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Study properties of the response of the system:

desired angle of attack αref
d

actual angle of attack αdisplacement

Study properties of the response of the system:

LONGITUDINAL 
CONTROL LONGITUDINAL 

DYNAMICS

speed uref
g

speed u
displacement 
of elevator δe

CONTROL 
SYSTEM DYNAMICS

t l l f tt k

SENSORS:

actual angle of attack α
speed u

SENSORS: 
INS, 

Anemometer

1- Parametric estimation1- Parametric estimation
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1- Parametric estimation1- Parametric estimation

Temporal methods:Temporal methods:

a. Firsta. First--order systemsorder systems

b. Secondb. Second--order systemsorder systems

c. Higherc. Higher--order systemsorder systems

Control and guidance
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Fi tFi t d td t

1- Parametric estimation1- Parametric estimation

A first-order system is defined by a first-order

a. Firsta. First--order systemsorder systems

A first order system is defined by a first order 

differential equation:

s1
K

)s(R
)s(Y)s(G)t(Kr)t(y)t(y L






s1)s(R 

τ: system time constantτ: system time constant

K: gain

Electrical/mechanical 
examples
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Fi tFi t d td t

1- Parametric estimation1- Parametric estimation

Impulse response

a. Firsta. First--order systemsorder systems

Impulse response

1)s(R)]t([L  1
K)s(Y )()]([ s1 

using the inverse Laplace transform, the impulse 

response is:

0teK)t(y
t

  0te)t(y 
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a Firsta First order systemsorder systems

1- Parametric estimation1- Parametric estimation

Impulse response 1

a. Firsta. First--order systemsorder systems

0teK)t(y
t

 
0.8

0.9

y(t))(y


0.6

0.7

)Tangent slope in 0:

y( )

0 3

0.4

0.5y(
t)
K)t(dy



g p

0.1

0.2

0.32
0tdt 

r(t)

0 1 2 3 4 5 6 7
0

t

Control and guidance

Slide 7



Fi tFi t d td t

1- Parametric estimation1- Parametric estimation

Step response: response to a unit step function

a. Firsta. First--order systemsorder systems

p p p p

1
KK

)1(
K)s(Y 

1)s(R)]t(u[L 
s1ss)s1(

)(
s

)()]([

i th i L l t f th tusing the inverse Laplace transform, the step response 

or indicial response is:

0te1K)t(y
t

  0te1K)t(y 
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Fi tFi t d td t

1- Parametric estimation1- Parametric estimation

St 9

10

a. Firsta. First--order systemsorder systems

y(t)
Step response:


t

8

9
y( )






   te1K)t(y

6

7

)
Tangent slope in 0: 4

5y(
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)t(dy r(t)

0 1 2 3 4 5 6 7
0

1

t

dt 0t

Example

Control and guidance

Slide 9

t



b S db S d d td t

1- Parametric estimation1- Parametric estimation

A second-order system is defined by a second-order

b. Secondb. Second--order systemsorder systems

A second order system is defined by a second order 

differential equation:

)t(ra)t(yb)t(yb)t(yb 0012  

0a)s(Y)(G
01

2
2

0

bsbsb)s(R
)()s(G




012)(

Electrical/Mechanical examples
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b Secondb Second order systemsorder systems

1- Parametric estimation1- Parametric estimation

It can be factorized to emphasize particular 

b. Secondb. Second--order systemsorder systems

parameters:
2KK)s(Y 

2
nn

2
n

2 s2s
K

1s2s

K
)s(R
)s(Y)s(G














nn

12 






 

with K: system gain (corresponds to final value for a unit 
step function)

ωn: undamped natural frequency

ζ: damping factor (ζ>0)
Control and guidance
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b Secondb Second order systemsorder systems

1- Parametric estimation1- Parametric estimation

Step response:
2
nK)s(Y 



b. Secondb. Second--order systemsorder systems

p p

Response depends on the poles of the transfer function

2
nn

2 s2s)s(R 
Response depends on the poles of the transfer function

0s2s 2
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2 
di i i t’ i d d ζ l→ discriminant’s sign depends on ζ value

