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Abstract. We developed a two-scale approach for modeling large-deforming perfused
media with the 3-compartment microstructure. An incremental formulation based on
the updated Lagrangian configuration and the Biot-type continuum model is introduced.
Equations of the model express mechanical equilibrium and the volume fluid redistribution
(the Darcy law), assuming both the fluid and solid phases are incompressible. This
linearized system was treated by the homogenization method assuming locally periodic
structures. The local reference cell involving geometrical representations of the blood
vessels evolves in time due to large deformation. The homogenized model is implemented
using a finite element code and a numerical example is presented.

1 INTRODUCTION

Modeling of tissue perfusion is one of the most challenging issues in biomechanics.
There are several hurdles originating in structural arrangement of the so-called perfusion
tree, necessity of bridging several scales, the blood flow descriptions depending on the
scale, and fluid-structure interactions. We focus on modeling the perfusion of deforming
tissue parenchym. At the level of small vessels and microvessels, the perfusion can be
described using the Darcy flow in a double-porous structure consisting of 3 compartments:
two disconnected channels (small arteries and veins) and the matrix (microvessels and
capillaries), represented as the dual porosity, where the permeability is decreasing with
the scale parameter the size of the microstructure. In some kinds of tissues, the coupling
between flow (fluid diffusion) and deformation is quite important, cf. [7] where the case
of linear deformation is described. In this short communication we present a perfusion
model of the homogenized large deforming medium whereby the incremental formulation
based on the updated Lagrangian formulation is employed.

The computational algorithm can be characterized as the cycle comprising the following
steps: 1) for given reference microstructure - the local configuration (LC) - compute
the local response functions and the effective constitutive parameters, 2) compute the
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macroscopic response (MR) for given external loads, 3) compute the deformation and
stresses at each reference microstructure using MR and update the LC. This algorithm is
now implemented in the Sfepy code [1] and tested on 2D examples.

2 LARGE DEFORMING MEDIA AND HOMOGENIZATION

Problems involving nonlinear partial differential equations are difficult to solve in gen-
eral, therefore, their homogenization by asymptotic analysis with respect to the scale of
heterogeneities is quite cumbersome, in general. We follow an approach which is based on
homogenization of linear subproblems arising from an incremental formulation associated
with the numerical treatment, see [8] and [3, 4, 5]. The homogenization procedure can be
described by the following steps:

• A reference configuration at time t is considered. The configuration is defined by
locally periodic structure and by the reference state in the form of bounded two-scale
functions.

• The homogenization is applied to the linear subproblem: given the configuration at
time t, compute the increments associated with time increment ∆t, see Section 2.2.
The locally periodic microstructure (see Section 2.1) and the reference state define
the oscillating coefficients of the linearized equations. Then the standard homog-
enization [2] can be applied, such that on solving local microscopic problems, the
characteristic responses are obtained and the homogenized coefficients can be eval-
uated at any “macroscopic position” x, as reported in Sections 3.1 and 3.2.

• The homogenized subproblem can be solved at the macroscopic level, thus the in-
crements of the macroscopic response are obtained, see Section 3.3.

• In order to establish new microscopic configurations at time t + ∆t and at “any”
macroscopic position, the macroscopic response is combined with the local micro-
scopic characteristic responses to update the local microscopic states, see Section 3.4.
Then the next time step can be considered and the whole procedure repeats.

In contrast with linear problems, where the microscopic responses are solved only once
(even though they can depend on time [6, 7]), in nonlinear problems the local microscopic
problems must be solved for any iteration (time step) and at “any” macroscopic point,
[3, 4, 5]. In fact, the homogenization leads to a two-scale domain decomposition: the
macroscopic domain is decomposed into locally representative cells where the microscopic
problems must be solved. The data (i.e. the solutions) are passed between the two levels
after any iteration (the time increment step), so that the problem remains fairly two-scale
during the whole solution procedure. This is the major difficulty which affects directly
the complexity of the numerical treatment.
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2.1 Locally periodic microstructures and scale separation

