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Abstract

The paper .presents results on the inclusion principle
for uncertain, nominally linear, time-varying, discrete-
time systems. The systems under consideration have
time-varying norm-bounded parameter uncertainties in
both state and input matrices. Robust controllers are
assumed to be available by using guaranteed cost con-
trol approach. The main contribution is in the deriva-
tion of explicit block structured conditions on comple-
mentary matrices of systems and controllers within the
expansion-contraction scheme. A particular selection
procedure for complementary matrices is included.

1 Introduction

In this paper, the expansion-contraction relations con-
sidered within the inclusion principle are specialized for
a class of uncertain, nominally linear, time-varying, and
discrete-time systems with parametric norm-bounded
uncertainties. The inclusion principle defines a frame-
work for two dynamic systems with different dimen-
sions, in which solutions of the system with larger di-
mension include solutions of the system with smaller di-
mension {1}, {2]. Robust controllers for each systems are
supposed to be available by using guaranteed cost con-
trol approach. The notion of guaranteed cost control
has been used for control design for uncertain, nomi-
nally time-invariant, discrete-time systems by using the
Riccati equation approach {3}, {4}, [5], [6].

The expansion-contraction scheme must include the
relations between both systems, performance criteria
and controllers. The paper is primarily focused on the
derivation of the expansion-contraction scheme for this
class of systems by expressing the desired relations in
the form of explicit conditions on complementary ma-
trices in both systems and controllers. This approach
is called a generalized selection of complementary ma-
trices [7]. It essentially simplifies their choice when
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comparing it with standard forms such as aggregations
and restrictions [1], [2], [8]. Up to now, is has been
specialized only on certain overlapping LQ design for
continuous-time LTI systems [9] as well as for certain
discrete-time LTV systems [10]. Note that while the
expansion-contraction relations for the continuous-time
LTI systems can be directly applied to their discrete-
time LTT counterpart, this is not the case of the LTV
systems [10],[11]. Finally, we present the procedure for
particular selection of complementary matrices. Struc-
tural example showing a possible elimination of uncer-
tainties in the expansion is supplied.

2 Problem formulation

Consider the uncertain system as follows:

S: z(k+1) = (A + AA) (k)z(k) + (B + AB) (k)u(k).

(1)
Associated with this system is the cost function
J(z(k, ), u(k)) = =7 (k) z(k, )+
k-1
+ Y [T (R)Q (K)z(k) + uT (K)R*(K)u(k)] . (2)
k=k,

0

Further, consider another uncertain system

§: a(k+1)=(A+24) (B)3(k)+ (B +AB) (k)a(k).

(3)
Associated with this system is the cost function
J(#(ky), a(k)) = 27 (k, )1z (k,)+
k),-l
+ Y [F 0@ Watk) + @ (R R k)atk)], (4)
k=k,

where k, is the initial time, k, is the final time and
integers k € [k,, k, +1,...,k,]. The vectors z(k) € R”,

0?0



u(k) € R™ and #(k) € R", a(k) € R™ are the states
and inputs of S and 8 at time k for k € [k,, k,], resp.
Suppose n < 7n.A(k), B(k), Q*(k), R*(k) and A(k),
B(k), @*(k), R*(k) are matrices of appropriate dimen-
sions satisfying standard assumptions on the LQ de-
sign. AA(k), AB(k), AA(k) and AB(k) denote time-
varying matrices of uncertain parameters as follows:

D(k) Ay (Er E)(k),
D(k) A (Ey E)(k)

(AA AB)(k) =

I (5)

(AA AB)(k) =
where D, E;, E, D, E,, E, are known time-
varying matrices, Ay is an unknown time-varying ma-
trix with Lebesgue measurable elements and satisfy-
ing [|Ak)l < 1 for all k. z(k) = z(k; z(k,), u(k)),
z(k) = Z(k;Z(k,), u(k)) denote the solutions of (1),
(3) for given initial states z(k,), £(k,) and inputs u(k),
(k) defined for all k € [k,, k ,] resp. These solutions
are unique and satisfy

z(k) = @ (k, k,) z(ky )+
k-1
+ 3 @(ki+1)(B+AB)(Gul). (6)
i=kq
(k) = & (k, k,) E(k,)+
k—1
+ 3 B(ki+1) (B + AB) GaG). (7)
s=kq