→ poles and response's properties depend on ζ value
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b Secondb Second order systemsorder systems

1- Parametric estimation1- Parametric estimation

ζ>1 Over-damped movement (non-oscillatory modes)

b. Secondb. Second--order systemsorder systems

Real and negative poles:  1s 2
n21 

2
n

2
n K1K1)s(Y 






 n2,1 
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Development in simple fractions:
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b Secondb Second order systemsorder systems

1- Parametric estimation1- Parametric estimation

ζ>1 Over-damped movement (non-oscillatory modes)
1

Step Response

b. Secondb. Second--order systemsorder systems
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b Secondb Second order systemsorder systems

1- Parametric estimation1- Parametric estimation

ζ=1 Critically damped movement (non-oscillatory modes)

b. Secondb. Second--order systemsorder systems

Double real negative poles: n2,1s 

 2
2
n

s
K

s
1)s(Y





 nss 

Development in simple fractions:
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Development in simple fractions:
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b Secondb Second order systemsorder systems

1- Parametric estimation1- Parametric estimation

ζ=1 Critically damped movement (non-oscillatory modes)

b. Secondb. Second--order systemsorder systems

1
Step Response

Inverse Laplace transform:
y(t)
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b Secondb Second order systemsorder systems

1- Parametric estimation1- Parametric estimation

ζ<1 Under-damped movement (oscillatory modes)

b. Secondb. Second--order systemsorder systems

Conjugated complex poles:  21js Conjugated complex poles:

2K1 

 n2,1 1js 
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n

2
n

n

1ss
K

s
1)s(Y




   
Development in simple fractions…p p
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b Secondb Second order systemsorder systems

1- Parametric estimation1- Parametric estimation

 
ξ<1 Under-damped movement: Inverse Laplace transform:

b. Secondb. Second--order systemsorder systems
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b Secondb Second order systemsorder systems

1- Parametric estimation1- Parametric estimation

Characteristic parameters
valuefinaloutput

b. Secondb. Second--order systemsorder systems

K: gain

M: maximum overshoot : represents the value of the
valuefinalinput
valuefinaloutput

M: maximum overshoot : represents the value of the 
highest peak of the system response measured with 

t t th f l (fi l l )respect to the reference value (final value) 

tp: peak time: time needed for the response to arrive at its p p p
first peak

T: period

t : settling time
Control and guidance

Slide 19

ts: settling time



b Secondb Second order systemsorder systems

1- Parametric estimation1- Parametric estimation

Characteristic parameters: for second-order systems

b. Secondb. Second--order systemsorder systems
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b Secondb Second--order systemsorder systems
1- Parametric estimation1- Parametric estimation

Obtain:b. Secondb. Second order systemsorder systems
3,5

Step Response
Obtain:
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Calculate: 
G(s)=Y(s)/R(s)
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Hi hHi h d td t

1- Parametric estimation1- Parametric estimation

c. Higherc. Higher--order systemsorder systems
→ characterize the transitory state of any-order systems

generally y(t)= linear combination of elementary time 

functions defined by the nature (real or complex) of the 

characteristic equation roots: system modes:characteristic equation roots: system modes:

• real poles: non- oscillatory modes, exponential term in 

the response 

• complex poles: oscillatory modes, exponential term 

multiplied by sine or cosine
Control and guidance
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Hi hHi h d td t

1- Parametric estimation1- Parametric estimation

High order systems can be simplified using:

c. Higherc. Higher--order systemsorder systems

High order systems can be simplified using:

dominant poles

poles further from the imaginary axis have a 

weaker contribution

1 pole near 1 zero

if there is a zero near a pole this pole contributionif there is a zero near a pole, this pole contribution 

will be weak

Control and guidance
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Study error of the response of the system:

desired angle of attack αref
speed u actual angle of attack αdisplacement

Study error of the response of the system:

LONGITUDINAL 
CONTROL LONGITUDINAL 

DYNAMICS

speed uref
g

speed u
displacement 
of elevator δe

CONTROL 
SYSTEM DYNAMICS

t l l f tt k

SENSORS:

actual angle of attack α
speed u

SENSORS: 
INS, 

Anemometer

2- Steady state error2- Steady state error
Control and guidance
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2- Steady state error2- Steady state error

