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Abstract. In this study, a numerical prediction method by combining the crystal plasticity 
finite element method, the multi-phase-field method and the homogenization method is 
developed to predict microstructure formation and mechanical property of the dual-phase 
(DP) steel efficiently. With the developed method, the austenite – to – ferrite transformation 
from the deformed austenite phase is simulated and the mechanical properties of the DP steel 
which includes the predicted microstructure are investigated. 

 

1 INTRODUCTION 

The mechanical property of ferrite () + martensite (') dual-phase (DP) steel is largely 
characterized by distribution of the microstructure. It is also well-known that the refinement 
of  grain size by thermo-mechanical controlled processing (TMCP) is quite essential to 
improve strength of the DP steel. Therefore, to understand the austenite-to-ferrite ( - ) 
transformation behavior in deformed  phase during the TMCP is quite important to control 
the mechanical property of the DP steel. However, since the  -  transformation is influenced 
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by several factors, e.g. chemical composition, transformation temperature,  grain size and 
strain applied by the TMCP, it is difficult to predict the transformation behavior only by 
experiments.  

Recently, it has been well-recognized that the multi-phase-field method (MPFM) is a 
powerful simulation tool to predict microstructure evolutions in polycrystalline materials [1]. 
The most attractive advantage of the MPFM is to simulate morphological change of 
microstructures. Therefore, if we utilize digital data of the microstructure morphology 
simulated by the MPFM as input data for finite element (FE) simulation, systematic 
simulation model for steel design can be realized [2]. This will enable us to predict the 
microstructure formation and the mechanical property of the DP steel efficiently.  

Therefore, the purpose of this study is to develop a numerical prediction method by 
combining the crystal plasticity FE method (CPFEM), the MPFM and the homogenization 
method. In this paper, we simulate the  -  transformation from the deformed  phase and 
evaluate the mechanical properties of the DP steel which includes the predicted 
microstructure. Then, the effects of the distribution of  phase on macro- and microscopic 
deformation behavior of the DP steel are studied. 
2 SIMULATION METHOD 

The procedures to simulate the  -  transformation from the deformed  phase and evaluate 
the mechanical property of the DP steel are as follows: First, to simulate the hot plastic 
forming of Fe-C alloy, simulation of compression deformation of polycrystalline  phase is 
conducted by the CPFEM based on the strain gradient crystal plasticity theory. Second,  
nucleation rate and nucleation site of the  phase in the deformed  phase are estimated based 
on the classical nucleation theory. Third, the -  transformation during continuous cooling 
process is simulated by the MPFM with the estimated nucleation condition. Finally, we 
perform numerical simulation of uniaxial tensile test of the DP steel by the CPFEM based on 
the homogenization method with the simulated microstructure. 

2.1 Strain gradient crystal plasticity theory 

In order to simulate plastic deformation behavior of polycrystalline  phase during the hot 
plastic forming, we employ the following crystal plasticity constitutive equation [3], 
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Here, ijS


, e
ijklD , ij , ij and    are the Jaumann rate of Kirchoff stress tensor, the elastic 

modulus tensor, the strain tensor, the Cauchy stress tensor and the plastic shear strain rate on 
the slip system , respectively. Also,  

ijP  and  
ijW  are the schmid tensor and the plastic spin 

tensor, respectively.  
 Since we use the strain rate dependent crystal plasticity constitutive equation [4], the plastic 

shear strain rate is defined as follows:  
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(2) 

where   0  is the reference shear strain rate and the resolved shear stress    is calculated by 
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  ijijP . The evolution equation of the critical resolved shear stress (CRSS)  g  is 

chosen as,  
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Here,  
0g , a, , b~  and  are the initial critical resolved shear stress, the shear elastic 

modulus, the magnitude of burgers vector and the dislocation interaction coefficient, 
respectively. The accumulated dislocation density is given as follows:  

       GNSSa   (4) 

where  SS and  GN  are the statically stored dislocation (SSD) density and the geometrically 
necessary dislocation (GND) density, respectively. In this study, the following evolution 
equation for the SSD density is used.   
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And, the GND density is evaluated as,  

 
 

 
 