Suppose the sum is zero if k = k. ®, & are discrete-
time transition matrices [12]. Specifically, and only for
the ordering of arguments corresponding to forward it-
eration, denote
Pk, N=A+A4)k—1)(A+AA)(k—-2)---
(A+AA)(G), k=3, (8)
by adopting the convention that an empty product is
the identity, i.e. ®(k,7) = I if k = j. The matrix d sat-
isfies ®(k + 1,7) = (A + AA) (k)®(k, 7). Analogously
for the matrix ®.

S and S are related by the transformations #(k) =
Va(k), z(k) = Uz(k), (k) = Ru(k), u(k) = Qalk),
where V, U, R and @Q are constant full-rank matrices
of appropriate dimensions.

Consider the controllers u(k) = —K (k)z(k) and i(k) =

—K (k)i (k) designed by using the guaranteed cost con-
trol approach [3], [4], [5], [6]. This means that the
controllers guarantee bounds for the performance cri-
teria in (2) and (4) in the form J < Q and J < ),
resp. A simple way of relating the performances of
both closed-loop systems is to impose the equality of
both criteria when the states and the inputs are related
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by the above transformations, that is, J(z(k,),u(k))
= J(Vz(k,), Ru(k)). This means that relations be-
tween the systems and the controllers must be satisfied
as follows.

Definition 1 We say_that a pair (8,J) includes a
pair (S,J), that is (S,J) D (S,J), if there exist
a quadruplet of constant matrices (U,V,Q, R) such
that UV = I,,, QR = I, and for any initial state
z(k,) and any fized u(k) of S, x(k;x(k,), u(k)) =

Uz(k;Vz(k,), Ru(k)) for all k € [k,,k,}; and
J(z(k, ), u(k)) = J(Va(k,), Ru(k)).
Definition 2 A control law (k) = —K (k) #(k)

for § is contractible to the control law u(k)
—K(k)x(k) for S if the choice Z(k,) = Vaz(k,)
and 4(k) = Ru(k) implies K(k)z(k;z(k,),u(k)) =
QK(k)z(k; Vz(k,), Ru(k)) for all k € [ky, k], any ini-
tial state z(k,) and any fized input u(k) of S.

R).

Suppose given the pairs of matrices (U, V) and (Q, R)
Then the matrices A(k), AA(k), B(k), AB(k), 1I,
Q*(k), R*(k) and K (k) can be described as

A(k) + AA(k) = VAK)U + VAA(K)U + M(k),
B(k) + AB(k) =VB(k)Q + VAB(K)Q + N(k),
=UTIU + Mn,
T 9
Q" (k) U7 Q*(k)U + Mg-(k),
R*(k) = QTR*(k)Q + Ng- (k),
K(k) = RK(K)U + F(k),

where M(k), N(k), M, Mg-(k), Ng- (k) and F(k) are
complementary matrices.

The problem. The specific goals are as follows: (i) To
derive explicit_conditions on complementary matrices
satisfying (S, J) O (S, J) and contractibility conditions
for the class of discrete LTV uncertain systems under
consideration; (ii) To present a systematic procedure
for their selection. -

3 Main results

Theorem 1 Consider S, S given by (1), (3), resp.
S O S if and only if
k-1
U Bk, ko) 2(k)+ S &(k,j+1) (B +AB) (j)i()] =
j=k0
k-1
=&k, k) 2(ky)+ Y B(k.j+1) (B +AB) (j)u(s)
i=ky
(10)

for all k € [k,, k,].



We must impose some conditions on complementary
matrices in (9) to satisfy (S,J) D (S,J). Define for
integers r,s € [k,,k,] and any square matrix M the
matrix product M|r, s] as follows:

Mr, s}
M]r, 5]

= M(r)M(r —-1)--
= M(r),

“M(s), r>s an

r=S.

