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Abstract. This work proposes a generalized theory of deformation which can capture
scale effects also in a homogenously deforming body. Scale effects are relevant for small
structures but also when it comes to high strain concentrations as in the case of localised
shear bands or at crack tips, etc. In this context, so-called generalized continuum formu-
lations have been proven to provide remedy as they allow for the incorporation of internal
length-scale parameters which reflect the micro-structural influence on the macroscopic
material response. Here, we want to adopt a generalized continuum framework which is
based on the mathematical description of a combined macro- and micro-space [8]. The
approach introduces additional degrees of freedom which constitute a so-called micromor-
phic deformation. First the treatment presented is general in nature but will be specified
for the sake of an example and the number of extra degrees of freedom will be reduced
to four. Based on the generalized deformation description new strain and stress measures
are defined which lead to the formulation of a corresponding generalized variational prin-
ciple. Of great advantage is the fact that the constitutive law is defined in the generalized
space but can be classical otherwise. This limits the number of the extra material param-
eters necessary to those needed for the specification of the micro-space, in the example
presented to only one.

1 Introduction

Decades ago, it has been recognized that for some materials the kinematics on meso-
and micro-structural scales needs to be considered, if the external loading corresponds
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to material entities smaller than the representative volume element (RVE) and the sta-
tistical average of the macro-scopical material behaviour does not hold anymore. In this
sense the fluctuation of deformation on micro-structural level as well as relative motion
of micro-structural constituens, such as granule, crystalline or other heterogeneous ag-
gregates, influence the material response on macro-structural level. Consequently, field
equations based on the assumption of micro-scopically homogeneous material have to be
supplemented and enriched to also include non-local and higher-order contributions.

In particular, generalized continua aim to describe material behaviour based on a deeper
understanding of the kinematics at smaller scales rather than by pure phenomenologi-
cal approximation of experimental data obtained at macro-scopical level. The meso- or
micro-structural kinematics and its nonlocal nature is then treated either by incorporat-
ing higher-order gradients or by introducing extra degrees of freedom. For the latter,
the small-scale kinematics at each material point can be thought to be equipped with a
set of directors which specify the orientation and deformation of a surrounding a micro-
space. This results in a micromorphic continuum theory [3], if the directors are allowed
to experience rotation, stretch and change of angles to each other.

Geometrically nonlinear micromorphic formulations are sparsely found in literature,
e.g. in [5] issues related to material forces of in the hyperelastic case were discussed,
or in [7] micromorphic plasticity two-scale models have been proposed addressing micro-
structural damage as well as granular material behaviour.

So far formulations of generalized continua are faced with two major problems. The
first one relates to the fully non-linear and inelastic material behaviour. Classical in-
elastic formulations are based on decompositions of strain measures. Since generalized
continua exhibit more than one strain or deformation measure the question arises as to
how these can be decomposed into elastic and inelastic parts. Few suggestions were made
in [11, 4, 2]. These formulations remained, however, less satisfactory since the decomposi-
tion of the two deformation measures were, strictly speaking, independent of each other,
which raises many questions regarding the adequate formulation of evolution laws for the
inelastic parts. The second problem relates to the observation of scale effects also in a
homogenously deforming specimen. Cosserat and higher gradient theories cannot predict
such scale effects, because the extra strain measures are identically zero for homogenous
deformation. Furthermore, it is desirable to set out from a general and unified formula-
tion of continua with meso- and micro-structure. We propose a framework based on the
mathematical concept of fibre bundles embedded into a generalized continuum formula-
tion. More specifically, we want to consider the Cartesian product of the macroscopic
and further meso- or microscopic spaces and, accordingly, the generalized deformation is
composed of a macro-, meso- and/or micro-components. In principle, every point of the
macroscopic space would have an infinite number of degrees of freedom and dimensions.
In practice, the number of degrees of freedom is finite corresponding to the chosen level of
accuracy. In this sense the micromorphic continuum appears just as special approximation
of the general case [8]. From the micromorphic deformation description nonlinear strain
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measures are derived and corresponding stress measures are defined which allow for the
formulation of generalized variational principles and corresponding Dirichlet boundary
conditions.