   
22

~
1

~
1























 





  kjijk
i

i
i

GN mse
xb

s
xb

 (6) 

where   edgeGN , and   screwGN ,  are the edge and screw components of the GND density, 
respectively. With the accumulated dislocation density a, the stored energy Estore can be 
derived as 
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2.2 Modeling of  nucleation behavior 

In this study, the potential nucleation sites (i.e., grain boundary corner, grain boundary edge, 
grain boundary face and deformation band) and the nucleation rate at each nucleation site are 
estimated by using the results of the hot plastic forming simulation.  
According to the classical nucleation theory, the nucleation rate of  phase Ji is described as, 
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where di(t) is density of the potential nucleation site, where upper subscription i means kind of 
the above mentioned nucleation sites (i = c, e, f and d). Since the nucleation site is consumed 
with progression of the transformation, di(t) is defined as a function of time t. * is the 
frequency coefficient which is assumed to be related to the temperature-dependent carbon 
diffusion coefficient in the  phase as * = D. Z, k, T and C are the Zeldovich parameter, 
the Boltzmann constant, the temperature of the system and the carbon concentration in the  
phase, respectively. Also, i is the geometry coefficient of nucleation site i. The chemical 
driving force for the nucleation GV(C, T) can be caluculated based on the CALPHAD 
method.  
The density of the potential nucleation site di(t) in Eqn.(8) is calculated by di(t) = Ni(t) / S 

where Ni(t) and S are number of potential nucleation site and area of the system, respectively. 
Ni(t) is determined using the number of grain n which is explained in next section and the 
misorientation . That is, a computational grid satisfying n = 4 is considered as a potential 
nucleation site on the grain boundary corner. Similarly, position of the potential nucleation 
sites on the grain boundary edge (n = 3) and the grain boundary face (n = 2) is determined. 
For the nucleation sites in the deformation band, we assume that high-angle grain boundary 
region which is given as n = 1 and  > 15˚ or the region in which the stored energy Estore is 
more than a critical value Ecri is possible site. As a result, time interval for the  nucleation at 
each nucleation site is given by inverse of Eqn. (8). For all nucleation sites, order of the  
nucleation is determined by order of the magnitude of the stored energy.  
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2.3 Multi-Phase-Field method 

The -  transformation during the continuous cooling is simulated by the generalized 
MPFM proposed by Steinbach et al [5]. In the MPFM, the total free energy of the system, G, 
is defined as the Ginzburg-Landau free energy functional which is given by the sum of the 
gradient energy, potential energy and bulk free energy as,  
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Here, we use N phase field variables, i (i = 1,2,3, …, N). i describes the fraction of the i th 
grain. The phase field variables vary smoothly across the interface from i = 1 in the i ith 

grain to i = 0 in other grain. All phase field variables satisfy the constant, 



N

i

i
j

1
1  at all 

points. aij and Wij are the gradient coefficient and potential height, respectively. These 
parameters are related to the interfacial energy and interfacial thickness.  
By assuming the total free energy decreases monotonically with time, the evolution equation 

of the phase field variable is written as, 
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where n is the number of phase fields in the arbitrary point and is given by 


N

i in
1
 . Here, 

i is a following step function, which is expressed as i =1 in a region 0 <i ≤ 1 and i = 0 in 
other region. The magnitude of the transformation driving force, Eij, is given by sum of the 
reduction of the chemical free energy and the stored energy obtained by the CPFEM 
simulation as Eij = Echem + Estore. The chemical driving force is described as Echem = ST 
at the - interface, where S and T are the entropy difference between the  and  grains 
and the undercooling, respectively.  
 To simulate the diffusion of carbon atoms during -  transformation, the total carbon 

concentration C is defined as a linear function of the local carbon concentration ci weighted 
by the phase-field variables i. The local carbon concentration is given by the 
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

n

j jjiii kckc
1

 . Here, ki is the partition coefficient of carbon atoms. Hereafter, we 

consider an  +  two-grain system (N = 2) for simple description. Therefore, when 1 and 2 
correspond to the  and  phases, respectively.  
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The diffusion equation for total carbon concentration is expressed by the sum of diffusion 
fluxes of carbon atoms in the i th grains Ji as,  
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Here, Di is diffusion coefficient of carbon atom in the i the grain.  
In this study, the undercooling T and the partition coefficient ki are evaluated by using a 

linearized phase diagram of Fe-C alloy.  