M(r; s] is undefined for 7 < s. Now, we are ready to
formulate the inclusion principle for discrete-time LTV
uncertain systems in terms of complementary matrices.

Theorem 2 Consider (1)-(4). (S,J) > (8,J) if and
only if
UM]|r,s]V =0, UN(r)R=0,
Milp,q)N(¢g—1)R =0, VIMgV =0, (12)

VT Mg.(k)V =0, RTNg.(k)R=0

kold for all fized k € [k, k,], for all s such that k, <
s<r<k—1andallp,qsuchthatk +1<qg<p<
kE—-1.

The following theorems give the conditions on comple-
mentary matrices to satisfy Definition 2.

Theorem 3 A control law a(k) = — K (k) Z(k) for S is
contractible to the control law u(k) = —K(k)z(k) for
S if and only if

QF(k )[ (k, ko )V (ko )+
£ 3 (k4 1) + (B AB) (0] =
~ 13)
hold for all fized k € [ky, k,].

Theorem 4 A control law u(k) =
contractible to the control law u(k)

( )Z(k )forS 18
= —K(k)z(k) for

S if
QF(k)V =0,
QF(k)M[k —1,7]V =0,
QF(BN(k—1)R=0, Y
QF (k)M[k — 1,pIN(p — l)R =0
hold for all fired k € [k,, k,], all 7 € [k,, k — 1] and all

pelky+1,k=1].

3.1 Expansion—contraction process

3.1.1 Change of basis: The change of basis
in the expansion-contraction process introduced in [2],
(13] represents S in a canonical form. Since the inclu-
sion principle does not depend on the specific basis used
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in the state, input and output spaces, we may introduce
convenient changes of basis in § for a prespecified pur-
pose [7]. The expansion-contraction process between S
and S can be illustrated in the form

S — 8 — § — § — S,
" LRt T gt Ia gt U g
R™ i Rﬁl Ty ]Rﬁ: i Rrﬁ & R™

(15)
where § denotes the expanded system in a new bases.
Given V and R, we define U = (VIV)"1VT, Q =
(RTR)~'RT as their pseudoinverses, resp. Let us con-
sider T, =(V W,), T, = (R W), where W,, W, are
chosen such that Im W, =Ker U, Im W,=Ker Q. By
using these transformations, the conditions UV = I,,,
VU = (%9) and Q_R = I, RQ = (g g)_can be eas-
ily verified, where V = TA‘IV = (16‘), U=UT, =
(rmo)and R=T,;'R = (), Q@ = QT, = (1 0).
Note that the motivating factor for defining T, and T},
is the fulfillment of these conditions. They play a cru-
cial role in deriving explicit block structured comple-
mentary matrices (with zero blocks) including a general
strategy for their selection.

3.1.2 Expansion-contraction in the new ba-
sis: Consider the system S given in (1) partitioned as
follows:

An(k)  Anz(k) + Ays(k)
I el M
A(k) = | Ak Azz(k) 1 Azs(k) (16)
——— ] —— ]
Azi(k) Aaz(k) Asza(k)

and similarly for the matrices AA(k), B(k), AB(k),
where A,’i(k‘), B,'i(k‘), 1 = 1,2, 3, are n; Xn;, n; Xm;
matrices, resp. Analogously for the uncertain matri-
ces AA;i(k), AB;;(k), ¢ = 1,2,3. This structure has
been adopted as a prototype structure for overlapping
decompositions [2], [8],[14].

Now, consider the uncertain system S as follows:

§:dk+1)=(4 +AA) (k) (k)+ (B +AB) (k)i(k).
(17)
Associated with this system is the cost function

T(F(k,), a(k)) = &7 (k)T 5(k, )+

kf~1 ~ ~
+ 3 [FT0@ Wik + & WR ®ER)], (8)
k=k

5]

where A(k), AA(k), B(k), AB(k), T, Q* (k) and R*(k)
are matrices of appropriate dimensions. The vectors
Z(k) and (k) are defined as z(k) = 1Vac(k)

Va(k), i(k) = T;'Ru(k) = Ru(k). AA(K), AB(k )



are norm bounded uncertainties with the similar struc-
ture as in (5).