G(s)
Y(s)+

-
R(s) Ess

Steady State error: 

ess= difference between the entry signal and the exit signal

e = “what we want minus what we get”ess = what we want minus what we get

Control and guidance
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2- Steady state error2- Steady state error

System’s type:y yp

Given the transfer function:
2

)ss1) (s1)(s1(s
)...dscs1)...(bs1)(as1(K)s(G 2N

2





)...ss1)...(s1)(s1(s 

with K: system gain, 

and N: number of poles in the origin

→ N = system’s type
Control and guidance
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2- Steady state error2- Steady state error

 
Definition of Steady State error: 

 )t(y)t(rlime
tss 

t 

e > 0 : exit signal has not reached the entry referenceess > 0 : exit signal has not reached the entry reference

ess < 0 : exit signal is higher than the entryss g g y
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2- Steady state error2- Steady state error

 )t(y)t(rlime   )t(y)t(rlime
tss 

Moving to the Laplace space: Final value theorem:
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)...dscs1)...(bs1)(as1(K)(G
2

2- Steady state error2- Steady state error

G(s)
Y(s)+R(s)

)...ss1)...(s1)(s1(s
)) ()((K)s(G 2N 



G(s)
-

1. Position error: error for a step function entry: r(t)=u(t)
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1 Position error: error for a step function entry: r(t)=u(t)

2- Steady state error2- Steady state error

1

Step Response

1. Position error: error for a step function entry: r(t)=u(t)
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2- Steady state error2- Steady state error
)...dscs1)...(bs1)(as1(K)(G
2

G(s)
Y(s)+R(s)

)...ss1)...(s1)(s1(s
)) ()((K)s(G 2N 



2 Speed error: error for a ramp function entry: r(t)= t
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2. Speed error: error for a ramp function entry: r(t)= t
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2- Steady state error2- Steady state error
)...dscs1)...(bs1)(as1(K)(G
2

G(s)
Y(s)+R(s)

)...ss1)...(s1)(s1(s
)) ()((K)s(G 2N 



G(s)
-

3. Acceleration error: error for a parabolic entry: r(t)= t2
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2- Steady state error2- Steady state error

Error based on type + entryyp y

Input:
Type:

step ramp parabolic

0 constant ∞ ∞

I 0 constant ∞

II 0 0 constant

Control and guidance
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2- Steady state error2- Steady state error

Example: G(s) θ(s)+θref(s) δe(s)
K

C t th i t d t t f it t f ti

-

Compute the error in steady state for a unit step function 
entry and for a system with the following open loop transfer 
function: 10s2)s( function:

4s1.0s
1.0s2

)s(
)s(

2
e 







• for K=1, K=10, K=100, 

)(e

0 12sθ(s) • for K=1 and 

 40.1sss
0.12s

(s)δ
θ(s)

2
e 




Control and guidance

Slide 34



Design a simple proportional controller in order to satisfy some 

desired angle of attack αref
d

actual angle of attack αdisplacement

constraints on the response of the system 

LONGITUDINAL 
CONTROL LONGITUDINAL 

DYNAMICS

speed uref
g

speed u
displacement 
of elevator δe

CONTROL 
SYSTEM DYNAMICS

t l l f tt k

SENSORS:

actual angle of attack α
speed u

SENSORS: 
INS, 

Anemometer

3- Root locus3- Root locus
Control and guidance
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3- Root locus3- Root locus

• Root locus technique• Root locus technique

• Gain setting• Gain setting

• Effect of zeros and poles• Effect of zeros and poles

Control and guidance
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Root locus techniqueRoot locus technique

3- Root locus3- Root locus

Root locus techniqueRoot locus technique

• Introduced by W. R. Evans in 1949: developed a series of rules 

that allow the control system engineer to quickly draw the 

root locus diagram = locus of all possible roots of the 

characteristic equation: 1+K G(s)= 0

= locus of all possible poles in closed loop= locus of all possible poles in closed loop

as K varies from 0 to infinity

• The resulting plot helps us in selecting the best value of K

G f f f• Gives information for the transitory part of the response 

(stability, damping factor, natural frequency)

