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1.1. Introduction to discrete systemsIntroduction to discrete systems

a. Revision of the sampling theorema. Revision of the sampling theorem

Digital signals present great advantages when transmitted and/or
processed:

• higher immunity to noise

• easier to process• easier to process

• multiplexing easiness (multiple digital data streams are combined
i t i l h d di )into one signal over a shared medium ),…

• obvious tendence to the usage of digital controllers
(microcontrollers, PIC, or even Computers)

Control and guidance
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1.1. Introduction to discrete systemsIntroduction to discrete systems

As a consequence:

a. Revision of the sampling theorema. Revision of the sampling theorem

q

There is an latent interest in changing analog signals to digital signals

Analog systems:
-- continuous time 
-- continuous amplitude-- continuous amplitude

Discrete system:
discrete time-- discrete time 

-- quantized amplitude

T k b f dTasks to be performed: 
Discretize in time: “sampling”.
Discretize in amplitude: “quantization”.

Control and guidance
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1.1. Introduction to discrete systemsIntroduction to discrete systems

a. Revision of the sampling theorema. Revision of the sampling theorem

In order to analyze the properties of the discretized signal, we use

the Fourier transform, this transformation is defined on an infinite

continuous interval.

Therefore in order to operate on discrete signals we lead to a digitalTherefore, in order to operate on discrete signals, we lead to a digital

data processing problem.

The signal will be replaced by samples taken at a determined rate.

The objective is to represent the continuous signal and process itThe objective is to represent the continuous signal and process it

without any information loss.
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1.1. Introduction to discrete systemsIntroduction to discrete systems

a. Revision of the sampling theorema. Revision of the sampling theorem

The digital sampling of an analogical signal needs a discretizationThe digital sampling of an analogical signal needs a discretization

both in the temporal domain (time sampling) and in the amplitude

( ti ti )one (quantization).

There are different ways to mathematically describe the temporal

discretization process of a signal that is continuous in time. We will

analyze some of them during these sessions.y g
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1.1. Introduction to discrete systemsIntroduction to discrete systems

a. Revision of the sampling theorema. Revision of the sampling theorem

Th i l li (id l)

Given x(t) a real and continuous signal with limited band,

Theoretical sampling (ideal)

which spectrum X(ω) is null for |ω| > Wmax


  d)()( tj 

 dte)t(x)(X tj

Control and guidance

Slide 7



1.1. Introduction to discrete systemsIntroduction to discrete systems

a. Revision of the sampling theorema. Revision of the sampling theorem

Th i l li (id l)

and we consider the ideal sampling wave with a Ts period:

Theoretical sampling (ideal)







m

sd )mTt()t(s

the product x(t) · sd(t) is a wave formed by Dirac deltas 
whose amplitude is the same as the x(t) samples:p ( ) p




 sssdd )mTt()mT(x)mTt()t(x)t(s)t(x)t(x 
 m

ss
m

sdd )()()()()()()(
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1.1. Introduction to discrete systemsIntroduction to discrete systems

a. Revision of the sampling theorema. Revision of the sampling theorem

Th i l li (id l)

Consequently, its spectrum in the time domain is:

Theoretical sampling (ideal)

s
s

m
ssd T

fwithfmXfX 1)2()(   

sssd T
fwithmffXffX 1)()(  

sm T
The spectrum of the signal xd(t) is the replica of the spectrum of the 
signal x(t) at each multiples of fsignal x(t) at each multiples of fs.
Note the scale factor fs.  
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1.1. Introduction to discrete systemsIntroduction to discrete systems

a. Revision of the sampling theorema. Revision of the sampling theorem

Theoretical sampling (ideal) f




2

f

W = fmax of the 
spectrum

Overlap condition

fs/2 > W  fs > 2W
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1.1. Introduction to discrete systemsIntroduction to discrete systems

a. Revision of the sampling theorema. Revision of the sampling theorem

Th i l li (id l)Theoretical sampling (ideal)

Sampling theorem (Nyquist): every signal with finite 
energy and limited bandwidth can be expressed in a 
unique mode depending on its samples or instant values 
taken in regular intervals Ts , with Ts as:

W21f 

being W the signal maximum frequency

W2
T

f
s

s 

being W the signal maximum frequency

Sinusoidal drawing
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1.1. Introduction to discrete systemsIntroduction to discrete systems

a. Revision of the sampling theorema. Revision of the sampling theorem

Th i l li (id l)Theoretical sampling (ideal)

The minimum sampling frequency: fs = 2 W (Hz) is called:

→ Nyquist frequency

I th t th i l i l d t l f thIn case that the signal is sampled at a lower frequency, the 
sampled signal spectrum will overlap and the original 
message will not be able to be recoveredmessage will not be able to be recovered.
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b. Interpolation formulab. Interpolation formula

1.1. Introduction to discrete systemsIntroduction to discrete systems
pp

Objective: recovery the continuous signal.
By a correct interpolation process, we can mathematically define a 
continuous-time signal x(t) from the discrete samples x[n]
Original message can be recovered using an ideal low-pass filter which 
cut-off frequency will be W:



 


else0

Wfif1
)f(

dx
 else0

x(t) is recovered by the inverse Fourier transform:


  df)f()( ft2j 

 dfe)f(X)t(x ft2j
d

Then, because of the bandwidth limitation:,







W

W

ft2j
d dfe)f(X)t(x
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b. Interpolation formulab. Interpolation formula

1.1. Introduction to discrete systemsIntroduction to discrete systems
pp

Computing: in the freq domain: 

(f)(f)·XX(f)
dxd 

)i ( /T(f)
sinc function: 
sin(πx)/(πx))sinc(t/T(f) sxd



 )sinc(t/T*(t)xx(t)

sin(πx)/(πx)








sd

)sinc(t/T*)nT-(tx[n]·x(t)

)sinc(t/T * (t)xx(t)









 



s

-n
s

nT-t

)sinc(t/T   )nT(tx[n]x(t) 









 

 s

s

-n T
nT-tsinc  · x[n]
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b. Interpolation formulab. Interpolation formula

1.1. Introduction to discrete systemsIntroduction to discrete systems
pp

Finally,








 


s

T
nT-tsinc·x[n]x(t)

 Each sample value multiplied by sinc function scaled so that zero-








 s-n T

[ ]( )

crossings of sinc occur at sampling instants and that sinc function's central 
point is shifted to the time of that sample, nT. 