Now, the relations between S and S are defined
as A(k) = VAKU + VAAKU + M(k), B(k) =
VB(k)Q + VAB(k)Q + N(k), I = UTIIU + Mn,
Q*(k) = UTQ* (k)U + Mq-(k), R*(k) = QTR*(k)Q +
Npg-(k), where new complementary matrices are
M(k) =TIM()T,,  N(k)=T;'N(k)T,,
Mp =TT MuT,, Mg- (k) = TTMq- ()T,
Ng-(k) = TT Ng. (k)T,.
(19)
First, we analyze the structure of the matrices M (k),
N(k), M, Mgq-(k) and Ng-(k) in the expanded sys-
tem. Consider the complementary matrices of S in
the form M(k) = M;;(k), N(k) = Nij(k), Mn =
MHij7 MQo(k') = MQ;j(k), NR'(k) = NR;j(k) for
i,j = 1,..,4, where Mp,, = MI’{“, MQ;J_(k) =
MQ. (k), Ng; (k) = NZ. (k) and each matrix di-
mensions correspond. to (16). Consider the matrices

A _ [ My (k) Miz(k) N _ [ Nui(k) N1ao(k)
M(k) = (Hn® M) MK = (o 5.

_ Mn,. Mo _ Mgs (k) Mqs (k)
Mn = (M?x:: Mn;)’ Ma- (k) = (Mc?;;(k) MQ;Z(k))'
_ Nps (k) Ny, (k) _ _
Ng-(k) = (N;ﬁ;z(k) Nﬂaz("))' where Mi1(k), Ma2a(k)
are mxn, na X ny matrices, resp. Nij(k), Nao(k) are
nXm, ng X my matrices, resp. Mm,,, Mn,, are nxn,
ny X ny matrices, resp. Mq; (k), Mg;, (k) are nxn,
ng X ng matrices, resp. Ng; (k), Np;, (k) are mxm,
mq X Moy matrices, resp. We need to know the form of
these submatrices. This is presented by the following
propositions.

Proposition 1 QOnsider S and S given by (1) and
(17) satisfying S D S, resp. Then M(r) =

(MQ?(T) 1\1?1;:2:;) , where (0) denotes a null matriz of or-

der n and the other blocks satisfy Mya(p)Ma1(p—1) =0
and Mi2(p)Maz[p — 1,3]Mai1(j — 1) = 0 for all fived
k € [ky, k), allr € [k, k—1], all p € [k, +1,k —1]
and all j € [k, +1,p—1}].

Proposition 2 Consider S and S given by (1) and
(17) satisfying 8 D S, resp. Then N(r) =

(N:(T) g;:g;) , where (0) is an n x m matriz and

the other blocks satisfy Myz(p)Nor(p — 1) = 0 and
M2 (p)Maalp — 1,5)Na1(j — 1) = 0 for all fized k €
[ko k1, all € [ky, k1], all p € [k, + 1,k 1] and all
j€lk, +1,p—1].

Theorem 5 Consider S and -§_ given by (1)
and (17), resp. The pair (S,J) D> (S,J) i
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- 0 I\Z[nn — _ 0 MQ;Z(k)
Mn = (MrTlu Mﬂn)’ Mg- (k) = (1‘7’5;2(’@) Mng(k) ’
_ 0 Nps (k) )

Ng- (k) = (Ngb(k) NR;:(I:)) and either

- 0 o TN 0 Nip)
a) M(p) = (le(?) 1\7122(?))’ Nip) = (Nﬂ(l’) N"(P)) or
o\ _ (0 Fhz(p) () — (O Naz(p)
b M) = (5 %) 8o = (5 ¥a) (
20)

hold for all fized k € [k,, k,] and all p € [k, + 1,k —1].

3.1.3 Contractibility: The idea is to design a
control law for S so that it can be contracted and im-
plemented into 8. Now, we want to determine the con-
ditions under which a control law designed for S can be
contracted into S in terms of complementary matrices.

