε̇p) = ∇v + (∇v)∗ (5)

form a closed model describing the dynamics of a granular medium. Here ρ is the density, v
is the velocity vector, ∇ is the gradient, an asterisk denotes the operation of transposition.

3 POROUS METALS

The porosity of a metal foam is determined as the ratio of the pore volume to the
volume of a porous material: ε0 = V0/V . If ρ is the density of initial (solid) metal,
then, ignoring the presence of gas in the pores, the density of a porous metal can be
calculated by formula: ρ0 = ρ (V − V0)/V . Consequently, ε0 = (ρ − ρ0)/ρ. For highly
porous materials the volume strain caused by the collapse of pores is much higher than the
concomitant strain of volume compression of the skeleton, therefore the pores disappear
when the volume strain is approximately equal to θ0 ≈ ((V − V0)− V )/V = −ε0.

Figure 2: Rheological scheme (a) and diagram of uniaxial elastic deformation of a porous metal (b)
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The simplest rheological scheme taking into account the main qualitative features of
deformation of porous metals is represented in Fig. 2a. In this scheme the behaviour
of a material under tension and under compression up to the moment of pores collapse
is simulated by an elastic spring with the compliance modulus a, and the increasing of
rigidity as the collapse of pores is simulated by a spring with the compliance modulus b.
Segments of the diagram of uniaxial deformation with a break at the point ε = −ε0 (see
Fig. 2b) are defined by the equations: σ = ε/a and σ = ε/a + (ε + ε0)/b. This scheme
describes an elastic process that occurs without the dissipation of mechanical energy.

Fig. 3a shows a more general rheological scheme with a plastic hinge. It is assumed
that under tensile stress σ+

s the skeleton goes into the yield state, and under compressive
stress −σ−

s the plastic loss of stability takes place. The corresponding diagram of uniaxial
deformation is a four-segment broken line (see Fig. 3b). Elastic stage is described by the
equation σ = ε/a, and the stage of elastic-plastic deformation of a solid material after
collapse of the pores is described by the equation σ = (ε + ε0)/b − σ−

s . Transitions of a
material in the unloading state are shown by arrows. The unloading of a porous material
occurs by the law dσ = dε/a, and the unloading of a solid material occurs by the law
dσ = dε (1/a + 1/b). Specific dissipative energy, which is released during the collapse of
the pores, is estimated by the product σ−

s ε0 in this model. The plastic flow, which occurs
in a solid material at higher level of compressive stresses, is not considered.

Figure 3: Rheological scheme (a) and diagram of elastic-plastic deformation of a skeleton (b)

In the general case of a spatial stressed-strained state, in accordance with the rheolo-
gical scheme in Fig. 3b, the stress tensor σ is equal to the sum of the tensors σp of plastic
stresses and σc of additional stresses acting after collapse of the pores. It is assumed that
these tensors are symmetric. Elastic compliance of a material at small strains is charac-
terized by the fourth-rank tensors a and b, satisfying the usual conditions of symmetry
and positive definiteness. The series connection of an elastic spring and a plastic hinge in
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the scheme corresponds to the theory of elastic-plastic flow of Prandtl–Reuss. Within the
framework of this flow theory the constitutive relationships are postulated in the form of
principle of maximum of the energy dissipation rate:

(σ̃ − σp) : (a : σ̇p − ε̇) ≥ 0, σ̃, σp ∈ F. (6)

Here ε is the actual strain tensor, F is the convex set in the stress space, bounded
by the yield surface of a material. Assuming that the deformation of the jumpers of
porous skeleton, distributed randomly on macrovolume of a material, can be described
with satisfactory accuracy as a bar model, let us define concretely the set of admissible
stresses:

F =
{

σ̃
�
� −σ−

s ≤ σ̃k ≤ σ+
s , k = 1, 2, 3

}

,

where σ̃k are the principal values of σ.
Constitutive relationships of a rigid contact are formulated as the variational inequality

(σ̃ − σc) : (εc + ε0) ≤ 0, σ̃, σc ∈ K. (7)

Here εc = ε − b : σc is the strain tensor of porous skeleton, ε0 = ε0 δ/3 is the spherical
tensor of initial porosity of a material, δ is the Kronecker delta. The transition of a
material from porous state to continuous one is modeled by the convex cone K. As
a simple variant of K one can use the Mises–Schleicher circular cone:

K =
{

σ̃
�
� τ(σ̃) ≤ æ p(σ̃)

}

,

where æ is the phenomenological parameter of a dilatancy, p(σ) = −σ : δ/3 is the hyd-
rostatic pressure, τ(σ) is the intensity of tangential stresses determined via the deviator
of the stress tensor σ′ = σ + p(σ) δ by means of the formula: τ 2(σ) = σ′ : σ′/2.

