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Abstract 

The paper .presents results on the inclusion principle 
for uncertain, nominally linear, time-varying, discrete- 
time systems. The systems under consideration have 
time-varying norm-bounded parameter uncertainties in 
both state and input matrices. Robust controllers are 
assumed to be available by using guaranteed cost con- 
trol approach. The main contribution is in the deriva- 
tion of explicit block structured conditions on comple- 
mentary matrices of systems and controllers within the 
expansion-contraction scheme. A particular selection 
procedure for complementary matrices is included. 

comparing it with standard forms such as aggregations 
and restrictions [l], [2], [8]. Up to now, is has been 
specialized only on certain overlapping LQ design for 
continuous-time LTI systems [9] as well as for certain 
discrete-time LTV systems [lo]. Note that while the 
expansion-contraction relations for the continuous-time 
LTI systems can be directly applied to their discrete- 
time LTI counterpart, this is not the case of the LTV 
systems [10],[11]. Finally, we present the procedure for 
particular selection of complementary matrices. Struc- 
tural example showing a possible elimination of uncer- 
tainties in the expansion is supplied. 

2 Problem formulation 
1 Introduction 

Consider the uncertain system as follows: 
In this paper, the expansion-contraction relations con- 
sidered within the inclusion principle are specialized for 
a class of uncertain, nominally linear, time-varying, and 
discrete-time systems with parametric norm-bounded 
uncertainties. The inclusion principle defines a frame- 
work for two dynamic systems with different dimen- 
sions, in which solutions of the system with larger di- 
mension include solutions of the system with smaller di- 
mension [l], [2]. Robust controllers for each systems are 
supposed to  be available by using guaranteed cost con- 
trol approach. The notion of guaranteed cost control 
has been used for control design for uncertain, nomi- 
nally time-invariant, discrete-time systems by using the 
Riccati equation approach [3], [4], [5 ] ,  [6]. 

The expansion-contraction scheme must include the 
relations between both systems, performance criteria 
and controllers. The paper is primarily focused on the 
derivation of the expansion-contraction scheme for this 
class of systems by expressing the desired relations in 
the form of explicit conditions on complementary ma- 
trices in both systems and controllers. This approach 
is called a generalized selection of complementary ma- 
trices [7]. It essentially simplifies their choice when 

S : z ( k  + 1 )  = ( A  + AA)  ( k ) z ( k )  + ( B  + A B )  (k)u(k). 

Associated with this system is the cost function 
(1) 

J ( 4 k 0 ) , 4 k ) )  = z T ( k ,  ) W k , ) +  
kf -1 

+ [xT(k)Q*(k)4k) + u T ( k ) R * ( k ) 4 k ) ]  . (2) 
k=k, 

Further, consider another uncertain system 

: 2(k + 1) = (A +AA) (Ic)?(k)+ (B + A s )  (Ic)ii(k). 

(3) 
Associated with this system is the cost function 

.J (2(ko) ,  q k ) )  = 5 T ( k ,  )1i2(ICf )+ 
kf -1  

+ [-tT(IC)Q*(k)2(k) + GT(IC)d*(k) i i (k) ]  , (4) 
k= k, 

where k, is the initial time, k, is the final time and 
integers IC E [ k , , k ,  + 1, ..., IC,]. The vectors %(IC) E R", 

0-7803-7298-0/02/$17.00 0 2002 AACC 1 705 



u(k) E Iw" and Z ( k )  _E ItR, ii(k) E Iwfi are the states 
and inputs of S and S at time k for k E [k,, k,], resp. 
Suppose n < ii.A(k), B(k) ,  & * ( I C ) ,  R*(k) and &k), 
B ( k ) ,  Q * ( k ) ,  i i"(k)  are matrices of appropriate dimen- 
sions satisfying standard- assumptiolts on the LQ de- 
sign. AA(k), AB(k),  AA(k) and AB(k)  denote time- 
varying matrices of uncertain parameters as follows: 

