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Abstract. This paper presents a study of the influence of the mechanical properties of 
materials on the surface indentation geometry and on the depth-sensing indentation results 
with a Knoop indenter. Three-dimensional numerical simulations of this indention test were 
performed for several materials, with different mechanical properties, using the in-house finite 
element simulation code, DD3IMP. In order to obtain accurate results, the numerical model of 
the Knoop indenter was prepared, taking into account the optimization of the finite element 
mesh. 

1 INTRODUCTION 
Depth-sensing indentation tests have been employed like a standard technique for the 

mechanical characterization of bulk and composite materials. Experimental hardness tests are 
mainly performed using pyramidal Vickers and Berkovich indenters. The Knoop indenter 
differs from Vickers indenter merely in the indenter pyramid shape. The Knoop indenter 
geometry, with lozenge-based pyramid, leads to a more extended and shallower indentation 
impression than the Vickers indenter with square-based pyramid geometry. This makes the 
Knoop indentation attractive for determining the intrinsic thin film hardness 1 and for 
material anisotropy determination. 

At our knowledge, studies of depth-sensing indentation using the Knoop indenter are 
unusual and further investigation is needed. Few examples are the experimental work 
conducted by Riester et al. [2, 3] and the numerical studies performed by Li Min et al. [4] and 
Giannakopoulos et al. [5]. 

Due to the scarce number of experimental and numerical studies, concerning the Knoop 
indenter, their enlargement could become very valuable in the characterization of some type 
of materials, such as thin films and anisotropic materials. In this context, the goal of the 
present study is to contribute for an improved understanding of the influence of the materials 
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mechanical properties on the indentation geometry and, consequently, on the mechanical 
properties evaluation by the Knoop hardness test. 

2 THEORETICAL ASPECTS 
The Knoop indenter has a pyramid-shaped geometry with apical angles of 130° and 172.5°, 

and a base with one diagonal, L, 7.11 times longer than the other, m, [6]. The Knoop indenter 
geometry is shown in Figure 1. 

 
Figure 1: Geometry of the Knoop Indentation  

The Knoop indenter contact area, A, as a function of the indentation depth, is given by: 
,h4.65tantanh2A 2

c21
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where ch  is the indentation contact depth and θ1=65°, θ2=86.25° are the semi-apical angles of 
the indenter. 

Marshall et al. [7] investigated the Knoop indentations and observed that, during the 
unloading period, the short diagonal of indentation (m) contracts, due to the elastic recovery, 
while the long diagonal (L) remains unchanged (see Figure 2). 

 
Figure 2: The short diagonal m reduces to m´, the long diagonal remains unchanged L=L´ after unloading 

In the study of Marshall et al. [7], an equation for the recovered indentation size, which 
takes into account the indenter’s geometry and the material mechanical properties, was 
proposed: 

,
E
H45.0

11.7
1

L
m





                                                                     (2) 

where H is the hardness and E is the Young’s modulus. Based on Marshall et al. [7] work, the 
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H and E values obtained by traditional methods are overestimated due to the substantial 
elastic recovery of the short diagonal compared with negligible elastic recovery of the long 
axis direction. In order to improve the mechanical properties results, an iterative procedure 
based in Equation (2) was proposed [7]: the initial values of H and E are calculated by the 
traditional methods and the ratio H/E is adjusted until convergence. 

In this context, the aim of the current study is to investigate the Knoop indentation test. A 
detailed study concerning to the Knoop indentation surface geometry, at maximum load and 
after unloading, is performed. To attain this objective, three-dimensional numerical simulation 
of several fictitious materials was performed. 

3 NUMERICAL SIMULATION AND MATERIALS 
In order to perform the numerical simulations of the Knoop hardness test, the finite 

element DD3IMP in-house code was used. This code was developed to simulate processes 
involving large plastic deformations and rotations, considers the hardness tests a quasi-
statistic process and makes use of a fully implicit algorithm of Newton-Rapson type [8,9]. 
The code allows the three-dimensional numerical simulations of the hardness test using any 
type of indenter geometry and takes into account the friction between the indenter and the 
deformable body. A detailed description of the DD3IMP simulation code has previously been 
given [10]. 

The test sample used in the numerical simulations of the indentation test has both radius 
and thickness of 40 m. Figure 3 shows a global view and a detail of the indentation region of 
the finite element mesh. The discretization was performed using three-linear eight-node 
isoparametric hexahedrons. Due to geometrical and material symmetries in the X=0 and Z=0 
planes, only a quarter of the sample was used in the numerical simulation of the Knoop 
hardness test. The finite element mesh was composed by 17850 elements. The mesh 
refinement was chosen in order to provide accurate values of the indentation contact area, and 
consequently of the mechanical properties. 

In all the numerical simulations, the contact with friction between the indenter and the 
deformable body was considered, with a Coulomb’s coefficient equal to 0.16 [10]. 

 

Figure 3: Finite element mesh for the test sample used in the numerical simulations.  
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The Knoop indenter geometry was modelled using parametric Bezier surfaces, which allow 
a fine description of the indenter tip, namely an imperfection such as the one that occurs in the 
real geometry, similar to the case of the Vickers indenter [11]. The model of the indenter has a 
tip imperfection, which consists in a plane normal to the indenters’ axis with an area equal to 
0.0032 m2. Figure 4 shows a global view of the Knoop geometry and a detail of the indenter 
tip. 