Homogenization methods based on the asymptotic analysis of a system of partial dif-
ferential equation employ the concept of locally almost periodic microstructures. Let ε
be the scale which is the ratio between the “microscopic” and the “macroscopic” charac-
teristic lengths. Later we shall need material parameters defined in the local microscopic
cell Y ε using the coordinate split

x = ξε + εy , y ∈ Y ε(x) ,

where ξε is the lattice coordinate. The unfolding operation denoted by ,̃ which enables to
rewrite any function of x as a function of two variables: φε(x) = φ̃ε(ξε, y). The assumption
of the local periodicity means that for ε → 0 the following holds:

(i) Y ε(x) → Y (x) ,

(ii) φε(x) → φ̃(x, y) for a.a. x ∈ Ω and y ∈ Y (x),

where Y (x) is the local reference cell. The scale separation is achieved in the limit
ε → 0. It means that the macroscopic position x ∈ Ω is associated with a local periodic
microstructure — a periodic array of cells, which are defined by translations of Y (x).

Obviously, a real problem is characterized by a given finite scale ε0, so that the “abso-
lute” scale separation does not hold. However, the limit problem obtained as ε → 0 and
its solution computed by solving the homogenized equations (see below) can be employed
to construct an approximation of the original problem featured by ε0. For this some
postprocessing based on averaging operators can be used.

We shall introduce the following decomposition of Y into the sectors of primary and
dual porosities, cf. [7]. Let Yα, α = 1, 2 be two disjoint subdomains of Y with Lipschitz
boundary, such that ∂αYα := Yα ∩ ∂Y �= ∅ is formed by mutually homologous points of
∂Y , see Fig. 1 (right); this is necessary to have connected channels. The periodic array
obtained by translating Yα forms a connected domains.

Further by Y3 = Y \(Y1∪Y2) we denote the “matrix”, which thus separates the channels
Y1 and Y2. Domain Y3 is associated with the dual porosity, where the permeability is very
small, see equation (4). By Γβ = ∂Yβ ∩ ∂Y3 we denote the channel-matrix interface.

2.2 Updated Lagrangian formulation

In order to define the weak formulation for the linearized deformation-diffusion prob-
lem, we need some preliminaries. Let ∂DΩ ⊂ ∂Ω be the part of the boundary where
the zero displacements are prescribed. Now we define V 0(Ω) = {v ∈ W 1,2(Ω)3 | vi =
0 on ∂DΩ, i = 1, . . . , 3} for 3D problems.

In what follows we denote by superscript ε all the quantities which vary with hetero-
geneities. The micromodel incorporates the following material parameters. The elasticity
tensor Deff ε

ijkl is the Truesdell rate of the effective Kirchhoff stress τ eff,ε
ij , which is associated
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with a given strain energy function. Denoting by F ε
ij the deformation gradient, Jε =

det F ε
ij. Both Deff ε

ijkl and τ eff ε
ij are functions of F ε

ij, namely τ eff,ε
ij = µε(Jε)−2/3 dev(F ε

ikF
ε
jk).

The Green-Lagrange strain w.r.t. the updated configuration consists of the linear part
e = (eij) and the nonlinear part η = (ηij). The porous properties of the medium are
described by the symmetric positive definite permeability tensor Kε

ij.
The incremental “algorithmic” approach of time stepping is adhered to formulate the

evolution problem for the porous medium. We consider the subproblem of computing the
new configuration at time t + ∆t, given a finite time step ∆t and the configuration Cε,(t)

at time t, which is determined by the triplet {Ω, F ε
ij(x), pε(x)}(t) for x ∈ Ω.

Let Lnew(v) be the functional involving the instantaneous boundary and volume forces
at time t + ∆t. The finite increments of displacement ∆uε ∈ V 0(Ω) and hydrostatic
pressure ∆pε ∈ L2(Ω) verify the variational equations (1)-(2) which express respec-
tively the balance of stresses – quasi-static equilibrium equation (notation: I = δij,
II = 1/2(δikδjl + δilδjk), η(v) = (∂vk/∂xi)(∂vk/∂xj), ID = (Dijkl) and τ = (τij))∫