The paper is organized as follows. In Sec. 2 the theory of the generalized continuum is
outlined. Subsequently, in Sec. 3 a generalized micromorphic principle of virtual work is
proposed. The approach allows for the incorporation of any conventional constitutive law,
this fact is exemplified using an inelastic material law. Details of the inelastic formulation
are elaborated in Sec. 4.1 and Sec. 4.2. Finally, the excellent performance is demonstrated
by an example of scale effects in homogenously deforming body as well as by that of a
shear band formation in Sec 5.

2 Generalized deformation and strain

The basic idea is that a generalized continuum G can be assumed to inherit the mathe-
matical structure of a fibre bundle. In the simplest case, this is the Cartesian product of a
macro space B ⊂ E(3) and a micro space S which we write as G := B × S . This definition
assumes an additive structure of G which implies that the integration over the macro- and
the micro-continuum can be performed separately. The macro-space B is parameterized
by the curvilinear coordinates ϑi, i = 1, 2, 3 and the micro-space or micro-continuum
S by the curvilinear coordinates ζα. Here, and in what follows, Greek indices take the
values 1, ... or n. The dimension of S denoted by n is arbitrary, but finite. Furthermore,
we want to exclude that the dimension and topology of the micro-space is dependent on
ϑi. Each material point X̃ ∈ G is related to its spatial placement x̃ ∈ Gt at time t ∈ R by
the mapping ϕ̃ (t) : G −→ Gt . For convenience but without loss of generality we identify
G with the un-deformed reference configuration at a fixed time t0 in what follows. The
generalized space can be projected to the macro-space in its reference and its current
configuration by

π0(X̃) = X and πt (x̃) = x (1)

respectively, where π0 as well as πt represent projection maps, and X ∈ B and x ∈ Bt.
The tangent space T G in the reference and current configuration, respectively, are defined
by the pairs (G̃i × Iα) and (g̃i × iα), respectively, given by

G̃i =
∂X̃

∂ϑi , Iα =
∂X̃

∂ζα
, g̃i =

∂x̃

∂ϑi and iα =
∂x̃

∂ζα
, (2)

where the corresponding dual contra-variant vectors are denoted by G̃i and Iα, respec-
tively. The generalized tangent space can also be projected to its corresponding macro-
space by

π∗
0(G̃i) = Gi and π∗

t (g̃i) = gi (3)
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respectively, where the tangent vectors Iα are assumed to be constant throughout S for
simplicity. Note that the definition of a projection map is not trivial. The tangent of
the projection map defines the geometry of the extra space and so the metric which is
to be used to evaluate the integral over the generalized space. The concept is rich in its
structure.

Now, we assume that the placement vector x̃ of a material point P (X̃ ∈ G) is of an
additive nature and is the sum of its position in the macro-continuum x ∈ Bt and in the
micro-continuum ξ ∈ St as follows

x̃
(
ϑk, ζβ, t

)
= x

(
ϑk, t

)
+ ξ

(
ϑk, ζβ, t

)
. (4)

Thereby, the macro-placement vector x defines the origin of the micro co-ordinate system
such that the micro-placement ξ is assumed to be relative to the macro-placement. The
definition of the generalized continuum and so of the extra degrees of freedom depends
directly on the choices to be made for the micro deformation ξ

(
ϑk, ζβ, t

)
. The theory is

based on the fact that the dependency on the micro co-ordinates ζβ must be determined
apriori. Specific choices define specific continua. The following quadratic ansatz

x̃ = x
(
ϑk, t

)
+ ζα

(
1 + ζβ χβ

(
ϑk, t

))
aα

(
ϑk, t

)
. (5)

results adequate strain measures of full rank shown in [10]. The vector functions aα

(
ϑk, t

)
and scalar functions χα, with their corresponding micro co-ordinates ζα, are independent
degrees of freedom. The number α must be chosen according to the specific topology of
the micro-space as well as depending on the physical properties of the material due to its
intrinsic structure.