Taking into account these notations, the inequality (7) is converted to the form

(σ̃ − σc) : b : (σc − s) ≥ 0, σ̃, σc ∈ K. (8)

Here s is a tensor of conditional stresses, which is calculated by the law of linear elasticity
with initial strains: b : s = ε + ε0. If this tensor is admissible, i.e. if the inclusion
s ∈ K is fulfilled, then by (8) σc = s. If s /∈ K and for any σ̃ ∈ K the inequality
σ̃ : b : s ≤ 0 is valid, which means precisely that the sum of tensors ε + ε0 belongs to

the cone C =
{

ε̃
�
� σ̃ : ε̃ ≤ 0, σ̃ ∈ K

}

of admissible strains, dual to the cone K, then

as follows from (8) σc = 0. In the general case, the variational inequality (8) allows to
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determine the tensor σc = sπ as a projection of the tensor s onto K with respect to the
norm |s| =

√
s : b : s, and the above two variants for setting s are special cases when the

projection coincides with the original tensor and the projection is a vertex of cone. If the
projection belongs to a conical surface, then the formulas for calculating the projection
take the next form [20]:

p(σ) =
µ p(s) + æ k τ(s)

µ+ æ2k
, σ′ = æ p(s)

s′

τ(s)
(9)

(for an isotropic medium the tensor b of elastic compliance is characterized by two in-
dependent parameters – the volume compression modulus k and the shear modulus µ).
This variant is realized when both of the conditions s /∈ K and ε + ε0 /∈ C are fulfilled.
The cone C, dual to the Mises–Schleicher cone, is defined as

C =
{

ε̃
�
� æ γ(ε̃) ≤ θ(ε̃)

}

,

where γ(ε̃) =
√
2 ε̃′ : ε̃′ is the shear intensity, and θ(ε̃) = ε̃ : δ is the volume strain.

The inclusion ε+ ε0 ∈ C means that the rigid contact in rheological scheme is opened,
i.e. the pores are in the open state. When the collapse of pores take place, the limit
condition æ γ(ε) = ε0+θ(ε) is satisfied, which describes the dilatational volume increasing
of a material due to the shear strain.

Note that in the simulation of real porous metals it is necessary to take into account
a random character of distribution of a pore size, therefore the value ε0 can vary randomly
at each elementary portion of a sample (at each mesh of the grid domain). In principle,
the law of distribution of pores by size is completely determined by technology of the
production of metal foams, however in numerical computations (in order to describe
qualitatively the effect of random distribution of pores on the stressed-strained state of
a material) can be used, for example, the formula

ε0 = ε−0 + (ε+0 − ε−0 ) rand,

where ε±0 are the boundaries of porosity, rand is a built-in function of the uniform distri-
bution on the segment [0, 1].

4 UNIVERSAL FORM OF MODELS

Mathematical model describing the dynamic deformation of porous metal under small
strains and rotations of elements can be written in the next form:

ρ0 v̇ = ∇ · σ,
(σ̃ − σp) : (a : σ̇p −∇v) ≥ 0, σ̃, σp ∈ F,

b : ṡ = (∇v +∇v∗)/2, σ = σp + πK(s).

(10)
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Unknown functions are the velocity vector v and the tensors of plastic stresses σp and of
conditional stresses s. The initial conditions, describing the natural (stress-free) state of
a material, are formulated for the system (10) as

v
�
�
t=0

= 0, σp
�
�
t=0

= 0, s
�
�
t=0

= b−1 : ε0.

The boundary conditions can be given in the terms of velocities: v
�
�
Γ
= v0(x), as well as

in stresses: σ
�
�
Γ
·ν(x) = q(x), where ν is the outward normal vector, v0 and q are given

functions.
It turns out that the relationships (10) and the relationships (2), (4), (5) of mathe-

matical model of an elastic-plastic granular material can be represented in the universal
matrix form

(
Ũ − U

)
(

A U̇ −
n∑

i=1

Bi Uπ
,i

)

≥ 0, Ũ , U ∈ F. (11)

Here U is the unknown m-dimensional vector–function, A and Bi are the given matrices
whose coefficients are the density and the mechanical coefficients of a material, subscripts
after a comma denote partial derivatives with respect to spatial variables, superscript π
denotes the projection of vector U onto the cone K of admissible variations with respect
to the energy norm |U | = √

UAU , n = 1, 2, or 3 is the spatial dimension of the model.
The difference is that the vector–function U in the model of an elastic-plastic granular

material consists of the projections of the velocity vector v and the components of the
conditional stress tensor s. In the model of a porous metal it consists of the velocities and
the components of two stress tensors – the plastic stress tensor σp, which is constrained
by the plasticity condition, and the conditional stress tensor s.

The inequality (11) is very useful in constructing the numerical algorithms for the
solution of initial-boundary problems. A variant of such algorithm is considered in our
monograph [20]. In this monograph one can find the examples of numerical modeling of
the processes of an elastic-plastic waves propagation in a loosened granular medium.

5 CONCLUSIONS

- Rheological method is supplemented by a new element, a rigid contact, which make
it possible to describe mechanical properties of materials having different resistance
to compression and tension.

- By means of this method constitutive relationships of granular materials with rigid,
elastic and elastic-plastic particles are considered.

- Constitutive equations of metal foams of low porosity are obtained describing the
phases of elastic deformation and plastic loss of stability of a skeleton and the phase
of elastic deformation of a compact material after the pores collapse.
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