Ω

[IDeff,ε : e(∆uε)] : e(v ε)(Jε)−1dx +

∫

Ω

τ eff,ε : δη(∆uε; v ε)(Jε)−1dx

−
∫

Ω

∆pε divv εdx +

∫

Ω

pε∇(∆uε) : (II − I ⊗ I ) : ∇v εdx

=L(v ε) −
∫

Ω

τ ε : e(v ε)(Jε)−1dx ∀v ε ∈ V (Ω) ,

(1)

where the total Kirchhoff stress is τ ε
ij = −Jεδij pε + τ eff,ε

ij , and the Darcy flow in the
dual-porous structure

∫

Ω

qε div∆uεdx + ∆t

∫

Ω

K ε · ∇(pε + ∆pε) · ∇qεdx = 0 , ∀qε ∈ H1(Ω) . (2)

3 PERFUSION IN LARGE DEFORMING POROUS MEDIA

The material parameters in deformed configuration depend on the deformation gra-
dient F ε

ij(x). Within the updated Lagrangian formulation we use the coordinates in the
deformed reference configuration. At the microscopic scale, we establish the local deformed
configuration: For x ∈ Ω, let F̃ij(x, y), y ∈ Y (x) be the two-scale limit of the deformation
gradient associated with the mapping of the corresponding initial (undeformed) reference
cell onto Y (x). Then the local microscopic configuration at time t is the triplet

C(t)(x) = {Y (t)(x), F̃
(t)
ij (x, y), p̃(t)(x, y)|y ∈ Y (t)(x)} . (3)

We assume that at any such configuration we may establish locally periodic material
parameters. The permeability is defined using the dual porosity ansatz (for homogeniza-
tion) characterized by ε2 scaling of the permeability coefficients in the “matrix”:

Kε
ij(x) :=

{
K̃α

ij(x, y) y ∈ Yα, α = 1, 2 ,

ε2K̃3
ij(x, y) y ∈ Y3 .

(4)
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Obviously, tensors K̃ij depend on the material deformation and should be modified
from one time level to the next one using F̃ , as will be discussed in Section 3.4.

Further we define tangent modulus ÃA = (Ãijkl) which depends on F̃ij (through D̃eff
ijkl

and τ̃ eff
jl ) and on the interstitial fluid pressure p̃,

Ãijkl(x, y) =
(
D̃eff

ijkl + τ̃ eff
jl δki + J̃ p̃ (δjkδil − δijδkl)

)
, (5)

where all quantities denoted by˜are expressed for x ∈ Ω as locally periodic functions of
y ∈ Y (x).

3.1 Asymptotic expansions and corrector basis functions

The linearized problem can be treated using standard homogenization methods, such
as the periodic unfolding, the two-scale convergence, or even the asymptotic expansion
methods. The fluctuating fields ∆uε and ∆pε can be expressed by the following asymp-
totic expansions:

∆uε(x) = ∆u0(x) + ε∆u1(x, y) + O(ε2) ,

∆pε(x) =
∑

α=1,2

χα(y)
(
∆p0

α(x) + ε∆p1
α(x, y) + O(ε2)

)
+ χ3(y) (∆p̃3(x, y) + O(ε)) , (6)

where y ∈ Y (x), χs(y), s = 1, 2, 3 are characteristic functions of subdomains Ys and all
functions are Y-periodic in variable y. For this we established appropriate spaces:

H1
#(Yα) = {v ∈ H1(Yα) , v is Y-periodic,

∫

Yα

v = 0} ,

H1
#0(Y3) = {v ∈ H1(Y3) , v is Y-periodic, v = 0 on Γα} .

(7)

The fluctuating parts of the displacements and pressures are expressed in terms of the cor-
rector basis functions: we introduce Y-periodic functions ωrs, ωα,uP ∈ H1

#(Y ), πrs, pP ∈
H1

#0(Y3), πα ∈ H1
#(Y3), ηk

α ∈ H1
#(Yα),

∆u1 = ωrs∂x
s ∆ur +

∑
α=1,2

ωα∆p0
α + uP ,

∆p̃3 = πrs∂x
s ∆ur +

∑
α=1,2

πα∆p0
α + pP ,

∆p1
α = ηk

α∂x
k∆p0

α , α = 1, 2 ,

(8)

due to the “channel-matrix interface” conditions, πα = δαβ on Γβ.