In computations we have to deal with four additional independent functions per micro
co-ordinate. These are the three components of the vector aα as well as the independent
displacement-like functions χα. Note, however, aα as well as χα are constant over S. While
the functions χα contribute to the definition of the strains, their special importance lies in
the fact that they allow for the complete definition of linear distribution of strain in the
extra dimensions. Also, it is important to realize that the dimension of the micro-space
does not have to coincide with the dimension of the macro-space.

Now we proceed to define the strain measures. Taking the derivatives of x̃ (Eq. 5) with
respect to the macro-coordinates ϑi as well as with respect to the micro co-ordinates ζα,
the generalized deformation gradient tensor can be expressed as follows

F̃ =
[
x,i

(
ϑk, t

)
+ ζα ζβ χβ,i

(
ϑk, t

)
aα

(
ϑk, t

)

+ ζα
(
1 + ζβ χβ

(
ϑk, t

))
aα,i

(
ϑk, t

) ]
⊗ G̃i +

[
aα

(
ϑk, t

)
+ ζβ

(
χβ

(
ϑk, t

)
aα

(
ϑk, t

)
+ χα

(
ϑk, t

)
aβ

(
ϑk, t

)) ]
⊗ Iα . (6)

Similar to its classical definition, a generalized right Cauchy-Green deformation tensor
based on Eq. (6) is formulated as C̃ = F̃T F̃ and neglecting higher order terms in ζα and
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extracting only the dominant parts of C̃ (constant and linear in ζα) we arrive at

C̃ =
(

x,k · x,l + ζα (aα,k · x,l + x,k · aα,l)
)

G̃k ⊗ G̃l

+
(

x,k · aβ + ζα aα,k · aβ + ζα x,k · (χα aβ + χβ aα)
)(

G̃k ⊗ Iβ + Iβ ⊗ G̃k
)

+
(

ζα (χγ aα · aβ + χβ aα · aγ) + 2 ζα χα aβ · aγ + aβ · aγ

)

Iβ ⊗ Iγ = C+ ζαKα .(7)

Note in order to obtain Eq. (7) the geometry of the micro-space must be specified. Specif-
ically, one has to decide about the projection map π∗

0(G̃i) which defines the transition
from the tangent vectors G̃i, defined in the generalized space, to the tangent vectors Gi,
defined in T B.

3 Generalized principle of virtual work

A micromorphic variational principle is established based on the generalized strain
tensor C̃ (Eq. 7). From a non-linear boundary value problem in the domain B × S
considering the static case and considering only mechanical processes, the first law of

thermodynamics provides the following variational statement

δΨ−Wext = 0 . (8)

The external virtual work Wext is defined in the Lagrangian form as follows

Wext (u) =

∫

B

b · δu dV +

∫

B

lα · δaα dV +

∫

∂BN

t(n) · δu dA+

∫

∂BN

q(n)α · δaα dA (9)

where the external body force and moment b and l, respectively, acting in B and the
external traction and surface moment t(n) and q(n), respectively, acting on the Neumann
boundary ∂BN are obtained by integrating corresponding quantities over the micro-space
S. For more details refer to [10].

With Eq. (7) the internal virtual power in the Lagrangian form is given by

δΨ =

∫

B

∫

S

ρ̃0
∂ψ(C̃)

∂C̃
dS dV =

∫

B

1

2

{

S : δC+Mα : δKα

}

dV , (10)

with the force stress and the higher-order size-scale relevant stress

S
(
ϑk

)
=

1

VS

∫

S

2 ρ̃0
∂ψ(C̃)

∂C̃
dS , M

(
ϑk

)
=

1

VS

∫

S

2 ζα ρ̃0
∂ψ(C̃)

∂C̃
dS . (11)

Then, substituting Eqs. (10) and (9) into Eq. (8) we end up with a micromorphic varia-
tional principle:

∫

B

{

S : δC+Mα : δKα

}

dV −Wext = 0 . (12)
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The generalized principle of virtual work is supplemented by essential boundary condi-
tions, the so-called Dirichlet boundary conditions

u = hu on ∂BD , aα = hγ,α on ∂BD , (13)

where hu and hγ,α are prescribed values at the boundary ∂BD.