2.4 Homogenization method 

In this study, we employ the homogenization method proposed by Grudes et al to investigate 
the mechanical properties of the DP steel which contains the simulated  phase. By using the 
homogenization method, the micro- and macroscopic deformation behaviors of the steel 
depending on heterogeneous microstructure morphology can be simulated.   
  In the homogenization method, we consider the two-scale boundary value problem for the 
micro- and macroscopic scales as shown in Fig.1. The microstructure in the steel is assumed 
to be a periodic array of representative volume elements (RVEs). In this study, The RVE 
describes heterogeneous distribution of the microstructure obtained by the MPFM. xi and yi (i 
= 1 and 2) are macro- and microscopic coordinates, respectively. These scales are related to 
each other as yi = xi /  with a parameter . By using these two coordinates, the velocity can 
be described by the following asymptotic expansion with :  

          yxuyxuyxuyxu iiii ,,,, 22100   (12) 

Here, we use the first order approximation as,  
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where  yxui ,0 represents the homogenized macroscopic velocity. mn
i  and i are the 

characteristic velocities which corresponds to components of macro-velocity gradient tensor, 
respectively. With Eqns.(12) and (13), the velocity gradient Lij is given by,  
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According to the updated Lagrange formulation and the strain gradient crystal plasticity 
theory explained in previous section, the principle of virtual work is written as,  
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To accomplish the homogenization formulation, we take the limit of  to zero and 
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where is  a so-called Y-periodic function. The integral sing   Y
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(18) 

Since we obtain the velocity of displacement in the micro- and macro scale by solving 
Eqns.(17) and (18) with the finite element method, the variation of strain and stress in the 
steel can be calculated.  
 

 
Figure 1: Schematic explanation of two-scale boundary value problem 

3 SIMULATION RESULTS 

Figure 2 shows the simulation model used in the hot plastic forming simulation. The 
computational region is meshed with 128 x 128 crossed-triangle elements. The size of a finite 
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element is set to be X = Y = 0.5 m. Since a two-slip system is assumed for simplicity, the 
crystal orientation is defined by the rotation angle  as shown in Fig.2(b). The initial 
polycrystalline structure of the phase consists twenty grains with random crystal orientations. 
These  grains are compressed up to strain of  = 0.2 at a strain rate of 10-3 s-1. In this study, 
we assume the plain strain problem and the periodic boundary condition. The temperature is 
assumed to be 1150 K which is lower than the recrystallization temperature of steels, 1173 K.  

 

 

Figure 2: Simulation model for compression deformation of polycrystalline  phase and definition of 

crystal orientation  in a two-slip system 

 
Figure 3: Distributions of (a) crystal orientation and (b) stored energy in deformed  phase 
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Table 1: Parameters for  nucleation 
Geometry coefficient, c 1.30 × 10-6 [J3/m6] 
Geometry coefficient, e 5.00 × 10-8 [J3/m6] 
Geometry coefficient, fand g 2.10 × 10-6 [J3/m6] 
Zeldovich constant, Z 0.05 
Parameter,  75 

 

 

Figure 4: Distributions of (a)  and  grains and (b) carbon concentration during -to- transformation 

Figure 3 shows the distributions of crystal orientation and stored energy in the deformed  
phase at different strains. As shown in Fig.3(b), the stored energy is increased with the 
increasing strain. In particular, the strain energy tends to concentrate near grain boundaries, 
because dislocations accumulate at the grain boundary. On the other hand, it is found that the 
region which exhibits high strain energy and large crystal rotation is formed with in some  
grain interiors. This indicates the deformation band is introduced in the  phase by the plastic 
forming. Also, it is clearly shown that large crystal rotation is occurred in the deformed  
phase. 