3.2 Local microscopic problems

We shall need the following notation to introduce the local microscopic problems:

aY (u , v) =

∫

Y

Ãijkl∂
y
l uk∂

y
j viJ̃

−1dy , cYk
(p, q) =

∫

Yk

(K̃ k · ∇yp) · ∇yq dy , (9)
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where k = 1, 2, 3. These bilinear forms depend on C(t)(x) for x ∈ Ω, see (3). The following
microscopic problems must be solved:

1. Correctors w.r.t ∂x
s ∆ur: find (ωrs, πrs) ∈ H1

#(Y ) × H1
#0(Y3) satisfying

aY (ωrs + Πrs, v) − 〈πrs, divyv〉Y3
= 0 , ∀v ∈ H1

#(Y )

〈q, divy[ω
rs + Πrs]〉Y3

+ ∆t cY3
(πrs, q) = 0 , ∀q ∈ H1

#0(Y3) .
(10)

2. Correctors w.r.t ∆pα: find (ωα, πα) ∈ H1
#(Y ) × H1

#(Y3) satisfying

aY (ωα, v) − 〈πα, divyv〉Y3
=

∫

Γα

v · n [α] dSy , ∀v ∈ H1
#(Y )

〈q, divyω
α〉Y3

+ ∆t cY3
(πα, q) = 0 , ∀q ∈ H1

#0(Y3) ,

πα = δαβ a.e. on Γβ .

(11)

3. Particular responses for given τ̃ and p̃3: find (uP , pP ) ∈ H1
#(Y ) × H1

#0(Y3) such
that

aY

(
uP , v

) − 〈
pP , divyv

〉
Y3

= −
∫

Y

τ̃ : ey(v)J−1dy , ∀v ∈ H1
#(Y )

〈
q, divyu

P
〉

Y3

+ ∆t cY3

(
pP , q

)
= −∆tcY3

(p̃3, q) , ∀q ∈ H1
#0(Y3) .

(12)

4. In the channels α = 1, 2 the corrector basis functions ηk
α, k = 1, 2, 3 satisfy:

cYα

(
ηk

α + yk, q
)

= 0 , ∀q ∈ H1
#(Yα) . (13)

3.3 Macroscopic equations of the time increment

The microscopic responses introduced in (10)-(13) are employed to compute the ho-
mogenized coefficients Aijkl, Bij, G

β
α, Cβ

ij, Qij and the stress Sij which are now listed; they
constitute the homogenized (macroscopic) equations:

• Effective visco-elastic modulus (involving time step ∆t)

Aijkl =
1

|Y |aY

(
ωkl + Πkl, ωij + Πij

)
+ ∆

1

|Y |tcY3

(
πkl, πij

)
. (14)

• Effective Biot poroelasticity tensor

Bα
ij =

|Yα|
|Y | δij +

1

|Y |
〈
πα, divyΠ

ij
〉

Y3

− 1

|Y |aY

(
ωα, Πij

)
, (15)

6
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• Averaged total Kirchhoff stress (in the updated reference configuration)

Sij =
1

|Y |
∫

Y

τ totJ−1dy . (16)

• Effective retardation stress

Qij =
1

|Y |
[
aY

(
uP , Πij

) − 〈
pP , divyΠ

ij
〉

Y3

]
, (17)

• Effective channel permeability (of the sector β):

Cβ
ij =

1

|Y |cYβ

(
πl + yl, πk + yk

)
, (18)

where πl solves the autonomous local problem (13).

• Perfusion coefficient – inter-sector permeability

Gα
β =

1

|Y |
∫

Γα

(
K 3 · ∇yπ

β
) · n [3] dSy +

1

∆t

1

|Y |
∫

Γα

ωβ · n [α] dSy , (19)

• Effective discharge due to deformation of the reference state (in the updated con-
figuration)

geff
α =

1

|Y |
∫

Γα

(
K 3 · ∇y(p

P + p̃3
) · n [3] dSy +

1

∆t

1

|Y |
∫

Γα

uP · n [α] dSy , (20)

The macroscopic incremental problem is solved for displacements ∆u0 ∈ V (Ω) and
pressures ∆p0

β ∈ H1(Ω), β = 1, 2 which satisfy the following equations:

Equilibrium equation:
∫

Ω

(
Aijkl∂l∆u0

k −
∑

α=1,2

Bα
ij∆p0

α

)
∂jv

0
i dx =L(v 0) −

∫

Ω

(Qij + Sij) ∂jv
0
i dx (21)

for all v 0 ∈ V 0(Ω) ,

Diffusion equations: for β = 1, 2,
∫

Ω

q0
β

(
Bβ

ij∂j∆u0
i +

∑
α=1,2

Gβ
α∆p0

α

)
dx +

∫

Ω

Cβ
kl∂l(∆p0

β + p0
β) ∂kq

0
βdx = −

∫

Ω

geff
β q0

βdx ,

(22)

for all q0
β ∈ H1(Ω). The homogenized problem involves two diffusion equations describing

perfusions in the two compartments labeled by β = 1, 2. This is the direct consequence of
a) the dual porosity in Y3 and b) topology of the decomposition of Y with Y1 disconnected
from Y2.

7
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Figure 1: A macroscopic tissue 2D-sample with two labeled points (left), prescribed perfusion pressures
p1(t), p2(t) as constant along two different faces (center) and the 2D microstructure (right).

3.4 Updating the local microstructures

We shall now explain the time stepping algorithm which is used to compute deformation
of the medium and fluid redistribution in the pores at discrete time levels. At a certain
time level (labeled by (t)), the macroscopic configuration is represented by the triplet

M(t) ≡ {Ω(t), F
(t)
ij (x), p

(t)
α (x)| x ∈ Ω(t)} and the microscopic configurations are given by

C(t)(x), are given, see (3). The coupled micro-macro algorithm involves the following
steps:

1. Given M(t) and C(t)(x) for x ∈ Ω(t), solve the microscopic problems (10)-(13), then
compute all the homogenized coefficients: Aijkl, Bij, G

β
α, Cβ

ij, Qij and stress Sij.

2. Compute ∆u0 and ∆p0
α by solving (21)-(22).

3. Update macroscopic configuration M(t) → M(t+∆t), Ω(t+∆t) := Ω(t) + {∆u0}.
4. For a.a. points x ∈ Ω(t) update C(t)(x) → C(t+∆t)(x +∆u0(x)); this step consists in:

(a) Updating deformation and deformed domain

∆u∗
i := (δirδjsyj + ωrs

i ) ∂x
s ∆u0

r(x) +
∑

α=1,2

ωα
i ∆p0

α(x) + uP
i ,

fij := δij + ∂y
j ∆u∗

i ,

Fij := fikFkj ,

Y (t+∆t)(x) := Y (t)(x) + {∆u∗} ,

(23)

where Fij is the total deformation gradient at the microscopic level.

(b) Updating pressure fields for x ∈ Ω(t):

• update the channel pressures:

∆p̃α = ∆p0
α + ε0η

k
α∂x

k∆p0
α ,

p̃(t+∆t)
α = p̃(t)

α + ∆p̃α ,
(24)

8
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where ε0 > 0 is a given scale of the microstructure.
• update the dual porosity pressure:

∆p̃3 = πrs∂x
s ∆u0

r(x) +
∑

α=1,2

πα∆p0
α(x) + pP ,

p̃
(t+∆t)
3 = p̃

(t)
3 + ∆p̃3 .

(25)

Now C(t+∆t)(x + ∆u0(x)) for x ∈ Ω(t) is constituted by (23)3,4 and (25)2.

5. Stop, when maximum time is reached, or return to step 1 with t := t + ∆t.

Material parameters depend on local strain and stress, in general, so they are defined
in the updated local microscopic configuration C(t)(x).

domain shear modulus µ [Pa] permeability coef. cperm [m2/(Pa·s)]
matrix Y3 1 × 106 1 × 10−9

channel Y1 6 × 105 1 × 10−8

channel Y2 4 × 105 2 × 10−8

Table 1: Material parameters at the microscale; the permeability is isotropic, Kk
ij = ck

permδij , in all
subdomains Yk, k = 1, 2, 3. Thus, for scale ε0 = 0.01, the matrix permeability is cε0,3

perm = ε2
0c

3
perm = 10−13.

