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Abstract. The numerical simulation of Friction Stir Welding processes involves the
coupling of a solid mechanics approach under large strains and large strain rates and heat
transfer. The eulerian formalism leads to specially efficient finite element simulations of
the matter flow under steady conditions. But with such a formulation, the calculation of
the consequences induced by the stirring on the material (stirred state, microstructure,
etc.) requires the coupling of advection equations for integrating the associated state
variables. In this paper, a moving mesh strategy is proposed for the numerical simulation
of Friction Stir Welding and material consequences, for complex pin’s geometries. The
numerical processing is detailed and the efficiency of the proposed method is discussed on
a Friction Stir Welding simulation of 7075 series aluminum alloy.

1 Introduction

Numerical simulation of friction stir welding process is of growing interest in industry
due to its ability to give an assembling solution in situations where all others conventional
welding processes fail. This simulation needs to couple a solid mechanics approach under
large strains and large strain rates with heat transfer so as to account for the temperature
raise coming from the dissipated viscoplastic power and the friction between the pin and
the matter. Several finite element formulations have been proposed to simulate the matter
flow during the process. With a lagrangian formalism, an explicit step by step analysis is
performed to follow the rotation of the pin. If such simulations give useful informations
for the stage corresponding to the penetration of the pin into the material, it leads to very
time consuming simulations to get the material flow under steady conditions. In addition,
as the mesh follows the matter flow, the large distortions of the latter leads to unacceptable
element distortions and the local modeling of thermal and mechanical effects requires very
fine meshes in the vicinity of the stirring zone leading to significant size problems. This can
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be avoided by means of a re-meshing procedure refining discretization only in the vicinity
of the welding zone but this again increases the computing time. The Arbitrary Lagrangian
Eulerian approach (ALE) can be used to obtain realistic computation times [1, 2, 3]. This
consists in introducing a relative velocity between the mesh and the base material in
order to decrease the distortions of the mesh. An alternative approach consists in using
meshless techniques such as the Smoothed-Particle Hydrodynamics (SPH) [4, 5] or the
Moving Particle Semi-implicit (MPS) method [6]. Anyway, as transient simulations must
be performed, these approaches are complicated to implement and very time consuming
[1, 7].

As most of welding processes, the Friction Stir Welding process involves a small size
welding zone compared to that of the studied structure. It is very often assumed that a
steady state is reached when the welded structure displays a translational geometry on
a long distance. Therefore, the thermo-mechanical fields during the steady phase of the
process can be calculated using a steady analysis with a reference frame linked to the
welding velocity in an Eulerian formalism [8, 9, 10, 11], thus significantly reducing the
computational efforts by avoiding the transient analysis. But it is obvious that such a
steady state can only exist with axisymmetric tools.

For non-axisymmetric tools, a periodic state can be assumed, whose period depends
on the tool’s geometry. In this case, the finite element simulation of the periodic phase of
the process can be achieved within an Eulerian formalism coupled with a simple moving
mesh technique as suggested by Feulvarch et al. [12]. The mesh is composed of 2 parts :
a first one which is fixed around the stirring zone and a second one which includes the
base material near the tool and moves with a rotational solid motion corresponding to
the tool’s rotational velocity. Therefore, there are no mesh distortions. Moreover, the
Eulerian formalism leads to satisfactory computing times which constitute a real numerical
challenge [13].

The main difficulty induced by the Eulerian formalism is that the history of the material
is not known a priori. Indeed, the mesh does not follow the material. Thus, the history of
the material must be integrated for knowing the state of the base material at any point
of the workpiece in terms of level of stirred state or other physical quantities such as
those linked to the microstructure. These quantities are not just interesting in the post-
processing of a thermomechanical computation but also during the thermomechanical
simulation itself because the material behavior may depend on them. To overcome this
difficulty, we propose in this paper, to couple the thermomechanical problem with an
advection equation. Unfortunately, it will be shown that the moving mesh technique
initially proposed by Feulvarch et al. does not properly handle the advection equation for
numerical considerations. A variant of this approach is thus proposed so as to treat the
advection problem. At last, the capacity of the method proposed is discussed in the case
of the friction stir welding simulation of 7075 series aluminum alloy.
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2 Physical model

