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Abstract. In this contribution we describe a methodology for the multiscale analysis of
heterogeneous quasi-brittle materials. The algorithm is based on the finite element tearing
and interconnecting FETI [1] method cast in a non-linear setting. Adaptive multiscale
analysis is accounted for with the use of selective refinement at domains that undergo non-
linear processes. We focus on the micro-to-macro connection method which constitutes
the strategy to handle incompatible interfaces arising from the connection of non-matching
meshes. The behaviour of standard collocation and average compatibility techniques is
assessed for a multiscale analysis of damage propagation in a quasi- brittle material.
The choice of the connection strategy has an influence on the overall response and the
computational cost of the analysis.

1 INTRODUCTION

The adopted methodology to enforce interscale relations in multiscale analysis cer-
tainly influences the overall mechanical response. Early examples of interscale relations
in multiscale approaches are found in classical homogenization theory [2]. In this context,
closed-form expressions are derived in order to synthesize effective properties from a het-
erogeneous microstructure. Examples of such techniques constitute the constant strain
and stress assumptions at the microscale. Such assumptions, in combination with Hill’s
energy condition [3], lead to the well known Voigt and Reuss bounds. The study of com-
plex microstructures undergoing non-linear behaviour has resulted in more sophisticated
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homogenization techniques. In many cases, a closed-form expression can not be explicitly
derived, however, numerical and computational homogenization techniques [4, 5, 6] are
used to synthesize “on the fly” the constitutive behaviour of a representative microstruc-
tural sample. Constant strain and stress assumptions together with periodic conditions
are well established micro-to-macro transition strategies which evolve from the earlier
classical homogenization theory.

Similar strategies concerning interscale relations can be employed in concurrent mul-
tiscale techniques [7, 8, 9]. In these methodologies, coarse and fine scale regions are
processed simultaneously. Hence, interscale constraints are designed to connect two in-
compatible meshes. The simplest choice corresponds to the well established collocation
technique. Several weak versions of the collocation approach are represented by the fam-
ily of mortar methods [10, 11]. Their effect in the multiscale analysis of elastic large
scale structural analysis has been investigated in [12]. However, the influence of such
constraints on the adaptive multiscale analysis of damage growth is accounted for in the
present study.

2 MULTISCALE APPROACH

The multiscale approach adopted in this manuscript is based on an extension of the
FETI framework presented in [13]. Below, the basic formulation and the adaptive multi-
scale features are summarized for completeness.

2.1 Basic formulation

Consider a body Ω with heterogeneous underlying structure and boundary conditions
depicted in Figure 1. The body Ω is divided into Ns non-overlapping domains Ω(s) con-
nected by the interface ΓI.

In a general concurrent multiscale analysis, where coarse (c) and fine (f) material
resolutions co-exist, the resulting interface satisfies ΓI = Γ cc

I ∪Γ ff
I ∪Γ cf

I , where the super-
scripts denote coarse to coarse mesh connection (cc), fine to fine mesh connection (ff)
and coarse to fine mesh connection (cf). Note that in the present approach Γ cc

I and Γ ff
I

are conforming whereas Γ cf
I is non-conforming except for the common nodes. These nodes

are referred to as independent since they all meet a corresponding pair at the adjacent
mesh. Dependent nodes are found at the non-conforming interfaces Γ cf

I and their nodal
solution can be expressed as a function of the solution field at independent nodal points.

Continuity of the incremental solution field δu at the interface ΓI between two different
adjacent domains s and p reads

δu(s) = δu(p) at ΓI, (1)

and is satisfied with the introduction of linear multipoint constraints (LMPC). The set of
LMPC is cast in a matrix form using modified Boolean matrices B̄(s). These matrices are
constructed by row-wise concatenation of the tying relations between independent and
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Figure 1: Beam with heterogeneous solid Ω (top). Decomposition in Ns domains (bottom).

dependent interface nodes as

[
B̄(1) . . . B̄(Ns)

]
=

[
B(1) . . . B(Ns)

C(1) . . . C(Ns)

]
. (2)

The matricesB(s) correspond to the standard signed Boolean matrices of the FETI method
while C(s) contains the LMPC concerning dependent nodes.

Enforcement of the above mentioned continuity constraints is accomplished by the
introduction of a heterogeneous Lagrange multiplier field

δΛΛΛ =

[
δλλλ
δµµµ

]
(3)

in which δλλλ accounts for the independent nodes while δµµµ represent the forces acting to
constrain the dependent nodes.

The final linearized system of equilibrium equations for the decomposed solid with
different resolutions can be written as




K(1) 0 0 B̄(1)T

0
. . . 0

...