( 5 )  
(AA AB)(k)  = D ( k )  Ak (El E z ) ( k ) ,  
(AA AB)(k)  = D ( k )  Ak ( &  &)(k), 

where D, El, Ez, D ,  81, E 2  are known time- 
varying matrices, Ak is an unknown time-varying ma- 
trix with Lebesgue measurable elements and satisfy- 
ing llAnll < 1 for all k. z ( k )  = z ( k ; z ( k o ) , u ( k ) ) ,  
Z(k) = Z ( k ; Z ( k , ) , i i ( k ) )  denote the solutions of ( l ) ,  
(3)  for given initial states z ( k , ) ,  Z(k,) and inputs u ( k ) ,  
i i ( k )  defined for all k E [k,, k,], resp. These solutions 
are unique and satisfy 

i(k) = 6 ( k ,  k,) Z ( k , ) +  
k-1 

+ c 6 ( k , j  + 1 )  (B + AB)  (j)ii(j). (7)  
j = k o  

Suppose the sum is zero if k = ko. CP, 6 are discrete- 
time transition matrices [12]. Specifically, and only for 
the ordering of arguments corresponding to  forward it- 
eration, denote 

CP(k,j)  = ( A  + AA) (k - 1 )  ( A  + AA) (k - 2 )  ... 
... ( A  + AA) ( j ) ,  k Z j ,  (8) 

by adopting the convention that an empty product is 
the identity, i.e. @(k, j )  = I if k = j .  The matrix CP sat- 
isfies CP(k + 1 , j j  = ( A  + AA) ( k ) @ ( k , j ) .  Analogously 
for the matrix @. 

S and s are related by the transformations 5 ( k )  = 
V z ( k ) ,  z ( k )  = Ui?(k), i i (k )  = Ru(k),  u ( k )  = Qii(k), 
where V ,  U ,  R and Q are constant full-rank matrices 
of appropriate dimensions. 

Copsider the controllers u(k)  = - K ( k ) z ( k )  and G ( k )  = 
- K ( k ) Z ( k )  designed by using the guaranteed cost con- 
trol approach [3] ,  [4] ,  [5 ] ,  [6 ] .  This means that the 
controllers guarantee bounds for the performance crj- 
teria in ( 2 )  and ( 4 )  in the form J < 52 and J < Q, 
resp. A simple way of relating the performances of 
both closed-loop systems is to  impose the equality of 
both criteria when the states and the inputs are related 

by the above transformations, that is, J ( z ( k , ) ,  u ( k ) )  
= J(Vz(k,) ,Ru(k)).  This means that relations be- 
tween the systems and the controllers must be satisfied 
as follows. 

Definition 1 We say-th_at a pair ( 8 , J )  includes a 
pair ( S , J ) ,  that is ( S , J )  1 ( S , J ) ,  i f  there exist 
a quadruplet of constant matrices (U,  V, Q, R) such 
that U V  = I,,, QR = I,,, and for any initial state 
z ( k , )  and any fixed u ( k )  of S, z ( k ; z ( k , ) , u ( k ) )  = 
UZ(k;Vz(k,),Ru(k)) for all k E [k , , k , ] ;  and 
J ( z ( k , ) , u ( k ) )  = J(Vz(k,) ,  Ru(k)). 

Defiftition 2 A control law i i (k)  = - R ( k ) Z ( k )  
for S is contractible to the control law u ( k )  = 
- K ( k ) z ( k )  for S i f  the choice S(k,,) = V z ( k , )  
and i i (k)  = Ru(k) implies K ( k ) z ( k ; z ( k , ) , u ( k ) )  = 
QI?(k)Z(k; Vz(k,), Ru(k)) fo r  all k E [k,, k , ] ,  any ini- 
tial state z ( k , )  and any fixed input u(k)  of S .  