 All of these shifted and scaled functions added together to recover the 
i i l i loriginal signal. 

 The scaled and time shifted sinc functions are continuous making the The scaled and time-shifted sinc functions are continuous making the 
sum of these also continuous, so the result of this operation is a 
continuous signal
Control and guidance
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b. Interpolation formulab. Interpolation formula

1.1. Introduction to discrete systemsIntroduction to discrete systems
pp

normalized sinc function: sin(πx) / (πx) ... showing the central peak at x=0, 
and zero-crossings at the other integer values of x.

Control and guidance
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1.1. Introduction to discrete systemsIntroduction to discrete systems

b. Interpolation formulab. Interpolation formula

Problems:

• all the samples are needed in order to re-obtain x(t): in practiceall the samples are needed in order to re obtain x(t): in practice 

only a finite number of samples will be considered and are 

available → truncation erroravailable → truncation error. 

• generally, real signals spectrum tends to 0 for f>Wmax but they 

are not exactly zeroare not exactly zero.

• ideal sampling → physically unfeasible (use a sampling wave)

f (f f• non-ideal filter is used (filters with inifinite derivative are not 

feasible).

Control and guidance
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b. Interpolation formulab. Interpolation formula

1.1. Introduction to discrete systemsIntroduction to discrete systems
pp

Ideal reconstruction process not possible to be implemented.

(since it implies that each sample contributes to the reconstructed 

signal at almost all time points, requiring summing an infinite number 

of terms)

 approximation of the sinc functions, finite in length (that means 

that they cannot be finite in frequency). This leads to the 

interpolation error. p

 practical digital-to-analog converters produce neither scaled 

delayed sinc functions but a sequence of scaled and delayeddelayed sinc functions, but a sequence of scaled and delayed 

rectangular pulses: zero-order hold filter.

Control and guidance

Slide 18



1.1. Introduction to discrete systemsIntroduction to discrete systems

c. Practical samplingc. Practical sampling

The real sampling systems differ from the theoretical ones in:

• the sampling wave is composed by a pulse series where 
each pulse has a non zero durationeach pulse has a non-zero duration.

• the affected signals are not strictly bandwidth limited andthe affected signals are not strictly bandwidth limited and 
they can not be, because they are time-limited signals (not 
infinite).)

Control and guidance
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1.1. Introduction to discrete systemsIntroduction to discrete systems

c. Practical samplingc. Practical sampling

Indeed, the sampling wave generally responds to a 
f ti likfunction like:

  s )mTt(p)t(s

composed by rectangular pulses with amplitude p and 
the condition:

m

the condition:

sTwith,
2

t,0)t(p 




in order to avoid overlap between basic pulses.

Drawing
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c. Practical samplingc. Practical sampling
1.1. Introduction to discrete systemsIntroduction to discrete systems

There exists mainly 2 types of practical sampling:

The instantaneous sampling, Sample & Hold in which the p g, p
following signal is formed:  

m
ssp )mTt(p)mT(x)t(x

i

which result is a pulse series, where every pulse has a constant 
amplitude taken as the instantaneous value of x(mTs).

The natural sampling, that is like:   sp )mTt(p)t(x)t(x
n

in which each pulse varies with x(t) in the existence interval

m

→ In both cases the sampling theorem remains valid even if the 
ideal sampling wave is not used  fs>2W
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c. Practical samplingc. Practical sampling
1.1. Introduction to discrete systemsIntroduction to discrete systems

In the instantaneous sampling case we can write: 

Since the inner expression of the sum is the one 
obtained for the ideal sampling case, it can be written:

spectrum affected by P(f) value

the effect can be reduced shortening the duration of the sampling
lpulse

Advantages: - easy to do with “Sample & Hold” circuitsAdvantages: easy to do with Sample & Hold circuits
- immune to noise
- pulse form is not important

Control and guidance
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c. Practical samplingc. Practical sampling

1.1. Introduction to discrete systemsIntroduction to discrete systems
p gp g

In the natural sampling case the transform is: 

whose transform is:

Identical result as the one obtained with an ideal sampling
f d b Di d lt i b t ff t d b

Drawing

wave formed by a Dirac delta series, but affected by a
constant coefficient or scale factor P(n fs).
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d. Aliasingd. Aliasing

1.1. Introduction to discrete systemsIntroduction to discrete systems
gg

Hypothetical spectrum of a properly sampled bandlimited signal (blue) 

and images (green) that do not overlap A low pass filter can remove theand images (green) that do not overlap. A low-pass filter can remove the 

images and leave the original spectrum, thus recovering the original 

i l f h lsignal from the samples

For practical purposes, there can not be a strict limitation of the 

analyzed bandwidth, because real signals have a finite length

Control and guidance

Slide 24



d. Aliasingd. Aliasing

1.1. Introduction to discrete systemsIntroduction to discrete systems
gg

Hypothetical spectrum of insufficiently sampled bandlimited signal 

(blue) X(f) where the images (green) overlap This type of spectrum(blue), X(f), where the images (green) overlap. This type of spectrum 

can be considered as bandwidth limited one if the content that exceeds 

h i l ( ) i ll b l i ifithe interval (-B, B) is small, or barely significant. 