0 0 K(Ns) B̄(Ns)T

B̄(1) . . . B̄(Ns) 0







δu(1)

...
δu(Ns)

δΛΛΛ


 =




f
(1)
ext − B̄(1)TΛΛΛ− f

(1)
int

...

f
(Ns)
ext − B̄(s)TΛΛΛ− f

(Ns)
int

0


 , (4)

where K(s),f
(s)
ext and f

(s)
int refer to the tangent stiffness matrix, external and internal force

vectors, respectively.
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The augmented system in (4) is transformed into an interface flexibility problem fol-
lowing a standard FETI implementation [1].

2.2 Adaptive multiscale modeling

A multiscale analysis starts with a set of coarse scale domains with effective prop-
erties for the elastic bulk. Such effective properties can be computed with the use of
classical homogenization theory [2] or numerical homogenization techniques [4, 14] on a
Representative Volume Element (RVE) [3].

Adaptivity is accounted for by monitoring or anticipating the need for a highly detailed
analysis at particular regions. Since our focus is directed to a study of crack growth and
coalescence in brittle heterogeneous materials, a methodology is employed to anticipate
the initiation of such phenomena and trigger a fine scale analysis in these particular
regions. The resolution is upgraded domain-wise by mesh refinement when non-linearities
are expected at domain Ω(s). Consequently the interface tying relations need to be re-
computed each time after a zoom-in. The reader is referred to the work in [13, 15] for a
detailed formulation of strain/stress-based predictors for non-linear behaviour and zoom-
in techniques for domain decomposition analysis.

3 STRONG AND WEAK MICRO-TO-MACRO CONNECTIONS

In the present approach, the interscale relations are defined employing a set of LMPC
at non-conforming interfaces. These constraints enforce continuity of the incremental
solution field δu(x) through the interface Γ cf

I . A general weak form for such compatibility
condition reads

∫

Γ cf

I

w(x)(δuf(x)− δuc(x)) dΓ cf
I = 0, ∀x ∈ Γ cf

I , (5)

where w(x) represents a weighting function. By setting w(x) equal to the Dirac function
δ(x) at all nodes, the standard collocation method is recovered. In this view the relations
concerning independent (ind) and dependent (dep) nodes at the interface depicted in
Figure 2 read

uf
ind,i = uc

ind,i, i = 1, 2, (6a)

uf
dep,i = uc(xi), i = 1, nf. (6b)

Note that the selection of linear or bilinear coarse scale elements leads to a linear dis-
tribution of the displacement field at the interface. Consequently, the resulting strains
are constant at Γ cf

I between independent nodes. For this reason, such interscale rela-
tions present similarities with the constant strain approach typically adopted in classical
homogenization theory.

Other choices of the weight function w(x) lead to the so-called mortar methods [10].
In the present study, w(x) is set to a constant which is an adequate choice for the case of
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Figure 2: Strong and weak micro-macro connections.

linear shape functions as argued in [12]. The resulting relations are referred to as average
compatibility in the remaining of the text and read

uf
ind,i = uc

ind,i, i = 1, 2, (7a)
∫

Γ cf

I

(uf(x)− uc(x)) dΓ cf
I = 0. (7b)

The set of constraints in (7) enforce continuity of the solution field in a weak sense for the
interface segment bounded by the independent nodes, the independent nodes satisfying
the strong compatibility (7a). This can be adequate when the fine scale solution field at
the interface cannot be properly captured with the coarse scale shape functions. For this
reason there is a gain in flexibility at the non-conforming interface. Note that the weak
constraint in (7b) is obtained by choosing a constant distribution of Lagrange multipliers
w(x) in the standard weak form of interface compatibility used in the FETI method. In
this view, the interscale relation based on average compatibility preserves some similarities
with the constant stress assumption in the classical homogenization theory.

Besides the nature of strong and weak compatibility constraints, the number of equa-
tions involved in (6) and (7) are significantly different. Enforcement of collocation con-
straints (6b) at the interface Γ cf

I requires a set of nf ×Ndof equations (refer to Figure 2),
nf being the number of dependent nodes and Ndof the number of degrees of freedom per
node. However, the number of equations concerned in (7b) is Ndof. Both collocation and
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Figure 3: Set-up of the multiscale domain decomposition analysis.

average compatibility constraints can be cast in a matrix form for each domain Ω(s) as

C(s)u(s) = 0. (8)

The matrices C(s) are used in the assembly of the modified Boolean matrices B̄(s) as
shown in (2). Since the number of rows of C(s) depends on the micro-to-macro connection
method, the size of the resulting interface problem becomes lower for the choice of average
compatibility constraints.