Denote matrices appearing in the contraction process
as follows. The complementary matrix F'(k) has the
form F(k) = (Fj;(k)), i, = 1,...,4, where F11(k),
Fao(k), Fas(k) and Fus(k) are mi x n1, mg X ng,
me X ng and m3 X ng matrices, resp. Define F(k) =
(F2 f2), where Fi(k) and Fro(k) are mxn
and ma X ng matrices, resp. Similarly, denote the gain
matrix K (k) = (Ki;j(k)), i,5 = 1,2,3, where Kii(k)
are m; X n; matrices, resp. The gain matrix K(k)
for S has the form K(k) = RK (k)U + F(k), where
K (k) = T;'K(K)T, and F(k) = T;*F(k)T,. So far
we do not know the form of the complementary matrix
F(k) and the corresponding contractibility conditions.
The following theorem solves the problem.

Theorem 6 Consider S and S given by (1) and (17)
satisfying S o S, resp. A conirol law a(k) =
—K(k)Z(k) for S is contractible to the control law

u(k) = —K (k)z(k) of S if F(k) = ( ey f;:g,’g) sat-
isfies .

Fia(k)Ma1(k —1) =0,
Fia(k)Nay(k— 1) =0,
Flg(k)Mgz[k - l,p]an(p - l) = 0,
Fia(k)Maz[k ~ 1, p]Na1(p — 1) =0

(21)

for all fized k € [k, k,] and all p € [k, + 1,k - 1].

3.2 Selection of complementary matrices

The above results are general, i.e. they do not depend
on the selection of the matrices V and R. Therefore,
they can be applied to any expansion-contraction pro-
cess. Specific transformation matrices V' and R must
be selected to expand a given problem (1) when con-
sidering the control design. We select the following



expansion transformation matrices:

I, 0 © Im, 0 0
{0 I, 0 | 0o 1. 0

V=1 o Lo > B=1 o Imy 0 |- (22)
0 0 In, 0 0 Im,

z9(k) and wus(k) appear in a repeated form in
#(k) = (2T(k), 2L (k), 2T (k), 2T (k))" and (k)
(T (k), ] (k), uT (k),uT (k)T by using (22), resp. The
change of basis results in

I, 0 0 0
0 In, 0 In,
Ta=|orn:o -5}

0 0 Iy, O

In, 0 0 0
~1 _ 0 3L, 3L, o
TA - 0 0 0 Ing : (23)
0 3, -3, 1]

Ty, T ! have an analogous structure. The following

theorems present the structure of the complementary
matrices M(k), N(k), Mn, Mg+(k), Nr«(k) and F(k)
in the initial bases.

Theorem 7 Consider S and 8 given by (1) and (3),

resp. S D S if and only if M(r) has the following
structure:

0 M2 —Mi2 0
— My M2 Mazs  Mos
M(r) =\ 2 (Moot Mmoitss)  Mas g | (7)
0

M2 —Maz O
(24)
and their blocks satisfy
Mz
(M23+M33 ) (p) ( Ma1 Maz+Mas Moy ) (p—1)=0
( Mz-ﬂMss ) (p) ( Maz+Msa ) [p-1,4]
(le M23+Mas M24)(j -1)=0,
(M23+M33) (») < N21 N22+N23 Noag ) r-1)=0,
M,
<M23+M33 ) (p) < Ma2+M3zs ) [p - 1,]]
M,z

(Nm N22+N23 N24)(j -1)=0

(25)
for all fized k € [k, k], all 7 € [k, k —1], all p €
bk, + 1,k — 1] and all 5 € [k, + 1,p — 1]. The matriz

N(r) has the same structure as M(r).