When this type of signal is sampled, an overlap is inevitably created in 

the spectrum: 

Control and guidance
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d. Aliasingd. Aliasing

1.1. Introduction to discrete systemsIntroduction to discrete systems
gg

In the process of the signal reconstruction, the frequencies of the

spectrum centered in f lower than f –B that were originally out of the Bspectrum centered in fs, lower than fs B, that were originally out of the B

bandwidth limited now appear inside.

This phenomenon is named aliasingThis phenomenon is named aliasing. 
The only way to avoid this effect is to properly increase the sampling 
frequency so that the components out of the taken bandwidth becomefrequency so that the components out of the taken bandwidth become 
very small and their influence is hardly perceptible.
(in practice about 5 to 10 times f1)

Control and guidance
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d. Aliasingd. Aliasing

1.1. Introduction to discrete systemsIntroduction to discrete systems
gg

Properly sampled image of brick wallSubsampled image of brick wall
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e. Digital control diagrame. Digital control diagram

1.1. Introduction to discrete systemsIntroduction to discrete systems
g gg g

• y(t), the signal to be controlled, is sampled through an A/D, analogical-digital 
converter, and compared with the reference value r(nT) stored in a memory 
position of the micro computation system (where the digital controller is 
i l t d)implemented)
• the result of this comparison is the discrete error signal. This is processed by the 
microcomputer in order to generate a discrete control signal u(nT) which ismicrocomputer in order to generate a discrete control signal u(nT) which is 
transformed into an analogical one through a D/A converter.
• operation sequence made every Ts seconds, being Ts the sampling period

Control and guidance
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1.1. Introduction to discrete systemsIntroduction to discrete systems

e. Digital control diagrame. Digital control diagram

Two signal types can be distinguished:g yp g
• continuous or analog signals: defined for every time 
instant (u(t), y(t), p(t)).
• discrete time signals: only defined in the time instants 
t = nTs, being n an integer number and Ts the sampling period 
(r(nT), e(nT), u(nT)).

Control and guidance
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1.1. Introduction to discrete systemsIntroduction to discrete systems

e. Digital control diagrame. Digital control diagram

From the point of view of analysis and design, the following 
diagram is equivalent:

Control and guidance
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1.1. Introduction to discrete systemsIntroduction to discrete systems

e. Digital control diagrame. Digital control diagram

In order to analyze the behavior of this system using the 
mathematical tools that are normally used in analogical systems, we 
notice that:
The Laplace transform is not defined for a signal that is only defined 
at specific time samples
Thus, not all the blocks can be modeled using Laplace transfer 
f ifunctions

we need to model the following part of the digital control diagram:→ we need to model the following part of the digital control diagram:
A/D converter – digital controller - D/A converter

Control and guidance
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1.1. Introduction to discrete systemsIntroduction to discrete systems

e. Digital control diagrame. Digital control diagram

A/D D/A part to be modeled:A/D – D/A part to be modeled:

Control and guidance
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1.1. Introduction to discrete systemsIntroduction to discrete systems

e. Digital control diagrame. Digital control diagram

A/D converter: 
generates an impulse series, each of them being weighted by 
the analogical signal value at the corresponding time t=nTs

→ sampler

Control and guidance
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1.1. Introduction to discrete systemsIntroduction to discrete systems

e. Digital control diagrame. Digital control diagram

D/A converter: 
signal re-constructor converts the impulse series into 
a stepped signal

Control and guidance
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1.1. Introduction to discrete systemsIntroduction to discrete systems

e. Digital control diagrame. Digital control diagram

Digital Controller:

It processes the entry signal providing every Ts seconds and 
it generates a corrected impulse to act on the system.

→ need of a tool to process discrete signals: z-transform

Control and guidance
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1.1. Introduction to discrete systemsIntroduction to discrete systems

f. Digital and analog controllersf. Digital and analog controllers

• Digital Controllers only operate on numbers, they can handle non-

linear control equations that involve complicated calculations or 

logical operations.

• Larger variety of control laws can be used with Digital Controllers.g y g

• Digital Controllers can execute complex calculations at constant 

d t hi h daccuracy and at high speed.

• Due to the availability of cheap μ-computers, Digital Controllers are 

used in the vast majority of control systems.

Control and guidance
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1.1. Introduction to discrete systemsIntroduction to discrete systems

f. Digital and analog controllersf. Digital and analog controllers

• Analog controllers must represent the variables in an equation 

using continuous physical amountsusing continuous physical amounts.

• Analog controllers must be built with physical components such 

as transistors, capacitors, inductors, resistances...

• The cost of the Analog Controller increases quickly as the g q y

calculation complexity increases, if a constant accuracy has to 

be maintainedbe maintained.

Control and guidance
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1.1. Introduction to discrete systemsIntroduction to discrete systems

f. Digital and analog controllersf. Digital and analog controllers

Additional advantages of the Digital Controllers:

• Digital components (A/D converters, D/A, etc..) are robust, 

highly trustworthy and usually compact and light.

• Digital systems are scalable• Digital systems are scalable.

• High sensitivity and cheaper.

• Less sensitive to noise signals. 

Flexible allow programming changes• Flexible, allow programming changes.

• Less prone to environmental conditions.