4 EXAMPLE – PERFUSION IN 2D

The two-scale model of the perfusion is now implemented in the in-house developed FE
code SfePy , [1] which was developed using some techniques already tested on problems
of large deforming solids, as reported in papers [5, 3]. Here we report a simple simulation
in 2D, see Tab. 1 for the material parameters used at the microscopic scale. The specimen
is loaded just by two perfusion pressures varying in time and supported at three nodes
as illustrated in Fig. 1. The microstructure is (initially) periodic with the reference cell
Y containing two systems of curved channels. The material parameters defining the
microscopic problems are listed in Tab. 1; note that the “real permeability” in the dual
porosity Y3 is 10−4 times smaller, being the ε2

0-multiple, where ε0 = 0.01 in our situation.
(We used nonphysiological values for testing the model on “non-realistic” 2D examples;
in this case the elasticity in the channels must be taken larger.)

The simulation was performed with the time increment ∆t = 0.2 s, which is sufficiently
large to use the Q1-Q1 finite element discretization for both the displacements and the
pressures (note that too small step ∆t induces “numerical incompressibility” and another
mixed element would have to be used, like Q2-Q1). The microstructures are updated for
each Gauss point of the macroscopic domain (discretized using 16 elements, i.e. 16×4 = 64
microstructures updated at each time level, in our example), 30 time levels were evaluated.
The approximate wall-time of the simulation on one single-processor PC was ≈30 minutes.

Some numerical illustrations are displayed in Figs. 2-4. The tissue perfusion at a
macroscopic position x ∈ Ω can be deduced form the pressure difference, see Fig. 3.

9
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Figure 2: Deformation of the macroscopic specimen (left) and the local deformed configurations Y (xA)
and Y (xB) for the labeled positions. We recall the fixed corner points of the specimen, see Fig. 1.

Figure 3: Macroscopic distribution of two perfusion pressures p1 and p2 in the deformed domain Ω
(evaluated at the final time of the simulation).

5 CONCLUSIONS

We combined the double-porous media approach employed in homogenization of the
linear models [6, 7] with the large deformation description defined using the updated
Lagrangian formulation [5]. The fluid redistribution at the macroscopic scale between the
two channel systems is proportional to the difference of these pressures. At the microscopic
scale the fluid flows can be recovered using the corrector functions.

The fluid-solid interactions governed by the poroelasticity model of Biot are responsible
for viscoelastic effects observed at the macroscopic scale, which are represented in the
global macroscopic homogenized model by the retardation stress Qij. It is worth noting

that apart of the homogenized permeabilities Cβ
ij, all the other homogenized coefficients

of the incremental problem depend on the time step ∆t by virtue of the microscopic
problems (10)-(12). In the linear case, the homogenized model involves the homogenized
kernels of the time-convolution integrals, inducing the fading memory effects [6, 7].

Some effective strategy is required to tackle the number of the microscopic problems
that have to be solved at each time step to recover the effective (homogenized) material
constants. In [3] we have presented a parallel micro-macro algorithm, attempting to

10
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address this issue.
The numerical simulations will be extended for 3D problems and some more realistic

data will be used to validate the homogenized model. Since experimental results are
unavailable, the model and the two-scale computational approach will be verified using
a “non-homogenized” model (the reference model) based on a direct FE discretization
of the system (1)-(2), whereby the geometry will be extremely complex (even for some
higher scale parameters ε0). To obtain a numerical solution for the reference model, some
domain-decomposition techniques will be employed, including parallel algorithms.

Acknowledgment This research is supported by research projects GACR 106/09/0740
and MSM 4977751303 of the Czech Republic.

REFERENCES

[1] Cimrman, R. etal, “Software, finite element code and applications”, SfePy home
page, http://sfepy.kme.zcu.cz,http://sfepy.org, (2009).

[2] Cioranescu, D. and Donato, P. An Introduction to Homogenization, Oxford Lecture
Series in Mathematics and its Applications 17, Oxford University Press, Oxford,
(1999).
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Figure 4: Macroscopic quantities Sij , Qij and Fij evaluated in time at points A (left column) and B
(right column) of the macroscopic specimen.
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