Theorem 8 Consider S and S given by (1) and (3),
resp. (S,J) D (S,J) if the matrices M, Mo-(k),
Ng-(k) have the following structure: — *:

0 My, = Mm,, 0
M, Mﬂn —M"23"Mn23"M“33 Mmyg My,
= T
n ~Mpm,, Mi,, Mngy —Mmy, |’
0 My, "Mgza 0
0 M‘i;z ~Mos, 0
M Moz, Moz, Moy, —Mos, Moy, Moy, (k)
=4 a7 Mo
Mo, M?Ea Mas, ~Moy, ’
0 . -MZ,
MQZ MQ24 (4]
o Ney, ~Ney, O
Ng- Nigy ~Nago~Nigy Nagy Moy Neay |
—Nﬂfz N";a NR§3 NR§4 !
0 N« ~Ngg, O
and either -
My Mz Ma M
o - e e ) o)
0 0 0
13 Ni2 -Ni2 0
21 N2z N2z Ny
N(p) —N21 —(N22+N23+Naz) Naz —Nay (P)
0 N2 —Na2 O
OT .
0 My —Myz 0
— | 0 Mz —M22 O
b) M(p) = 0 My _My 0 (p),
0 Myz —My2 O
0 N2 —Nj2 O
— {0 Nz —N22 0
Np) = 0 Nsz —Nsz 0
0 Na2 —N42 0

hold for all fired k € [ky, k,) and all p € [k, + 1,k — 1].

Theorem 9 Consider S and S given by (1) and

(3) satisfying S o s, _resp. A control law
a(k) = —K(k)Z(k) for S is contractible to the
control law u(k) = -K(k)x(k) of S if F(k) =
LB g
~Foy ~(Fa+Fps+Fss) Fo ~Fos | (K) and satisfies
0 Faz —Fs2 O

Faz

(FZSF-FFM) (k)(Nzx N22+Nas Nas ) (k- 1) =0,
( anizp:ss ) (k) < Mz2+Maa ) [k -1, p]
Faz ’

F
(Fzs‘:-z;‘“aa) (k) <M21 Maz+ M2z Ma2g ) (k‘ -1)=0,

(26)
M2y Maz+Mas Mas ) (p — 1) =0,

(
(F;f—ll'zFaa) (k)(M22+M33) - 1,p]

Fy2
(Nn N22+4Nas Nu)(p -1)=0

for all fized k € [k,, k,] and all p € [k, + 1,k —1].

4 Example

Consider the system S defined by the matrices A(k),
AA(k), B(k) and AB(k) given in (16). For in-
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stance, suppose that the complementary matrices
M(k) and N(k) have the structure given in the
case a) of Theorem 8. Consider M(k) satisfy-
ing the following relations: Moai(k) = Axn(k) +
AAs (k), Maa(k) = %Azz(k) + -;-AA22(k), Mas(k) =
- % Azz(k)—% A Az (k), Mag(k) = — Aga(lg)—AAQ:gﬂ(k).
Then, by using (9), the expanded matrix A(k)+AA(k)
has the form:

An+AAn 3 (Az+AAn) E 3 (A124DA12) A13+AA
2An+hAn) Am+dAzm 0 0
0 0 n: A224+0Az2 2(Az23+AA2)
An+08A3z1 3 (Aaz+AAsg) 5 1 (As2+AA32) Asz+AAas

Observe that the choice of the complementary matrix
M (k) can eliminate some elements of A(k) + AA(k) in
the expanded space to get more zero blocks in the inter-
connected subsystems when considering the decentral-
ized control design. M (k) offers variety of possibilities
to do this. Similar observation holds for the comple-
mentary matrix N (k). It is possible to eliminate some
submatrices B;j(k) and AB;ij(k), i,5 = 1,2,3, of the
matrix B(k) + AB(k) in the expanded space by using
N(k). In this case, N(k) offers more flexibility than
M (k) because its structure is less restrictive.

5 Conclusion

In this paper, we have presented the expansion-
contraction relations for a class of uncertain, nominally
linear, time-varying, discrete-time systems associated
with quadratic cost functions. These relations enable
to design overlapping robust decentralized state feed-
back controllers by using guaranteed cost control ap-
proach. The solution is based on generalized selection
of complementary matrices. A procedure has been pro-
posed to select the complementary matrices in a con-
structive way.
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