Suppose given the pairs of matrices (y, V )  and (Q ,  R).  
Then the matrices A(k), AA(k), B(k) ,  AB(k) ,  l?, 
Q * ( k ) ,  R*(k) and k(k) can be described as 

A ( k )  + AA(k) = VA(k)U + VAA(k)U + M ( k ) ,  

B ( k )  + AB(k)  = VB(k)Q + VAB(k)Q + N ( k ) ,  
l? = UTrIU + Mn,  

Q * ( k )  = UTQ*(k)U + M p ( k ) ,  

K ( k )  = RK(k )U + F ( k ) ,  

(9) 

R * ( k )  = Q % * ( ~ ) Q  + &*(IC), 

where M ( k ) ,  N ( k ) ,  Mn,  MQ- (k), NR* (k) and F(k)  are 
complementary matrices. 

The problem. The specific goals are as follows: (i) To 
derive explicit conditions on complementary matrices 
satisfying ( S ,  J )  2 ( S ,  J )  and contractibility conditions 
for the class of discrete LTV uncertain systems under 
consideration; (ii) To present a systematic procedure 
for their selection. 

3 Main results 

Theorem 1 Consider S, s given by (l), (3), resp. s 3 S i f  and only i f  

k -1  

U [ 6 ( k ,  k,) ?(k,)+ C 6 ( k l j + 1 )  (B + AB)  ( j ) G ( j ) ]  = 
j = k ,  

k-1 

= @ ( k , k 0 ) 4 k , , ) +  ~ ( k , j + l ) ( B + A B ) ( j ) . L l ( j )  
j=k, 

(10) 

for all k E [IC,, k,]. 
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We must impose some conditipns on complementary 
matrices in (9) to satisfy (S, J )  2 (S, J).  Define for 
integers r,s E [ k , , k , ]  and any square matrix M the 
matrix product M [ r ,  s] as follows: 

M[r,s]  = M ( r ) M ( r  - l ) . . . M ( s ) ,  r > s 

M [ r ,  s] = M ( r ) ,  r = s. 
(11) 

M[r,  s] is undefined for r < s. Now, we are ready to 
formulate the inclusion principle for discretetime LTV 
uncertain systems in terms of complementary matrices. 

Theorem 2 Consider ( l ) - (d ) .  (8,J) ZI (S,J)  zf and 
only if 

UM[r ,  S]V = 0, UN(r)R = 0, 
U W P ,  qIN(9 - 1)R = 0, VTMnV = 0, (12) 

vThfQ. ( k ) v  = 0, R ~ N ~ .  ( k ) ~  = o 
hold for all fixed k E [k,, k , ] ,  for all r ,  s such that k, < 
s < r < k -  1 and a l lp ,q  such that k, + 1  < q < p  < 
k - 1 .  

The following theorems give the conditions on comple- 
mentary matrices to satisfy Definition 2. 

Theorem 3 A control law i i (k)  = -l?(k) 5(k) for 3 is 
contractible to the control law u ( k )  = - K ( k ) s ( k )  fo r  

S if and only af 

Q F ( k )  [$(k k,)V4k0)+ 
k-1 

+ 6 ( k , j  + 1 )  + ( I )  + AB) (j)ii(j)] = 0 
j = k o  

(13) 

hold for all f i e d  k E [k,, kf]. 

Theorem 4 A control law G(k) = -l?(k) ?(k) for 3 is 
contractible to the control law u ( k )  = - K ( k ) z ( k )  for  
s i f  

QF(k)V = 0,  
Q F ( k ) M [ k  - 1, r]V = 0,  

(14 )  Q F ( k ) N ( k  - l ) R  = 0,  
0 Q F ( k ) M [ k  - l ,p]N(p - l ) R  

hold for all fixed k E [k, ,  ICf], all r E [ k , ,  k - I ]  and all 
P E [k,  + 1 ,  IC - 11. 