Based on the simulated deformed  phase, the - transformation is simulated. The 
distributions of crystal orientation and stored energy shown in Fig.3 are mapped on the 
computational region for the MPF simulation. The initial temperature and initial carbon 
concentration of  phase are set to be 1110 K and 0.2 wt%, respectively. The parametes for 
the  nucleation are summarized in Table 1. The computational region is meshed with 144 x 
112 finite difference grid. The size of the grid is set to be x = y = 0.5 m. In this simulation,  
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Table 2: Material parameters for uniaxial tensile test 
Elastic constants, C11 , C12, C44 C11 = 237 [GPa] 

C12 = 141 [GPa] 
C44 = 116 [GPa] 

Poisson’s ratio,  0.345 
Reference shear strain,   0  0.001 [1/s] 
Initial CRSS,   0  200 [MPa] ( phase) 

380 [MPa] (' phase) 
Strain rate sensitivity constant, 1/m 0.05 
Parameter, a 0.4 
Shear modulus,  80.7 [GPa] 

Length of burgers vector, b~  0.2624 [nm] 

Initial dislocation density, 0 10 -10 [1/m] 
Dislocation interaction matrix, ij 1.0 (all componets) 

 
we assume the critical value of stored energy Ecri for the  nucleation to be Ecri = 15 MPa, 
because it is difficult to determine this value from experiments.   

Figure 4 shows the evolutions of  and  grains and the variation of carbon concentration 
during  transformation. The temperature is decreased from 1110 K to 1010 K with cooling 
rate of T = 5 K/s. We can see that inhomogeneous nucleation of  phase is occurred during 
the continuous cooling. At 1090 K, it is found that some  grains are newly formed and these 
 grains tend to locate at grain boundary corner and edge. With decreasing temperature due to 
the cooling, more  grains are nucleated on the grain boundary face and the grain interior. 
According to the distribution of  phase at 1010 K, it is demonstrated that the formation of  
phase is concentrated on the grain boundary of the  grains with large stored energy.  
 The uniaxial tensile test of the DP steel is conducted with the CPFEM based on the 
homogenization method. In this study, the RVE is modeled with the simulated microstructure 
shown in Fig.4(d). Here, the untransformed  phase after the continuous cooling is assumed to 
be transformed into uniform ' phase by quenching to room temperature. Size of the RVE is 
same as that of the computational domain for the MPFM simulation. In the tensile test, the 
system is deformed up to a true strain of 0.1 at a strain rate of 10-4 s-1. Although the crystal 
structure of  and ’ phases is body-centered cubic, we consider only 12 slip systems on 
{110} plane along <111> direction for simplicity. The material parameters and physical 
values for  and ’ phases are listed in Table 2.    
  Figure 5 indicates the calculated macroscopic stress-strain (SS) curve of the DP steel. 
Similar to the experimental results, the obtained SS curve exhibits continuous yielding 
behavior and high strain hardening behavior.   
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Figure 5: Macroscopic stress-strain curve of the DP steel  

 
Figure 6: Distributions of (a) equivalent stress and (b) equivalent plastic strain for different strains 

In this study, since we employ the homogenization method, not only the macroscopic 
mechanical response, but also the microscopic deformation behavior of the DP steel can be 
investigated. Figure 6 shows the distributions of the equivalent stress and equivalent plastic 
strain in the DP microstructure at different macroscopic strains ( = 0.02, 0.05 and 0.10), 
respectively. As shown in Fig.6(a), the stress is increased with increasing macroscopic strain 
and concentrated in the harder ’ phase near the  /’ interface. On the other hand, the plastic 
strain is generated along the aggregated softer  phase. The simulation results confirm that 
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the stress concentration at the ' phase is main mechanism of high strength and high strain 
hardening behavior of the DP steel.  

4 CONCLUSIONS 

- A numerical prediction method by combining the crystal plasticity finite element 
method, the multi-phase-field and the homogenization method is developed to predict 
the microstructure formation and the mechanical property of the DP steel efficiently. 

- With a developed method, the  -  transformation from the deformed  phase is 
simulated by the MPFM and the uniaxial tensile test of the DP steel by the CPFEM 
based on the homogenization method with the simulated microstructure 

- Through numerical simulations, the effects of the distribution of  phase on macro- 
and microscopic deformation behavior of the DP steel which includes the predicted 
microstructure are clarified.  
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