4 The inelastic formulation

As discussed in the introduction, the inelastic constitutive law can be any classical one
which is now to be defined at the level of the micro-continuum. In what follows we adopt
and tailor to our purposes the formulation of finite strain inelasticity based on unified
constitutive models as developed in ([9]). While the choice is convenient we stress that
any alternative inelastic law could serve the purpose as well.

4.1 Generalized kinematics of the elastic-inelastic body

A point of departure for an inelastic formulation constitutes the multiplicative decom-
position of the generalized deformation gradient Eq. (6) into an elastic and an inelastic
part

F̃ = F̃eF̃p. (14)

For metals, the above decomposition is accompanied with the assumption F̃p ∈ SL+(3,R)
which reflects the incompressibility of the inelastic deformations, where SL+(3,R) denotes
the special linear group with determinant equal one.

The following generalized right Cauchy-Green-type deformation tensors are defined

C̃ := F̃T F̃ , C̃e := F̃T
e F̃e , C̃p := F̃T

p F̃p . (15)

Since the deformation gradient F̃ is also an element of GL+(3,R) with positive deter-
minant, we can attribute to its time derivative a left and right rate

˙̃F = l̃F̃ , ˙̃F = F̃L̃ . (16)

Both rates are mixed tensors (contravariant-covariant). They are related by means of the
equation

L̃ = F̃−1 l̃F̃ . (17)

Since F̃p ∈ SL+(3,R) we can define a right rate according to

˙̃Fp = F̃pL̃p (18)

which proves more appropriate for a numerical treatment in a purely material context.
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4.2 The constitutive model

4.2.1 General considerations

Let τ̃ be the generalized Kirchhoff stress tensor. Consider the expression of the internal
power in terms of spatial and material tensors, respectively

W = τ̃ : l̃ , W = Γ̃ : L̃ (19)

where l̃ is defined in Eq. (16a). The comparison of Eq. (19a) with (19b) leads with the
aid of Eq. (17) to the definition equation of the material stress tensor Γ̃:

Γ̃ = F̃Tτ̃ F̃−T . (20)

The tensor Γ̃ is, accordingly, the mixed variant pull-back of the generalized Kirchhoff

tensor. It coincides with Noll’s intrinsic stress tensor and determines up to a spherical
part the Eshelby stress tensor.

A common feature of inelastic constitutive models is the introduction of phenomeno-
logical internal variables. We denote a typical internal variable as Z. Assuming the
existence of a free energy function according to ψ = ψ(C̃e, Z), the localized form of the
dissipation inequality for an isothermal process takes

D = τ̃ : l̃− ρ̃ref ψ̇ = Γ̃ : L̃− ρ̃ref ψ̇ ≥ 0 , (21)

where ρref is the density at the reference configuration. This inequality can be transferred
to (see [10])

D =

(
Γ̃− 2ρ̃refC̃F̃−1

p

∂ψ(C̃e, Z)

∂C̃e

F̃−T
p

)
: L̃

+2ρ̃refC̃F̃−1
p

∂ψ(C̃e, Z)

∂C̃e

F̃−T
p : L̃p − ρ̃ref

∂ψ(C̃e, Z)

∂Z
· Ż ≥ 0 .