2.1 Material flow

The material flow is governed by the momentum balance equation where inertial effects
are neglected. For the momentum equation, it is possible to adopt Stokes assumption
by considering that viscous stresses are predominant [14]. Within this framework, the
momentum equation is given by :

div(σ) = 0 (1)

where σ is the Cauchy stress tensor.
The mechanical behavior law must be able to represent both the pasty behavior in the

vicinity of the tool and the plastic behavior with infinitesimal distortions on the edges of
the iron sheets. Within the Eulerian formalism, the material is modeled as a temperature
dependent non Newtonian fluid through the following relation :

S = 2µD (2)

where S is the deviatoric stress tensor, µ is the dynamic viscosity and D is the strain rate
tensor.

Viscosity can be defined in different ways. The simplest approach consists in assu-
ming that stresses only depend on the strain rate, and not on the strain itself, through
the Norton-Hoff law. It involves the consistency K of the base material as well as the
sensitivity m to the strain rate, both parameters being temperature dependent :

µ = K (
√
3Deq)

m−1 (3)

where Deq =
√

2/3D : D represents the equivalent strain rate.
Modeling the tool-material mechanical contact is certainly one of the most complex

aspects. The thickness of the boundary layer is estimated to be 1mm maximum around the
tool. Various models can be used to treat this boundary layer trough a friction coefficient,
such as Norton’s model, for instance, which is very similar to Norton-Hoff behavior law
[1] :

τ = β K‖vtool − v‖q−1 (vtool − v) (4)

where β is a coefficient related to the nature of the interface and q is the sensitivity of
the tangent stress τ at the sliding velocity vtool − v. vtool and v correspond respectively
to the local velocity of the tool and the material outside the boundary layer.

2.2 Heat transfer

Friction Stir Welding involves no external heat source. Dissipation due to stirring of
the material and its friction on the tool are sufficient to cause temperature rise in the
macroscopic scaling thus allowing welding in the solid state. Heat transfer is governed by
the heat equation :

Q+ div(λ gradT ) = ρC
∂T

∂t
+ ρC vcv gradT (5)
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where Q denotes the volumetric source term ; λ denotes the thermal conductivity ; ρ is
the volumetric density ; C is the specific heat ; T is the temperature ; vcv is the convective
velocity corresponding to the Eulerian formalism.

The partial derivative problem governing thermomechanical coupling consists in jux-
taposing the partial derivative problem related to heat diffusion with the problem related
to mechanical phenomena. Both problems are coupled by :

– the mechanical power dissipated, involved as an internal source term in the heat
equation,

– the influence of the material flow velocity on the thermal convection term,
– the temperature dependence of the mechanical behavior.

The volumetric source term Q involved in the heat equation corresponds to the mechanical
power dissipated per unit volume. It can be expressed from the stress and the strain rate
as follows :

Q = αS : D (6)

where α is the Taylor-Quinney coefficient ranging from 0.9 to 1 corresponding to the part
of the mechanical power dissipated as heat.

With regard to heat transfer, the heat flux received by the welded sheets from the
ambient air is modeled from a heat exchange coefficient Hext. Likewise, modelling the
thermal contact between the sheets and the welding support is performed by means of an
exchange coefficient Hcontact. With regard to the tool-material interface, the heat dissipa-
ted resulting from the friction of the matter on the tool is given by :

qinterface = α τ (vtool − v) (7)

α has been defined in (6) and is also taken into account in this expression as the mechanical
power does not entirely dissipate as heat in the boundary layer. A part αmaterial of the
heat dissipated is received by the base material and the other part is absorbed by the
tool. As the thermo-mechanical coupling involved by Friction Stir Welding is very strong,
the thermal and mechanical analyses must be performed simultaneously.

2.3 Integration of the material’s history

The simulation of the mechanical properties after welding requires to know the history
of the material. Different approaches can be used to integrate the history of the mate-
rial in an Eulerian formalism. The first one consists in integrating the physical quantities
along the trajectories corresponding to the stream lines in a stationnary configuration
[10, 15]. This is not easy to do in 3D. An alternative approach consists in using an advec-
tion equation. This technique does not require any integration of the physical quantities
along the trajectories passing through each integration point of the elements of the finite
element mesh. Let’s assume that the physical quantity observed is governed by a differen-
tial equation of the following type (phase proportions, fraction of hardened precipitates,

4

1277



J.C. ROUX, E. FEULVARCH AND J.M. BERGHEAU

equivalent strain,...) :
du

dt
= F

(

u, T,
dT

dt
,D, . . .