Control and guidance
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2- Z-transform2- Z-transform2- Z-transform2- Z-transform
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2. Z2. Z--transformtransform

We consider a sampled signal (ideal):

)kTt()k(f)T2t()2(f)T1t()1(f)t()0(f)t(f  )kTt()k(f...)T2t()2(f)T1t()1(f)t()0(f)t(f 

Using:
th L l t f δ(t) 1• the Laplace transform δ(t)→1

• the temporal delay property of the Laplace transform:

TL )()( · sFenTtf snTL  

 


  kTsTs e)k(f...e)1(f)0(f)t(fL)s(F







0k

kTse)k(f
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Gi th h f i bl

2. Z2. Z--transformtransform
TsezGiven the change of variable : ez 

The z transform is obtained for a time function x(t) or x(kT) 
(T sampling period) :

    k1 z)kT(f...z)T(f)0(f)t(fZ)z(F  








kz)kT(f

z)kT(f...z)T(f)0(f)t(fZ)z(F

and for a number sequence:


0k

    k1 z)k(f...z)1(f)0(f)k(fZ)z(F

q







0k

kz)k(f
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2. Z transform2. Z transform

Z transform examples:Z transform examples:

Z-transforms of time functions:
• step
• ramp

Sequence Z-transforms:
• 0 0 1 1 1• 0, 0, 1, 1, 1…
• 0, 2, 5, 1 and then 0
• aka

Exercices

Control and guidance
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Usual transforms:

2. Z transform2. Z transform

zFsFtf )()()(Usual transforms:

using: zz
z

s
tu

zFsFtf

 1
1

1
1)(

)()()(

1using:

zeez
z

as
e

zzs

aTaT
at











1
11

11

1


 kz)kT(f)z(F

 z
Tz

s
t

zeezas





1
1

1

22





0k

z)kT(f)z(F

 

aTzz
aTz

as
aat

zs

 1)cos(2
)sin()sin(

1

222

 
aTzz
aTzz
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1)cos(2
)cos()cos(

1)cos(2

222
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aTzzas
k



 1)cos(2
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2. Z transform2. Z transform

Properties and theoremsProperties and theorems

Linearity:

Properties and theoremsProperties and theorems

)z(Y)z(X)]t(y)t(x[Z 

Multiplication by ak:

z)k(xa)]k(xa[Z kkk


 

  )a(Xa)k( 1k1

0k








   )za(Xza)k(x 1

0k

1
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2. Z transform2. Z transform

Real translation theorem:Real translation theorem:

)z(Xz)]nTt(x[Z n )()]([
it delays the x(t) function of a time nT









 




1n
kn z)kT(x)z(Xz)]nTt(x[Z 






0k

it advances the function x(t) of a time nT

Complex translation theorem:

Example
)ze(X)]t(xe[Z aTat 
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2. Z transform2. Z transform

)(Xli)0(Initial value theorem: )z(Xlim)0(x
z 



Final value theorem:

Hypothesis: all the poles of X(z) are inside the unitary circle, with 
the only exception of one pole on z=1 (stability condition)the only exception of one pole on z=1 (stability condition)

  )z(Xz1lim)k(xlim 1

1k

   
1zk 
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2. Z transform2. Z transform

Inverse zInverse z--transform:transform:

Equivalent to the inverse Laplace transform.

Be careful: only the discrete time sequence at the sampling 
times is obtained from the inverse z transform (not thetimes is obtained from the inverse z-transform (not the 
continuous signal).

Control and guidance
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2. Z transform2. Z transform

Inverse z-transform: 1 )kT(f)z(F)z(F Inverse z transform:

After the decomposition 1 )kT(u
1

1
1

z
)kT(f)z(F)z(F





p
in simple fractions, it is
identified in order to get

akT
1aTaT

1

e
ze1

1
ez
z

z11z







the inverse z-transform 
(cf. Laplace)  2

kT
1z

Tz
ze1ez





 

2 )akTsin(
1)aTcos(z2z

)aTsin(z
1z


 

2 )akTcos(
1)aTcos(z2z

)aTcos(zz
1)aTcos(z2z






ka
az

z
1)aTcos(z2z





Examples
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3 Th Z t f f ti3 Th Z t f f ti
a Convolution suma Convolution sum

3. The Z-transfer function3. The Z-transfer function
a. Convolution suma. Convolution sum

G(s)
x(t) x*(t) y(t)

δT

δT

y*(t)

• sampled income signal
• if there is another sampler at the exit, it is synchronized 

T

with the entry sampler = both have the same sampling 
period T

• We need to obtain the relation between x*(t) and y*(t) (i.e. 
the relation between X(z) and Y(z).

Control and guidance
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a Convolution suma Convolution sum

3. The Z3. The Z--transfer functiontransfer function

a. Convolution suma. Convolution sum




 
0k0k

)kTt()kT(x)kTt()t(x)t(x
 0k0k







0

* )(*)()()(*)()(
k

ss tgkTtkTxtxtgty 





0

)()(
k

kTtgkTx

Given g(t): system weight function (response function to δ(t) entry):
Tt0)0(x)t(g 




0k

T3tT2
T2tT

)T2(x)T2t(g)T(x)Tt(g)0(x)t(g
)T(x)Tt(g)0(x)t(g

)()(g

)t(y 





 




T)1k(tkT
...

)kT(x)kTt(g...)T(x)Tt(g)0(x)t(g
............

)()(g)()(g)()(g)(y
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3. The Z3. The Z--transfer functiontransfer function

a. Convolution suma. Convolution sum

response y(t) to the entry x*(t) is the sum of the individual 
impulse responses

Since g(t)=0 for t<0 is equivalent to g(t-kT)=0 for t<kT, these 
equations can be added up:equations can be added up:

T)1k(0f)kT()kT()T()T()0()()(

T)1k(t0for)nT(x)nTt(g

T)1k(t0for)kT(x)kTt(g...)T(x)Tt(g)0(x)t(g)t(y
k





 T)1k(t0for)nT(x)nTt(g
0n
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3. The Z3. The Z--transfer functiontransfer function

a. Convolution suma. Convolution sum

Value of y(t) at the sampling moment t=kT:

k )nT(x)nTkT(g
)kT(

k

0n







)nT(g)nTkT(x
)kT(y

k
0n













)kT(g)kT(x)kT(y

)nT(g)nTkT(x
0n







)kT(g)kT(x)kT(y 

Control and guidance

Slide 52



3. The Z3. The Z--transfer functiontransfer function

It links the exit z-transform at the sampling times to the 
b. Zb. Z--TFTF

corresponding sampled entry:

  )z(Yz)kT(y)kT(yZ k 


 

k)()k(

)z(Yz)kT(y)kT(yZ

k

0k



 







nkmz)nT(x)nTkT(g k

0k 0n



 



 


z)nT(x)mT(g )nm(

0m 0n

 









)z(X)z(Gz)nT(xz)mT(g n

0m 0n

m  
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3. The Z3. The Z--transfer functiontransfer function

b. Zb. Z--TFTF

Relates the pulse exit Y(z) to the pulse entry X(z):

)z(Y Pulse transfer function of the

)z(X
)z(Y)z(G 

Pulse transfer function of the 

system in discrete time
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3. The Z3. The Z--transfer functiontransfer function

c. Rules to obtain the Zc. Rules to obtain the Z--transfer functiontransfer function

Be careful with the difference between:

G(s)
x(t)

δ

x*(t)

y*(t)

y(t)

X(z)δT

δT

y*(t)X(z)

Y(z)

G(s)
x(t) y(t)

Y(s)X(s)

Examples
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Remember: the idea is to model the following digital control 
system:

4- Digital control tools4- Digital control tools
Control and guidance
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4. Digital control tools4. Digital control tools

A/D Converter: 
It generates an impulse series, each of them weighted by the 
value of the analogical signal at the corresponding time t=nTs

Control and guidance
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4. Digital control tools4. Digital control tools

Digital controller:Digital controller:

It processes, through a recursive algorithm, the weights of the 
entry impulses and it generates (every Ts seconds) an adjusted 
impulse with the result of the recursive equation.

→ use of a tool to process discrete signals: Z-transform

Control and guidance
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D/A converter: Zero Order Holder (ZOH)

4. Digital control tools4. Digital control tools

D/A converter: Zero Order Holder (ZOH)

signal re-builder which transforms the impulse series into asignal re builder which transforms the impulse series into a 
stepped signal (analog signal with values for every time instant)

Control and guidance
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Zero Order Holder (ZOH)Zero Order Holder (ZOH)

4. Digital control tools4. Digital control tools

Zero Order Holder (ZOH)Zero Order Holder (ZOH)

Holder smoothes the sampled signal to produce a constant 
i l f th l t l d l t th t il blsignal from the last sampled value to the next available 

sample, i.e.: kTxtkTxhold  )()(
Ttfor

hold

0
)()(
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Zero Order Holder (ZOH)Zero Order Holder (ZOH)

4. Digital control tools4. Digital control tools

Calculation of its transfer function:

Zero Order Holder (ZOH)Zero Order Holder (ZOH)

Hypothesis: x(t)=0 for t<0

    ...)2()()()()()0()(hold TtuTtuTxTtutuxtx    
   )1()()(

)()()()()()()(hold

TktukTtukTx

  


 )1()()()( TktukTtukTxtx   



0

)1()()()(
k

hold TktukTtukTxtx
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Zero Order Holder (ZOH)Zero Order Holder (ZOH)

4. Digital control tools4. Digital control tools

With:    
s

e)kTt(uLand
s
1)t(uL

kTs


Zero Order Holder (ZOH)Zero Order Holder (ZOH)

ss

  
 











)1(

)()(
TskkTs

hold
eekTxtxL 














0

)(1

)()(

kTs
Ts

k
hold

kTe

ss





0

)(1
k

kTsekTx
s
e

TUsing: z=eTs, the x(t) z-transform is recognized

1 e Ts

)(1)( sX
s
esX hold
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Zero Order Holder (ZOH)Zero Order Holder (ZOH)

4. Digital control tools4. Digital control tools

Zero Order Holder (ZOH)Zero Order Holder (ZOH)

And the transfer function of the zero order holder is obtained:

e1)(G
Ts

s
e1)s(GZOH 

Control and guidance

Slide 63



Pulse transfer function of a digital control systemPulse transfer function of a digital control system

4. Digital control tools4. Digital control tools

Pulse transfer function of a digital control systemPulse transfer function of a digital control system

D*(s)
E(s) E*(s)

Y(s)e1 Ts
GP(s)

R(s)
( )

δT s
P( )

T

G(s)

)s(G
s
e1)s(G P

Ts
we define:

s
And its z-transform will be computed: G(z).
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Pulse transfer function of a digital control systemPulse transfer function of a digital control system

4. Digital control tools4. Digital control tools

*E(s) E*(s)
Y(s)e1 TsR(s)

Pulse transfer function of a digital control systemPulse transfer function of a digital control system

D*(s)
E(s)

δT

E (s)

s
e1

GP(s)
R(s)



G(s)

)s(Y)s(R)s(E
)s(E)s(D)s(G)s(Y

)s(Y)s(R)s(E
)s(E)s(D)s(G)s(Y **





















 )z(Y)z(R)z(D)z(G)z(Y 


)(G)(D)(Y
)z(G)z(D1

)z(G)z(D
)z(R
)z(Y
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Discrete designDiscrete design

4. Digital control tools4. Digital control tools

Discrete designDiscrete design
Stage 1: compute the transfer function of the continuous part

E( ) E*( ) Y(s)R( ) D *(s)E(s)

δT

E*(s) Y(s)
GP(s)R(s) ZOH

G(s)

~
D(z) Y(z)G(z)R(z)

~
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Discrete designDiscrete design

4. Digital control tools4. Digital control tools

With: 
s
e1)s(G

Ts

ZOH






Discrete designDiscrete design

s
  







 




sG
s
eZsGsGZ p

Ts

pZOH )(1)()·(

  









 sG
eZ pTs )(

1 









sGsG

s
e

T )()(




















 

s
sG

eZ
s

sG
Z pTsp )()(


















 

s
sG

Zz
s

sG
Z pp )(

·
)( 1
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Discrete designDiscrete design