By defining Y as the thermodynamical force conjugate to the internal variable Z

Y := −ρ̃ref
∂ψ(C̃e, Z)

∂Z
, (22)

and making use of standard thermodynamical arguments, from Eq. (22) follows the elastic
constitutive equation

Γ̃ = 2ρ̃refC̃F̃−1
p

∂ψ(C̃e, Z)

∂C̃e

F̃−T
p = 2ρ̃refF̃

T
p C̃e

∂ψ(C̃e, Z)

∂C̃e

F̃−T
p (23)

as well as the reduced local dissipation inequality

Dp := Γ̃ : L̃p + Y · Ż ≥ 0 , (24)

where Eq. (22) has been considered. Dp is the plastic dissipation function. From Eq. (24)
follows as an essential result that the stress tensor Γ̃ and the plastic rate L̃p are conjugate
variables. Observe that the tensor L̃p is defined in Eq. (18).
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4.2.2 The elastic constitutive model

Further we assume that the elastic potential can be decomposed additively into one
part depending only on the elastic generalized right Cauchy-Green deformation tensor C̃e

and the other one depending only on the internal variable Z

ψ = ψe(C̃e) + ψZ(Z) . (25)

Defining the logarithmic strain measure

α := ln C̃e , C̃e = expα (26)

and assuming that the material is elastically isotropic, one can prove that the relation
holds

C̃e
∂ψe(C̃e)

∂C̃e

=
∂ψe(α)

∂α
, (27)

where ψe(α) is the potential expressed in the logarithmic strain measure α. Eq. (23)
results then in

Γ̃ = 2ρref F̃
T
p

∂ψe(α)

∂α
F̃−T

p . (28)

Note that ψe is an isotropic function of α. The last equation motivates the introduction
of a modified logarithmic strain measure

ᾱ := F̃−1
p αF̃p . (29)

Since the following relation for the exponential map holds

F̃−1
p (expα)F̃p = exp ᾱ, (30)

Eq. (28) takes

Γ̃ = 2ρref
∂ψ(ᾱ)

∂ᾱ
. (31)

It is interesting to note that Eq. (30) together with Eqs. (26), (15a), and (15c) lead to a
direct definition of ᾱ. The relation holds

ᾱ = ln(C̃−1
p C̃). (32)

For computational simplicity a linear relation is assumed and therefore the elastic consti-
tutive model Eq. (31) takes its final form

Γ̃ = K tr ᾱT 1+ µ devᾱT (33)
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where

ᾱT = ln(C̃C̃−1
p ) , (34)

and K is the bulk modulus and µ the shear modulus.
It should be stressed that the reduction of the elastic constitutive law to that given

by Eq. (31) results in a considerable simplification of the computations necessary for the
formulation of the weak form of equilibrium and its corresponding linearisation. The only
assumption we used was the very natural one of having an internal potential depending
on C̃e. The following reduction is carried out systematically.

4.2.3 Inelastic constitutive model

The presented framework of generalized continua allows for the application of any set of
classical constitutive laws. In what follows we confine ourselves to a unified constitutive
law of the Bodner and Partom type as generalized in the first author’s previous work
(see e.g. [9]). We concluded from Eq. (24) that the tensors Γ̃ and L̃p are conjugate.
Essentially we have to consider the stress tensor Γ̃ as the driving stress quantity, while
the plastic rate for which an evolution equation is to be formulated is taken to be L̃p.
This leads to the following set of evolution equations

L̃p = φ̇νT , Ż =
M

Z0
(Z1 − Z)Ẇp , Ẇp = ΠdevΓ̃φ̇(ΠdevΓ̃, Z) , ν =

3

2

devΓ̃

ΠdevΓ̃

ΠdevΓ̃ =

√
3

2
devΓ̃ : devΓ̃ , φ̇ =

2
√
3
D0 exp

[
−
1

2

N + 1

N

(
Z

ΠdevΓ̃

)2N
]
. (35)

Here, Z0, Z1, D0, N,M are material parameters. The choice of the transposed quantity
in Eq. (35a) reflects the form given by associative viscoplasticity, when the classical flow
functions are generalized and formulated in terms of nonsymmetric quantities.