3.1 Expansion-contraction process 
3.1.1 Change of basis: The change of basis 

in the expansion-contraction process introduced in (21, 
(131 represents S in a canonical form. Since the inclu- 
sion principle does not depend on the specific basis used 

in the state, input and output spaces, we may introduce 
convenient changes of basis in 5: for a prespecified pur- 
poseJ71. The expansion-contraction process between S 
and S can be illustrated in the form 

s + s  - s  - + s  -is, 

R" 5 R6 --% R 

Rn 5 Rfi Rfi 2 Rfi  5 Rn, 
T-' -6 3 2 Rm,  

- (15) 
where s denotes the expanded system in a new bases. 
Given V and R, we define U = (VTV)-lVT, Q = 
(RTR)-'RT as their pseudoinverses, resp. Let us con- 
sider TA = (V W,), T, = ( R  W B ) ,  where W,, W, are 
chosen such that Im W, =Ker U ,  Im W, =Ker Q. By 
using these transformations, the conditions UV = In, 
VU=(' ,- :)andQR=I,,RQ=('g:)_canbeeas- 
ily verified, where V = TL'V = ( ',- ), U = UT, = 
( r ,  0 )  and R = T;'R = ( 'om), Q = QT, = ( I ,  0). 

Note that the motivating factor for defining TA and T, 
is the fulfillment of these conditions. They play a cru- 
cial role in deriving explicit block structured comple- 
mentary matrices (with zero blocks) including a general 
strategy for their selection. 

3.1.2 Expansion-contraction in the new ba- 
Consider the system S given in ( 1 )  partitioned as sis: 

follows: 

and similarly for the matrices AA(k) ,  B ( k ) ,  AB(k) ,  
where &(IC), Bii(k), i = 1,2,3,  are ni x n i ,  ni x mi 
matrices, resp. Analogously for the uncertain matri- 
ces AAij(k), ABii(k),  i = 1,2 ,3 .  This structure has 
been adopted as a prototype structure for overlapping 
decompositions [2], [8], [14]. 

Now, consider the uncertain system s as follows: 

5 : i ( k  + 1) = ( A  +AA) ( k ) ; ( k ) +  (B +AB) ( k ) & ( k ) .  

Associated with this system is the cost function 
(17) 

j ( Z ( k , ) ,  6 ( k ) )  = iT(k , ) i i2 (k , )+ 
k , - 1  

+ [%T(k)B*(k)%(k)  + t T ( k ) k * ( k ) & ( k ) ]  , (18) 
k=k, 

where A ( k ) ,  AA(k),  g ( k ) ,  AP(k), l?, Q * ( k )  and l?*(k) 
are matrices of appropriate dimensions. The vectors 
l ( k )  and &(k) are defined as z ( k )  = T;'Vz(k) = 

V i z ( k ) ,  G ( k )  = Ti lRu(k)  = Ru(k) .  AAfk), A j ( k )  
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are norm bounded uncertainties with the similar struc- 
ture as in ( 5 ) .  

Now, the relations between 3 and S are -defined 

VB(k)Q + VAB(k)Q + N ( k ) ,  fl = UTI18 + &I, 
&*(k) = UTQ*(k)U + M Q * ( ~ ) ,  R*(k) = &*R*(k)& + 
N p  (k), where new complementary matrices are 

- 

as A ( k )  = P A ( ~ ) U  + P A A ( ~ ) ~  + fi(k), B ( k )  = 

M ( k )  = T J I M ( k ) T A ,  

Mn = T,TMnTA, 
NR* (k) = TZNR. (k)T,. 

N ( k )  = T J ' N ( k ) T , ,  

MQ* ( I C )  = T,TMQ* (k)TA, 

(19) 
First, we analyze the structure of the matrices M ( k ) ,  
N ( k ) ,  Mu, h ? p ( k )  and R p ( k )  in the expanded sys- 
tem. Consider the complementary matrices of 8 in 
the form M ( k )  = Mt3(k) ,  N ( k )  = Nt3(k) ,  Mn = 
Mn,,, M Q * ( ~ )  = MQ:,(~) ,  N R = ( ~ )  = NR:,(~C) for 

i ,  j = 1 ,..., 4, where Mn,, = M:,,, M Q ; , ( ~ )  = 
M&,(k), N R : = J ~ )  = N$,(k)  and each matrix di- 
mensions correspond to  (16).  Consider the matrices 

. -- 
are n x n, n 2  x n2 matrices,'resp. Nll(b) ,  N22(k) are 
n x m, n 2  x m2 matrices, resp. Mnll , MnZ2 are n x n, 
122 x n2 matrices, resp. MQi, (k), M q 2 ( k )  are n x n, 
n 2 x n 2  matrices, resp. N R ; l ( ~ ) ,  NR; , (k )  are m x m ,  
m2 x m2 matrices, resp. We need to know the form of 
these submatrices. This is presented by the following 
propositions. 