)

(8)

In the context of the Eulerian formalism, this leads to

∂u

∂t
+ vcv grad u = F

(

u, T,
dT

dt
,D, ...

)

(9)

This expression constitutes the advection equation. The solution of this equation gives the
distribution of u in space at each time step without needing to compute the trajectories
of the material during the welding step and the rotation of the tool. In this paper, we
propose to apply this formulation to compute the equivalent strain εeq. The interest of
integrating the equivalent strain is that it can allow access to the stirred state of the
material after welding and therefore the state of restoration for hardened alloys.

3 Finite element modeling

3.1 Discretization

To model the incompressible non Newtonian flow, finite element modeling faces a nu-
merical difficulty. The discretization used must be chosen in a sensible way to avoid locking
phenomena leading to an unrealistic solution. From a mathematical point of view, this
can be explained by the fact that the velocity field must be sufficiently rich to satisfy
both strain balance and incompressibility. In this work, the set of equations is solved
using a tetrahedral element P1+/P1 detailed in [16], with which it is very easy to create a
mesh for tools with complex geometries. This element is known to be very efficient in the
context of large strain and strain rates. For this tetrahedral element, the discrete fields of
pressure, temperature and equivalent strain are linear and continuous :

ph(x) =
N
∑

i=1

phi Ni(x) ; T h(x) =
N
∑

i=1

T h
i Ni(x) ; εheq(x) =

N
∑

i=1

εheqi Ni(x) (10)

In these expressions, N denotes the number of nodes ; phi , T
h
i and εheqi the values of the

functions ph, T h and εheq at node i and Ni(x) the shape function associated to this node.
The approximation of the velocity is as follows :

vH(x) =
N
∑

i=1

vh
i Ni(x) +

M
∑

j=1

vb
j N

b
j (x) (11)

whereM is the number of elements, vh
i the value of the velocity at node i. vb

j is the velocity
value at each added internal node and N b

j (x) denotes the associated shape function which
equal to zero on the element boundaries. An implicit (backward) Euler algorithm tole-
rating relatively large time steps is adopted for time integration of the temperature and
the equivalent strain [17] : This discretization has the advantage of being unconditionally
stable.
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3.2 Weak formulation

To apply the finite element method, the weak integral formulation of the coupled
problem is written in the discrete form as follows :

Find functions T h, vH , ph, εheq such as for all functions φh, wH , qh, ψh





∫

Ω

ρC
∂T

∂t

h

φh dV +

∫

Ω

ρC vcv .gradT h (φh + ηh) dV

+

∫

Ω

λgradT h .gradφh dV −
∫

Ω

Qφh dV −
∫

∂Ωq

q φh dS = 0

∫

Ω

2µD(vH) : D(wH) dV −
∫

Ω

ph div(wH) dV −
∫

∂Ωτ

wH τ dS = 0

∫

Ω

qh div(vH) dV = 0

∫

Ω

∂εeq
∂t

h

ψh dV +

∫

Ω

(
vcv .grad εheq

)
(ψh + ξh) dV −

∫

Ω

Deq ψ
h dV = 0

(12)

where φh, wH , qh and ψh are discrete test fields builded respectively in the same way as
T h, vH , ph and εheq. To deal with the advection term, ηh and ξh are discrete test fields
defined from the SU method (Streamline-Upwind).

3.3 Moving mesh strategy

As explained in the previous sections, the thermo-mechanical phenomena are strongly
coupled. In order to solve this problem, a staggered approach could be used where the
thermal problem and the mechanical problem are treated independently. But the impor-
tance of the couplings incites to prefer an approach where both problems are treated
simultaneously to obtain the spatial distributions of temperature and velocity. Then, the
equivalent strain can be computed using the advection equation. If the material beha-
vior depends on the equivalent strain, a fully coupled approach could be used but this
is not the case for the example proposed in the last part of this paper. Therefore, the
thermomechanical problem does not depend on the results of the advection problem. So,
the calculation of the equivalent strain is performed in a second step using the equivalent
strain rate resulting from the thermomechanical computation.