5 Numerical examples

In this section two numerical examples are presented to demonstrate the applica-
bility of the micromorphic theory. In this specific case the micro-deformation and so
micro-continuum are assumed to be one-dimensional, i.e. we consider only α = 1 in
Eq. 5). There vector a in the generalized reference configuration is defined to be par-
allel to the x−axis. The material parameters, typical for metals, are chosen as follows:
K = 1.64206E02 N/mm2, µ = 1.6194E02 N/mm2, D0 = 10000 1/sec, Z0 = 1150 N/mm2,
Z1 = 1400 N/mm2, N = 1 and M = 100. The inelastic parameters are reported in the
literature for titanium; e.g. [1].
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5.1 Simple tension

The first example is a thin sheet of dimensions 26 × 10 subjected to simple tension.
One quarter of the sheet is discretised using 5× 5 enhanced 4-node finite elements of the
type developed in [9], which, in this specific case, are equivalent to three-dimensional en-
hanced 8-node elements with thickness 1. The aim here is to illustrate size-scale effects in
the viscoplastic regime at homogenous deformations. We consider four different internal
length-scale parameters, denoted by h, which are nothing but the size/length of the mi-
crospace S, and take them to be of the values 0.12, 0.15, 0.18 and 0.20mm. The time step
used is 0.1sec for the displacement at the top increasing by a velocity of 0.02N/sec. While
the specimen is under force loading with no prescribed displacements at the loading side,
the computations are carried out displacement-controlled with the value of the external
loading being scaled and determined to provide the prescribed displacement velocity.

The corresponding load-displacement graphs are depicted in Fig. 1. With increasing
internal length-scale parameter it can be clearly seen that the onset of the plastic defor-
mation takes place at larger loading values. During the plastic deformation the relative
loading offset between the curves is maintained.

Now, this case of simple tension particularly illustrates the attractiveness of the pro-
posed generalized theory as it predicts scale effects also in a homogenously deforming
specimen. In fact alternative theories, such as micropolar (Cosserat) or strain gradient
approaches, lack the means to predict this kind of scale effect. This is clear, because
the former necessitates the rotation gradient and the latter the deformation gradient of
higher order not to vanish. In this example, however, both of them do not arise and
consequently, no scale effects would be observed.

10



550

S. Skatulla, C. Sansour and H. Zbib

Figure 3: final deformed configuration displaying the shearband formation using 30× 60 elements

5.2 Shearband formation

The second numerical example is the same as before in terms of geometry, loading,
and time step - a thin sheet under tension. Shearbanding is initialized by decreasing the
material parameter Z0 by 10% within the first element (at the centre of the specimen).
The internal length is considered to be h = 0.1mm. One quarter of the sheet is modeled
using 20 × 30 and 30 × 60 4-node elements of the type described above. From the load-
displacement curve in Fig. (2) it is clear that heavy softening related to the shearband
formation takes place. This softening is independent of the mesh since both meshes give
essentially the same results. The deformed configuration is pictured in Fig. (3).

Note that the constitutive law is of the viscoplastic type. However, the Bodner-Partom
model covers in the limit the time-independent case as well. The present choice of material
parameters together with the applied loading velocity renders the time-dependent effect
rather very small. Also, from the previous example we can conclude that the scale effect
due to the micromorphic formulation is dominant here.

6 Conclusion

A general framework for a micromorphic continuum has been developed which is espe-
cially attractive for non-linear material behaviour. This approach motivates research into
experimental verification of the mentioned extra degrees of freedom which is still elusive
at large. While it is clear that generalized degrees of freedom and the internal lengths
as well as the scale effects associated with them are related to the internal structure of
the material, the direct deformation mechanisms at the micro-scale giving rise to such
degrees of freedom are widely subject to intensive research in many areas of mechanics
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and physics with many open questions. It is very likely that more than one mechanism
could lead to a certain type of degrees of freedom. While these questions are beyond the
scope of the present work we do acknowledge their importance. Multi-scale modelling and
experimentation will be at the heart of any answer.
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