 

 
Figure 4: Knoop indenter modelled with Bezier surfaces. (a) general view; (b) detail of the indenter tip 

Due to the tip imperfection, the indenter area function disagrees from the ideal. The 
following equation provides the Knoop indenter area function used in the analysis of the 
numerical results: 

0032.0h9152.0h4377.65A c
2
c                                                               (3) 

The numerical simulations of the Knoop hardness test were carried out on 10 fictitious 
materials, up to the same maximum indentation depth, m 2.0hmax  . Table 1 resumes the 
mechanical properties of the materials considered. The plastic behaviour of the materials was 
modelled considering that the true-stress, , and the logarithmic plastic strain, , relationship 
was described by the Swift law: n

0 )(k  , where k, 0 and n (strain hardening 
parameter) are material constants (the material yield stress is given by: n

0y k ). The 
constant 0 was considered to be 0.005 for all materials. 

Table 1: Mechanical properties of the fictitious materials used in the numerical simulations 

Material y (GPa) n E (GPa)  maxf h/h  
M1 2 

0.01 

200 

0.3 

0.83 
M2 10 0.49 
M3 20 0.28 
M4 2 

0.3 
0.70 

M5 6 0.41 
M6 20 0.15 
M7 10 0.01 

400 

0.66 
M8 20 0.49 
M9 2 0.3 0.82 
M10 20 0.24 

z x 
y 

(a) (b) 
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3 RESULTS AND DISCUSSION 
The fictitious materials considered (see Table 1) had two different Young’ modulus (200 

GPa and 400 GPa). Two different cases of work-hardening coefficient, n (on one side, the 
materials were assumed elastic-perfectly plastic (n  0) and by the other side, the materials 
had high work-hardening coefficient (n=0.3)), and different yield stress values y  were 
studied. In order to study the mechanical properties influence on the results of the Knoop 
indentation, the surface indentation profiles were analysed along both diagonals, the long 
diagonal, L, and the short one, m, as shown in Figures 5 and 6, respectively. Moreover, these 
figures show the indentation profiles at the maximum load (open symbols) and after 
unloading (solid symbols). 

  

  
Figure 5: Surface indentation profiles at the maximum load along the longer diagonal, L, for the following 

materials: (a) M1, M2 and M3; (b) M4, M5, M6; (c) M7 and M8; (d) M9 and M10 

Figures 5 and 6 show that the “sink-in” appears on the indentation surface at the maximum 
load, except in case of the M1 material, where the surface tends to form “pile-up”. This fact 
certainly is related with a ratio hf/hmax equal 0.83 (where fh  is the indentation depth after 
unload and, hmax the indentation depth at the maximum load) and the low value of the work-
hardening coefficient. In fact, in case of Vickers indentation, the indentation profiles are 
related to the hf/hmax ratio and the “pile-up” formation appears when this ratio is higher than 
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0.8, for low values of the work-hardening coefficient (n ≈ 0). So, the current results for the 
Knoop indentation are in agreement with previous studies for Vickers indenter [10]. It should 
be noted that, for a given material, the hf/hmax ratio does not depends on the indentation depth 
and has a correlation with the value of the H/E ratio, between the hardness and the Young’s 
modulus, which slightly depends on the work-hardening coefficient (the hf/hmax ratio 
decreases when the H/E ratio increases). 

  

  
Figure 6: Surface indentation profiles at the maximum load along the short diagonal, m, for following materials: 

(a) M1, M2 and M3; (b) M4, M5, M6; (c) M7 and M8; (d) M9 and M10 

After unloading, for materials with the same value of Young’s modulus (E=200 GPa, 
Figures 5, 6 (a, b); E=400 GPa, Figures 5, 6 (c, d)), the surface indentation profiles show an 
elastic recovery along both diagonals that increases with the increase of the material yield 
stress, y, and the work-hardening coefficient, n. Figures 5 and 6 also show that the increasing 
of the Young’s modulus value leads to a decrease of the elastic recovery. Moreover, in the 
case of the short diagonal, for the materials M1 and M7, the indentation surface tends to form 
“pile-up”. This is probably connected with the small elastic recovery. 

As a general conclusion, the results presented in Figures 5 and 6 show that both indentation 
diagonals have elastic recover after unloading, as opposed to the conclusion by Marshall et al. 
[7]. In this context, the application of Equation (2) for the determination of the mechanical 
properties, namely the hardness and the Young’s modulus, cannot be quite appropriate. This 
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becomes critical for materials with high work-hardening coefficient and higher values of the 
H/E ratio, between the hardness and the Young’s modulus. 

4 CONCLUSIONS 
- This is an exploratory study concerning the numerical simulation of the Knoop 

indentation tests, in order to understand how to obtain accurate results concerning 
the mechanical properties of materials, namely the hardness and the Young’s 
modulus; 

- The surface indentation profiles shows “sink-in” formation for all materials except of 
ones with the hf/hmax ratio slightly higher than 0.8; 

- Elastic recovery for both diagonals of Knoop indentation is observed, although the 
elastic recovery along the short diagonal is inferior than the one along the long 
diagonal; 

- The recovery along the indentation diagonals should be considered for determination 
of the mechanical properties by Knoop indentation test, especially for materials with 
high work-hardening coefficient and high ratio between the yield stress and Young’s 
modulus; that is, it may be worth reexamining the use of the traditional equations for 
hardness and Young’s modulus evaluation, providing that an adequate value of 
correction factor of indenter geometry is considered. 
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