4. Digital control tools4. Digital control tools

The transfer function of the plant + ZOH is deduced:

Discrete designDiscrete design

  







  )s(G

Zz1)z(G p1  



 s

)(

And the transfer function in closed loop of the discrete system:

)(G)(1
)z(G)z(D

)(
)z(Y


)z(G)z(D1)z(R 
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Discrete designDiscrete design

4. Digital control tools4. Digital control tools

Stage 2: 

Discrete designDiscrete design

To study the characteristics of the closed loop behavior we 

look for the characteristic equation’s roots:

1+KG(z)=0 (for D(z)=K: proportional controller)

→ root locus technique

Construction rules are the same as in the s plane, 

but the interpretation is differentbut the interpretation is different

Example
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Relation between the sRelation between the s plane and the zplane and the z planeplane

4. Digital control tools4. Digital control tools

Relation between the sRelation between the s--plane and the zplane and the z--planeplane

When an impulse sampling is incorporated, the complex 
variables s and z are related by the equation:

Tsez  ez 
→ A pole on the s plane can be placed in the z plane by this 

transformationtransformation.

Given:  js
    jTTjT eeez

   k2TjT eez
Control and guidance
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Relation between the sRelation between the s plane and the zplane and the z planeplane

4. Digital control tools4. Digital control tools

→ poles and zeros in the s-plane, where the frequencies differ

Relation between the sRelation between the s--plane and the zplane and the z--planeplane

 poles and zeros in the s plane, where the frequencies differ 
in numbers multiples of the sampling frequency ωs=2π/Ts, 
belong to the same locations in the z plane.
→ relationship between the z plane and the s plane is not 
unique

One point in the z plane corresponds to an infinite number of 
points in the s plane, but one point in the s plane corresponds 
to only one point in the z plane.

Examples
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Relation between the sRelation between the s plane and the zplane and the z planeplane

4. Digital control tools4. Digital control tools

The root locus is builded the same way as in the continuous domain  

but its interpretation differs:

Relation between the sRelation between the s--plane and the zplane and the z--planeplane

p

Stability:
s plane: σ<0s plane: σ<0

z plane: 
1ez T  

Equivalence: s plane z plane

• imaginary axis ~ unitary circle

1ez 

• left semi-plane ~ inside the circle

• critically stable (s=0) ~ |z|=1 for a pole

→ stability can be determined with the pole positions

→ stability depends on the sampling period T

Control and guidance
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Relation between the sRelation between the s--plane and the zplane and the z--planeplane

4. Digital control tools4. Digital control tools

Geometric locus of constant damping factor and natural frequency
Relation between the sRelation between the s plane and the zplane and the z planeplane

Control and guidance
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Relation between the sRelation between the s plane and the zplane and the z planeplane

4. Digital control tools4. Digital control tools

Geometric locus of constant damping factor and natural frequency

Relation between the sRelation between the s--plane and the zplane and the z--planeplane

1
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4. Digital control tools4. Digital control tools

Digital control diagramDigital control diagram

Remember: the idea is to model the following digital control 
system:
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Di t d iDi t d i

4. Digital control tools4. Digital control tools

Discrete designDiscrete design

E( ) E*( ) Y(s)R( ) D *(s)E(s)

δT

E*(s) Y(s)
GP(s)R(s) ZOH

G(s)

~
D(z) Y(z)G(z)R(z)

~
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Digital controllersDigital controllers

4. Digital control tools4. Digital control tools

Digital controllersDigital controllers
As in continuous systems, both integral or derivative proportional 

controllers or a combination of them are used to stabilize systemscontrollers or a combination of them are used to stabilize systems.

Proportional: u(t)=kp e(t) → u(k)=kp e(k)Proportional: u(t) kp e(t)  u(k) kp e(k) 

pk)z(D 
Derivative:

p)(
 )1k(e)k(ek)k(u

dt
)t(dek)t(u dd 

  )z(Ez1k)z(U
dt

1
d



1 
z

1zkz1k)z(D d
1

d
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Digital controllersDigital controllers

4. Digital control tools4. Digital control tools

Integrator: (k)k1)(k(k)(t)dtk(t)
t



Digital controllersDigital controllers

Integrator:

E(z)kU(z)zU(z)

e(k)k1)u(ku(k)e(t)dtku(t)

i
1

i0i








zkk)z(D ii

1zz1
)z(D i

1
i
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Satellite attitude control system

4. Digital control tools4. Digital control tools

Satellite attitude control system

dtFMMMtI CDID ).()( 



with θ(t) satellite orientation

MD torque of the perturbations
FC(t) applied thrust

If id t b ti dtFtI )()(


If you consider zero perturbations:

or using the Laplace transform:

dtFtI C ).()( 

1)()( sG or, using the Laplace transform:
2.