For complex tool geometries, the computation can be carried out using the moving
mesh strategy proposed by Feulvarch et al. [12]. This approach is based on a partition of
the mesh in 2 parts as shown in figure 1 : a first one called Ω1 which is fixed around the
stirring zone and a second one called Ω2 which includes the base material in contact with
the tool. The second part Ω2 is circular with a radius RΩ2 and moves with a rotational solid
motion at a rotational velocity equal to the one of the tool. Heat transfer is computed on
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Figure 1: Partition of the mesh for the moving mesh technique of Feulvarch et al. [12].

the whole mesh, while the mechanical stirring is modeled only in the second moving part,
to reduce the size of the numerical problem. The computations are assumed to converge
on the periodic state without special consideration on the initial conditions. Considering
the kinematics of the parts of the mesh, we get :

{
vcv = −vwelding in Ω1

vcv = v − ω ∧ r in Ω2

where vwelding denotes the advance speed of the tool, ω the vector of rotation speed of
the tool and r is the vector giving the position relative to the axis of rotation of the tool
assumed perpendicular to the upper faces of sheets. Unfortunately, this approach can lead
to velocities of mesh much bigger than the velocity of the material at the periphery of the
movable part Ω2 :

||ω ∧ r|| >> ||v|| ⇒ vcv ≈ −ω ∧ r in Ω2

The material velocity then becomes negligible compared to that of the mesh. In this
case, the convection associated to the material flow which plays a very important role
in Eulerian formalism is not properly computed. This numerical phenomenon was not
visible on the thermomechanical results shown in [12] because the convection term is not
dominant compared to the diffusion term in heat transfer (low Peclet number). Moreover,
the authors showed that two different radius of the domain Ω2 (RΩ2 = 12mm and RΩ2 =
15mm) lead to similar thermal results. To avoid this problem for the advection equation,
we propose to reduce the radius of the moving part to decrease the maximum velocity
of the mesh. This is achieved without reducing the size of the subdomain on which the
mechanical stirring is modeled. So, a partition of the mesh in 3 parts as shown in figure
2 for a trigonal pin is now considered :

– a first one Ω1 which is fixed around the stirring area ;
– a second one Ω2a which is fixed and includes a part of the welding zone ;
– a third one Ω2b which rotates and includes the rest of the welding zone very close to
the pin.
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Figure 2: New partition of the mesh.

The part Ω2b shown in figure 2 is circular with a radius as small as possible which
corresponds to the envelop of the pin. With this new partition, we get :







vcv = −vwelding in Ω1

vcv = v in Ω2a

vcv = v − ω ∧ r in Ω2b

From the discretization point of view, the global mesh is built in such a way that it
stays consistent at each angular position of Ω2b during its rotation. Connections between
parts in terms of temperature, velocity, pressure and equivalent strain are carried out with
a penalty technique. With this approach, ||ω∧ r|| stays comparable to ||v|| everywhere in
Ω2b. Therefore, the convection due to material flow is correctly taken into account in the
simulation compared to the convection due to the kinematic of the mesh.

4 Application to FSW of alloy 7075 with a trigonal pin

The new moving mesh technique is applied to the simulation of FSW of 7075 aluminum
sheets. This application is similar to the one proposed in [12]. The tool has a trigonal pin
and a flat shoulder with a radius equal to 10mm. The tool axis is perpendicular to the
upper faces of the sheets to be welded. In this example, the mesh is composed of 41 648
nodes and 231 206 elements, and it has been shown in [12] that an external radius of
12mm for Ω2a is sufficient to accurately compute thermomechanical results. All physical
data are given in appendix.

Figure 3 shows the temperature distribution on the welding plane with a welding
velocity of 5 mm.s−1 and a rotation speed equal to 500 rpm. All results are similar to the
ones already obtained by Feulvarch et al. [12] and the periodic state is also reached after
10 rotations of the pin which corresponds to a computation time lower than 7 hours on a
standard Intel(R) Core(TM)2 duo 2.53GHz PC with 4Go memory. For the proposed new
approach, the maximum velocity of the mesh is located at the maximum radius of Ω2b

which is equal to 3mm. This leads to a maximum value of about ||ω ∧ r|| ≈ 157mm.s−1

comparable to the maximum computed material velocity of about ||v|| ≈ 50mm.s−1. For
the moving mesh technique firstly proposed in [12], the maximum velocity of the mesh for
RΩ2 = 12mm was about ||ω ∧ r|| ≈ 628mm.s−1. This value is bigger by several orders of
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Figure 3: Temperature distributions (◦C) in the welding plane in the tool, the aluminum
sheets and the backing plate.