4 EXAMPLES

A multiscale analysis of an L-shape specimen with heterogeneous mesostructure is per-
formed using the presented domain decomposition framework. The specimen is meshed
using a coarse discretization and partitioned into 27 non-overlapping domains. The un-
derlying heterogeneous structure consists of a number of regularly distributed steel fibers.
Computations are performed considering a two-dimensional slice of the structure in which
plane strain conditions are assumed. The regular distribution of fibers allows the retrieval
of effective elastic properties from a simple unit cell which is treated as an RVE. The
problem set-up is summarized in Figure 3. Non-linear behaviour is linked to crack nu-
cleation and propagation in our study and is simulated by means of a gradient-enhanced
damage model [16]. Tensile failure is modeled adopting a Mazars [17] definition for the
equivalent strain ε̃. An exponential evolution of damage ω with the maximum strain κ
is considered. A summary of the material parameters is given in Table 1. The non-local
equivalent strain ε̃nl is adopted as the internal variable invariant used to construct the
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Material parameters Soft inclusion Matrix Coarse bulk

E Young’s modulus [N/mm2] 20.0× 102 40.0× 103 Effective
ν Poisson’s ratio [−] 0.2 0.2 Effective
ε̃nl Non-local equivalent strain [−] Mazars Mazars Mazars
κ0 Damage initiation threshold [−] 5.0× 10−5 8.5× 10−5 5.0× 10−5

c Gradient parameter [mm2] 1.5 1.5 1.5
ω(κ) Damage evolution law [−] Exponential Exponential [−]
α Residual stress parameter [−] 0.999 0.999 [−]
β Softening rate parameter [−] 400 400 [−]

Table 1: Material parameters.

0 1ω

Figure 4: Evolution of damage growth during multiscale analysis.

non-linear domain predictor [13]. Upon increasing load, damage grows and propagates
from the re-entrant corner of the L-shape specimen as shown in Figure 4. The interscale
relations used in this analysis correspond to the collocation constraints (6). Due to the
adaptive nature of the interface it is possible to capture the development of non-linearity
satisfying continuity of the solution throughout the complete specimen.

The load-displacement curves depicted in Figure 5 show the sensitivity of the method
to different elastic effective properties for the coarse bulk. In these tests, collocation is
adopted at Γ cf

I and the effective elastic moduli are retrieved by classical homogenization,
i.e. Voigt, Reuss and Mori-Tanaka averaging schemes, and computational homogeniza-
tion, i.e. fully prescribed forces, displacements and periodic boundary conditions. All
multiscale analyses (gray area) are plotted together with the direct numerical solution
(DNS). The agreement between multiscale analyses and DNS depends on the choice of
effective elastic properties for the coarse bulk. The differences between multiscale analysis
and DNS are higher in the pre-peak region since the overall behaviour is dominated by
the chosen effective elastic properties. However, in the post-peak region, these differences
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adopted at Γ cf

I and the effective elastic moduli are retrieved by classical homogenization,
i.e. Voigt, Reuss and Mori-Tanaka averaging schemes, and computational homogeniza-
tion, i.e. fully prescribed forces, displacements and periodic boundary conditions. All
multiscale analyses (gray area) are plotted together with the direct numerical solution
(DNS). The agreement between multiscale analyses and DNS depends on the choice of
effective elastic properties for the coarse bulk. The differences between multiscale analysis
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the chosen effective elastic properties. However, in the post-peak region, these differences
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Figure 5: Load-displacement curves for the DNS and multiscale analysis.

become smaller due to the fact that non-linear areas are fully considered.
An assessment of collocation and average compatibility interscale relations is carried

out by comparing the damage field between multiscale analysis and DNS at ultimate
loading stage (Figure 9). The absolute error in ω is defined as

Eω = |ωDNS| − |ωMult| , 0 ≤ Eω ≤ 1. (9)

A small increase of Eω is observed for the average compatibility constraint although
differences remain in an acceptable range. The error Eω is higher around the domain
interfaces where a steep damage gradient needs to be captured. The overall cost of
the interscale relation in the multiscale analysis is found by computing the size of the
interface problem (Figure 7). The active interface is defined as the ratio between the
number of degrees of freedom involved in the interface Γ at load step t and the maximum
number obtained by considering all fine scale domains. In both collocation and average
compatibility the active interface grows with the activation of fine scale domains. However,
the interscale relations based on average compatibility constraints lead to a lower active
interface and this has a beneficial impact on the overall cost of the analysis.

5 CONCLUSIONS

A multiscale domain decomposition framework for the analysis of heterogeneous quasi-
brittle materials is presented. The multiscale strategy provides results which are in agree-
ment with a reference DNS and results in a much lower computational cost. The analyses
are influenced by the choice of the effective elastic properties for the coarse bulk and the
micro-to-macro connection strategy. The tests performed on a steel reinforced L-shape
specimen reveal that both interscale relations give similar results although the accuracy is
higher for the collocation constraint. However, average compatibility techniques provide
a cheaper overall cost which might be preferred in large scale computations.
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Figure 7: Evolution of the size of the interface problem.
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