)()(
IsFd

sG
C

P 

Design requirements: ωn=0.3rad/s

ζ=0.7
Control and guidance
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Satellite attitude control system without any controller

4. Digital control tools4. Digital control tools

Satellite attitude control system  without any controller
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Satellite attitude control system with controller

4. Digital control tools4. Digital control tools

Satellite attitude control system with controller
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Sampling period influenceSampling period influence

4. Digital control tools4. Digital control tools

Sampling period influenceSampling period influence

Already seen: destabilizing effect of the zero order holder (ZOH).y g ( )

1s
1)s(Gp 

1. Compute G(z), for a plant:
1s 

We introduce an integral digital controller:
1z

Kz)z(D



1z

2. Draw the root locus of the transfer function in open loop: 

H(z)=D(z).G(z), for: T=0.5s, 1s y  2sec

3. Compute Kcr in the 3 cases
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Sampling period influenceSampling period influence

4. Digital control tools4. Digital control tools

T=0.5sec Root Locus
1.5

Sampling period influenceSampling period influence
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Sampling period influenceSampling period influence

4. Digital control tools4. Digital control tools

T=1sec Root Locus
1.5

Sampling period influenceSampling period influence
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Sampling period influenceSampling period influence

4. Digital control tools4. Digital control tools

T=2sec Root Locus
1.5

Sampling period influenceSampling period influence

1
System: e
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1.4 S li i d i flS li i d i fl

4. Digital control tools4. Digital control tools

1.2

1.4
T=0.5sec Sampling period influenceSampling period influence
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1.4T=1sec S li i d i flS li i d i fl

4. Digital control tools4. Digital control tools
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1.4
T=2sec Sampling period influenceSampling period influence

4. Digital control tools4. Digital control tools
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T 2sec Sampling period influenceSampling period influence
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1.4

4. Digital control tools4. Digital control tools
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Sampling period influenceSampling period influence
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Sampling period influenceSampling period influence

4. Digital control tools4. Digital control tools

• If the sampling period is small the y(kT) graphic gives a quite

Sampling period influenceSampling period influence

• If the sampling period is small the y(kT) graphic gives a quite 

precise image of the y(t) response

I t t t l t li i d b d th ti f ti• Important to select a sampling period based on the satisfaction:

- of the sampling theorem (Nyquist),

- of the system dynamics,

- of the equipment real conditions

• Acceptable rule: 8 to 10 samples per cycle… (for a subdamped 

system that shows oscillations in the response)
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Error in steady stateError in steady state

4. Digital control tools4. Digital control tools

Error in steady stateError in steady state

• Error in steady state: also defined in discrete time.

• Classification depending on the number of open loop poles in the z=1 

point (equivalent to s=0: it corresponds to an integrator).

• System’s type defines the characteristics of the system in steady state

Y(s)
D(z)E(s)

δT

E*(s) Y(s)
GP(s)R(s) ZOH

T

G(s)
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Error in steady stateError in steady state

4. Digital control tools4. Digital control tools

• Error: e(t)=r(t)-y(t)

Error in steady stateError in steady state

• For a stable system (poles inside the unitary circle):

Final value theorem gives the error value in steady 

state at the sampling times:

  k )(li)(li 1   



zR

zEzkTe
zk

)(

)(1lim)(lim 1

1






zGzD
zRzEwith

)()(1
)()(

  







 

s
sG

ZzzGand p )(
1)( 1
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Error in steady stateError in steady state

4. Digital control tools4. Digital control tools

  



 )(1li 1 zR

Error in steady stateError in steady state

  









 

 )()(1
)(1lim 1

1 zGzD
ze

zss

Example: Given a digital control system where the plant is a 
fi t d t d h 2 d l d t k T 1first order system and has a 2 sec. delay and take T=1s

e)(G
s2 e1)s(G

Ts

1s
)s(Gp 


s
)s(GZOH 

Compute the error in steady state for a unit step entry. 
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5. Design method with dead beat response5. Design method with dead beat response

Method principle:

To force the error sequence (for a system subject to a specific 

entry type, in this course we will always consider a step entry) to y yp , y p y)

reach and keep a zero value after a finite number of sampling 

periods in fact after the minimum possible number of samplingperiods, in fact, after the minimum possible number of sampling 

periods
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5. Design method with dead beat response5. Design method with dead beat response

If the response of a closed loop control system to a unitary step entry 

shows a minimum possible establishment time with no error in steadyshows a minimum possible establishment time, with no error in steady 

state and no oscillatory beat component between sampling instants, 

th thi t i ll k d d b tthen this response type is usually known as dead beat response

Drawing
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5. Design method with dead beat response5. Design method with dead beat response

D(z) Y(z)G(z)R(z) E(z) U(z)

  







 

s
)s(G

Zz1)z(Gwith p1

 s

)()()()( zGzDzYF
)()(1

)()(
)(
)()(

zGzDzR
zF
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5. Design method with dead beat response5. Design method with dead beat response

In order to have a finite time of establishment with a zero error in 
steady state the system will have to show a finite impulse response:steady state, the system will have to show a finite impulse response:

azazaza kN1NN  

z
a...za...zaza)z(F N

Nk10 


zazazaa)z(F
or

Nk1  

)ordersystemG:n(nNwith
za...za...zaa)z(F

p

Nk10




→ We are looking for the ai
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5. Design method with dead beat response5. Design method with dead beat response

From F(z) the controller transfer function D(z) is calculated

 
)()( zFzD   )(1)(

)(
zFzG 
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C diti t k th d i h i ll f iblC diti t k th d i h i ll f ibl

5. Design method with dead beat response5. Design method with dead beat response

Conditions to make the design physically feasibleConditions to make the design physically feasible

1. D(z) numerator order ≤ D(z) denominator order (otherwise the1. D(z)  numerator order  D(z) denominator order (otherwise the 
controller requires the entry data to be generated after the ones 
that produce the exit data).

2. If the Gp(s) plant includes an e-Ls transport delay, then the designed 
closed loop system F(z) has to involve the same delay (otherwiseclosed loop system F(z) has to involve the same delay (otherwise 
the closed loop system would have to respond before an entry was 
given)given).

3. When expanded as a z-1 series F(z) and G(z) start with the same 
term in z-1 .
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Stability conditionsStability conditions

5. Design method with dead beat response5. Design method with dead beat response

Stability conditionsStability conditions

Avoid the cancellation of an unstable pole of the plant by the use of a
digital controller z.