magnitude than the material velocity equal to 5mm.s−1. The convection in the orthoradial
direction linked to the motion of the mesh is then predominant compared to convection due
to the material flow. This leads to an unrealistic and oscillating distribution of equivalent
strains as shown in figure 4(a) obtained by solving the advection problem. Indeed, for this
result obtained at time 0.23s, the equivalent strain varies between −8000% and 15000%
while the equivalent strain must be positive. Whatever the simulation time, the equivalent
strain is concentrated around the pin while the material convection is supposed to lead
to a comet-shaped distribution. It is obvious that the distribution plotted in figure 4(a)
does not correspond to physical reality. With the method developped, the comet-shaped
distribution of the equivalent strain clearly appears in figure 4(b). One can note that the
equivalent strain is of the same order than the one obtained by Assidi et al. [1].

5 Conclusion

In this article, a coupling between thermomechanical calculation and an advection
equation has been proposed, for integrating the material history in an Eulerian formalism.
It is shown that the moving mesh strategy initially proposed by Feulvarch et al. [12] must
be adapted so as to accurately integrate the advection equation associated to the physical
quantities of interest. It is suggested to decompose now the mesh in 3 parts : a part very
near to the pin which rotates with the pin, a second part around the first one needed
for the mechanical computation and a third part including the rest of the aluminum
sheets needed to model heat transfer. The efficiency of the proposed approach is shown
in an application of Friction Stir Welding of 7075 aluminum sheets with a trigonal pin,
for calculating the equivalent strain in the whole structure giving useful information on
the stirred state of the material. The same approach can now be used to calculate other
useful physical quantities such as those associated with microstructure through adequate
kinetics equations.
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Figure 4: (a) Equivalent strain distribution in Ω2 obtained with the moving mesh tech-
nique proposed in [12] - (b) Equivalent strain distribution in Ω2a and Ω2b obtained with
the new technique.
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Appendix – Material data

In the literature, it is difficult to find data related to consistency K and sensitivity
m (see section 2.1) to the strain rate occurring in Norton-Hoff law expression on the
temperature range of FSW. For alloy 7075, Jin et al. measure the flow stress variation
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by means of compression tests at strain rates ranging from 0.001 s−1 to 2100 s−1 and
temperatures ranging from 23◦ C to 470◦ C [18]. In the example of section 4, consistency
and sensitivity have been determined from these evolutions and are given in table 1. The

T (◦C) 20 200 300 400 470
K (MPam) 630 440 145 83 30
m 0 225.10−4 708.10−4 127.10−3 146.10−3

Table 1: Values of the material consistencyK and its strain rate sensitivitym as functions
of temperature for the Norton-Hoff model.

thermal characteristics are given in tables 2 and 3. The emissivity of the tool and backing
plate is equal to 0.05 and the one of the aluminum alloy is 0.88. In equation (4), β K and q
are taken equal respectively to 5 MPaq and 0.25 for the modeling of the mechanical contact
between the tool and the sheets. Considering the effusivity of the materials in contact,
the sheets are assumed to receive about 60% of the power dissipated by friction at the
interface. For heat exchanges with the welding support, the value of Hcontact depends on
temperature, contact pressure, and on the nature of the materials in contact and many
other parameters such as surface states. That is why literature reveals a very wide range
of values. In this application, Hcontact is considered equal to 1000 Wm−2K−1.

T (◦C) 20 120 220 320 420 470
ρ (kg/m3) 2750 2730 2710 2690 2660 2650
C (J/kg/K) 850 910 960 980 1040 1100
λ (W/m/K) 130 139 146 155 163 170

Table 2: Thermal properties of 7075 aluminum alloy.

T (◦C)
ρ (kg/m3)
C (J/kg/K)
λ (W/m/K)

20 200 400 500
7850 7800 7730 7690
450 550 610 650
68 59 47 41.5

Table 3: Thermal properties of tool and backing plate.
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