Proposition 1 Consider S and 3 given by  ( 1 )  and 
( 1 7 )  satisfying 9 2 S ,  resp. Then M ( r )  = 

( &i2:(r) z$L;) , where (0)  denotes a null matrix of or- 

dern  and the other blocks satisfy &f l2(p) f i21(p-1)  = 0 
and fi12(p)M22[p - l 7 j ] U 2 1 ( j  - 1)  = 0 for all fixed 
k E [k,,k,], all r E [ k , , k -  11, all p E [k, + 1 , k -  11 
and all j E [k, + 1 ,p  - 11. 

- 

- 
Proposition 2 Consider S and 3 given by  ( 1 )  and 
( 1 7 )  satisfying s 3 S ,  resp. Then N ( r )  = 

( Nz:(r) $::;!) , where (0)  is an n x m matrix and 
the other blocks satisfy Mlz (p )N21(p  - 1)  = 0 and 
Ml2(p)A?22[p - l , j ]N21( j  - 1)  = 0 for all fixed k E 
[k,, k,], all r E [k,,, k - 11, all p E [k, + 1, k - 11 and all 

- 

j E [k, + 1,p - 11. 

- 
Theorem 5 Consider S and s given by  ( 1 )  
and ( l 7 ) ,  resp. The pair ( S , J )  3 (S,J) i f  

hold for all fixed k E [k,, kf] and all p E [k, + 1, k - 11 

3.1.3 Contractibility: The idea is to design a 
control law for S so that it can be contracted and im- 
plemented into S .  Now, we want to determine the con- 
ditions under which a control law designed for s can be 
contracted into S in terms of complementary matrices. 

Denote matrices appearing in the contraction process 
as follows. The complementary matrix F ( k )  has the 
form F ( k )  = (Fi j (k) ) ,  i , j  = 1, ..., 4, where F l l ( k ) ,  
Fzz(k),  F33(k) and F44(k) are ml x n1, mz x "2, 
mg x n2 and m3 x n3 matrices, resp. Define F ( k )  = 
( &(k) ' 1 2 ( l i ) )  ' z 2 ( k )  , where p11(k) and p22(k) are m x n 
and m2 x 712 matrices, resp. Similarly, denote the gain 
matrix K ( k )  = (K , j (k ) ) ,  i , j  = 1,2,3, where Kii(k) 
are mi x ni matrices, resp. The gain matrix R(k) 
for S has the form k(k) = fZK(k)U + F ( k ) ,  where 
k(k) = T i l k ( k ) T A  and p(k )  = T; 'F(k )TA .  So far 
we do not know the form of the complementary matrix 
F ( k )  and the corresponding contractibility conditions. 
The following theorem solves the problem. 

Theorem 6 Consider S and S given by  ( 1 )  and (17) 
satisfying S 2 S ,  resp. A control law G ( k )  = 
- K ( k ) & ( k )  for S is contractible to the control law 
~ ( I c )  = - ~ ( k ) r c ( k )  of s if ~ ( k )  = ( F210(k) 2::;;) sat- 
isfies 

- 

F&)fi21(k - 1)  = 0, 
F12(k)N2l(k - 1)  = 0, 

F12(IC)M22[k - 1,PlM2l(P - 1)  = 0, 
FlZ(k)M22[k - 1,PI&l(P - 1)  = 0 

(21) 

3.2 Selection of complementary matrices 
The above results are general, i.e. they do not depend 
on the selection of the matrices V and R .  Therefore, 
they can be applied to any expansion-contraction pro- 
cess. Specific transformation matrices V and R must 
be selected to  expand a given problem (1 )  when con- 
sidering the control design. We select the following 
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expansion transformation matrices: 