1. If G(z) includes an unstable pole (or critically stable) on z=α

We define:


)z(G)z(G 1

and the tf in closed loop:
z

)(

 z
zGzD

zF

)()(
)(

1






z
zGzD

zF )()(1
)(

1
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Stability conditionsStability conditions

5. Design method with dead beat response5. Design method with dead beat response

Stability conditionsStability conditions

1 
)()()()(1

1)(1
11 zGzDz

z
zGzD

zF











No zero of D(z) cancels G(z)’s pole in z=α if and only if

)(1
z

zD





1-F(z)=0 for z=α

→ The unstable poles of G(z) must be included 
as zeros of 1-F(z)
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Stability conditionsStability conditions

5. Design method with dead beat response5. Design method with dead beat response

Stability conditionsStability conditions

2 In the same way for unstable zeros:2. In the same way for unstable zeros:

 zzGzDF )()()( 1  
 


zzGzD

zF
)()(1

)()()(
1

1

zeros of G(z) that are located on or out the unitary circle must not 
be cancelled with D(z) poles

→ The unstable zeros of G(z) must be included 
as zeros of F(z)
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DesignDesign

5. Design method with dead beat response5. Design method with dead beat response

DesignDesign

The error can be written as:

E(z)=R(z)-Y(z)=R(z)(1-F(z))

for a step entry:
11

1)z(R  1z1
)( 

 )z(F11)z(E 

In order to be sure that the system reaches the steady state in a finite 

 )z(F1
z1

)z(E 1
 

y y

number of sampling periods and that maintains a null error output, E(z) 

must be a polynomial in z-1 with a finite number of termsmust be a polynomial in z with a finite number of terms 
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DesignDesign

5. Design method with dead beat response5. Design method with dead beat response

DesignDesign

→ 1-F(z) must cancel the denominator:  )z(F1
z1

1)z(E 1  

with N(z) polynomial in z-1

z1

  )z(Nz1)z(F1 1 with N(z) polynomial in z

Then E(z)=N(z) is a polynomial in z-1 with a finite number of terms

  )()(

Then, E(z)=N(z) is a polynomial in z 1 with a finite number of terms 

and e(k) tends to zero in a finite number of sampling periods
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DesignDesign

5. Design method with dead beat response5. Design method with dead beat response

DesignDesign

D(z)
Y(z)

G(z)
R(z) E(z) U(z)

D(z) G(z)

For a stable plant Gp(s), the condition so that the exit does not 
show oscillating components between samplings after theshow oscillating components between samplings after the 
establishment time is:   entrystepafornTty constant

where n is the Gp(s) order

In practice this condition can be applied to u(t)In practice this condition can be applied to u(t)

  entrystepafornTtu constant
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)()()( G )(F

5. Design method with dead beat response5. Design method with dead beat response

• Search:
)()(1

)()(
)(
)()(

zGzD
zGzD

zR
zYzF




 )(1)(
)()(

zFzG
zFzD




•

• if G has a delay F(z) has the same

)orderG:n(nNwithza...za...zaa)z(F p
N

N
k

k
1

10  

if Gp has a delay, F(z) has the same

• D(z) numerator grade ≤ D(z) denominator grade Physically 
feasible

• F(z) begins with the same order (in z-1) as G(z)

• G(z) unstable poles = (1-F(z)) zeros( ) p ( ( ))

• G(z) unstable zeros = F(z) zeros

 

Stability 
condition

• with N(z) polynomial in z-1, for a step entry

• n is the Gp(s) order

  )z(Nz1)z(F1 1

  entrystepafornTty constant
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5. Design method with dead beat response5. Design method with dead beat response

Calculator: Disturbance (wind, etc…)

Crew requirement

Calculator: 
Digital controller

Exit parameter

Dif eq representing the airplane 
movement

Control and guidance
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5. Design method with dead beat response5. Design method with dead beat response

D*(s)
E(s) E*(s)

Y(s)e1 Ts
GP(s)

R(s)
( )

δT s
P( )

s5

G(s)

With : transfer function of the plant has a 5 sec. delay
1s10

e)s(G
s5

p 




T=5s is considered
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5. Design method with dead beat response5. Design method with dead beat response

The  following exit y(t) is required  for a unitary step entry: 
1 .5

1

1

1

y(
t)

0 .5 0.62

0 1 0 1 2 0 2 3 0 3 4 0
0

0

no overshoot nor error in steady state, nor oscillations between 
samples after reaching a zero error

0 5 1 0 1 5 2 0 2 5 3 0 3 5 4 0
0

t(s )
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5. Design method with dead beat response5. Design method with dead beat response

1. Calculate G(z) (depending on z-1)

2. Look for unstable poles and zeros

3. Given the y(nT) sequence, calculate Y(z)

)z(Y
4. Calculate

C l l D( ) d if h i i h i ll f ibl

)z(R
)z(Y)z(F 

5. Calculate D(z) and verify that it is physically feasible
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5. Design method with dead beat response5. Design method with dead beat response

1. Calculate G(z) (depending on z-1)

z61.0z
39.0

z61.01
z39.0)z(G 21

2





 



z61.0zz61.01

2. Look for unstable poles and zeros

no zero poles: 0 and 0 61 both stableno zero, poles: 0 and 0.61 both stable
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32 380620 

5. Design method with dead beat response5. Design method with dead beat response

3. Given the y(nT) sequence, calculate
1

32

z1
z38.0z62.0)z(Y 








4 C l l t 32 380620)z(Y)(4. Calculate 32 z38.0z62.0
)z(R
)z(Y)z(F  

5. Calculate
)380)(1(

)37.0(58.1
)3801)(1(

)37.01(58.1)( 2

3

211

2 





 zzzzD

and verify that it is physically feasible

)38.0)(1()38.01)(1(
)( 2211   zzzzzz

z61.0z
39.0

z61.01
z39.0)z(G 21

2
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5. Design method with dead beat response5. Design method with dead beat response
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