I,, 0 I,, 0 

V =  ( i  ;''; ) ,  R =  ( i i''': ) .  (22)  
0 In3 0 Im3 

z .L (~ )  and u z ( k )  appear in a repeated form in 
Z(k) = ( z T ( k ) ,  z T ( k ) , z T ( k ) ,  x:(k))* and G ( k )  = 

( z l T ( k ) , . T ( k ) , . T ( k ) , u : ( k ) ) ~  by using (22), resp. The 
change of basis results in 

/ I - .  0 0 o \  

0 0  

TAW1 = (23) 
0 $ I n 2  - $ I n 2  0 

T,, T;' have an analogous structure. The following 
theorems present the structure of the complementary 
matrices M ( k ) ,  N ( k ) ,  Mn, M Q * ( ~ ) ,  N p ( k )  and F ( k )  
in the initial bases. 

Theorem 7 Consider S and s given by (1) and (3), 
resp. S 2 S i f  and only i f  M ( r )  has the following 
structure: 

(24) 
and their blocks satisfy 

N21 Nzz+N23 Nzs ( j  - 1) = 0 

(25) 
1 

for all fixed k E [ k o , k f ] ,  all r E [ k , , k  - 11, all p E 
[ko + 1, k - 11 and all j E [k ,  + 1,p - 11. The matrix 
N ( r )  has the same structure as M ( r ) .  

Theore? 8 Consider S and 5 given by (1) and (3), 
resp. ( S ,  J )  2 (S, J )  i f  the matrices Mn,  MQ. ( I C ) ,  
NR- ( k )  have the following structure: 

1 709 

and either 

Theorem 9 Consider S and given by (1) and 
(3) satisfying S 3 S ,  -resp. A control law 
G ( k )  = - K ( k ) Z ( k )  for S is contractible to the 
control law u ( k )  = - K ( k ) z ( k )  of S if F ( k )  = 

N Z I  N22+N23 N24 ( p  - 1) = O ) 
for  all fixed k E [ k o ,  k , ]  and all p E [k,  + 1, k - 11. 

4 Example 

Consider the system S defined by the matrices A ( k ) ,  
A A ( k ) ,  B(k)  and AB(k)  given in (16). For in- 



stance, suppose that the complementary matrices 
M ( k )  and N ( k )  have the structure given in the 
case a) of Theorem 8. Consider M ( k )  satisfy- 
ing the following relations: M21(k) = A21(k) + 
AA21(k) ,  M22(k) = f A22(k) + f AA22(k) ,  M23(k) = 
- !j A22(k)-$ AAz2(k) ,  M24(k) = - A23(k)-AAz3(k). 
Then, by using (9), the expanded matrix A ( k ) + A A ( k )  
has the form: 

. 

A i i + A A i i  f ( A i z + A A i z )  f ( A i z + A A i z )  A i 3 + A A i 3  

0 

Observe that the choice of the complementary matrix 
M ( k )  can eliminate some elements of A ( k )  + A A ( k )  in 
the expanded space to get more zero blocks in the inter- 
connected subsystems when considering the decentral- 
ized control design. M ( k )  offers variety of possibilities 
to do this. Similar observation holds for the comple- 
mentary matrix N ( k ) .  It is possible to eliminate some 
submatrices B i j ( k )  and A B i j ( k ) ,  i , j  = 1,2,3, of the 
matrix B ( k )  + A B ( k )  in the expanded space by using 
N ( k ) .  In this case, N ( k )  offers more flexibility than 
M ( k )  because its structure is less restrictive. 

5 Conclusion 

In this paper, we have presented the expansion- 
contraction relations for a class of uncertain, nominally 
linear, time-varying, discrete-time systems associated 
with quadratic cost functions. These relations enable 
to design overlapping robust decentralized state feed- 
back controllers by using guaranteed cost control ap- 
proach. The solution is based on generalized selection 
of complementary matrices. A procedure has been pro- 
posed to select the complementary matrices in a con- 
structive way. 
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