Control and guidance
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Root locus techniqueRoot locus technique

3- Root locus3- Root locus

Root locus techniqueRoot locus technique

Let    
   

m21 zszszs)s(G 


A d b tit t it i th h t i ti ti

   n21 pspsps
)(



And substitute it in the characteristic equation

    zszszsk   
    




 Kkwhere0
pspsps
zszszsk1
n21

m21

Control and guidance
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Root locus techniqueRoot locus technique

3- Root locus3- Root locus

Root locus techniqueRoot locus technique

The characteristic equation is complex and can be written in terms 

of magnitude and angle as follows

zszszsk 21 
1

pspsps
zszszsk

n21

m21 



    180)1q2(pszs
n

1i
i

m

1i
i  

)1mn(...,2,1,0qfor
1i1i
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Root locus technique: RulesRoot locus technique: Rules

3- Root locus3- Root locus

Root locus technique: RulesRoot locus technique: Rules

If we rearrange the magnitude criteria as

k
1

pspsps
zszszs m21 




Rule 1: The number of separate branches of the root locus plot is 

kpspsps n21 

equal to the number of poles of the transfer function (n)

Branches of the root locus originate at the poles of G(s) for k=0Branches of the root locus originate at the poles of G(s) for k=0

and terminate at either the open-loop zeroes or at infinity for k=+∞

n separate branches, n-m infinite branches, m finite branches

Control and guidance
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Root locus technique: RulesRoot locus technique: Rules

3- Root locus3- Root locus

Root locus technique: RulesRoot locus technique: Rules

Rule 2: Because the complex poles are always “conjugated”Rule 2: Because the complex poles are always conjugated , 

the root locus branches are symmetric with respect to the real axis

Control and guidance
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Root locus technique: RulesRoot locus technique: Rules

3- Root locus3- Root locus

Root locus technique: RulesRoot locus technique: Rules

Rule 3:Rule 3: 

Segments of the real axis that are part of the root locus:

points on the real axis that have an odd number of poles and 

zeroes to their right 

Control and guidance
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Root locus technique: RulesRoot locus technique: Rules

3- Root locus3- Root locus

Root locus technique: RulesRoot locus technique: Rules
Rule 4: Asymptotes

The root locus branches that approach the open-loop zeroes atThe root locus branches that approach the open loop zeroes at 

infinity do so along straight-line asymptotes that intersect the real 

axis at the center of gravity of the finite poles and zeroesaxis at the center of gravity of the finite poles and zeroes

zp
m

i

n

i 






 
mn

p
1i

i
1i

i












The angle that the asymptotes make with the real axis is given by

  )1(210f1q2º180 


  )1mn(...,2,1,0qfor
mn
q

a 
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Root locus technique: RulesRoot locus technique: Rules

3- Root locus3- Root locus

Root locus technique: RulesRoot locus technique: Rules

Rule 5: breakaway points 

If a portion of the real axis is part of the root locus and a branch is 

between two poles the branch must break away from the real axis p y

so that the locus ends on a zero as k approaches infinity. The 

breakaway points on the real axis are determined by solvingbreakaway points on the real axis are determined by solving 

   
    kfor0zszszsk1 m21 




and then finding the roots of the equation dk/ds=0

    kfor0
pspsps

1
n21 



and then finding the roots of the equation dk/ds=0

Only roots that lie on a branch of the locus are of interest

Control and guidance
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Root locus technique: RulesRoot locus technique: Rules

3- Root locus3- Root locus

Root locus technique: RulesRoot locus technique: Rules

Rule 6: Intersection with the imaginary axisRule 6: Intersection with the imaginary axis

Solve the characteristic equation for s=jω (equation of the 

imaginary axis)

   zjzjzjk    
    0

pjpjpj
zjzjzjk1
n21

m21 
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Root locus technique: RulesRoot locus technique: Rules

3- Root locus3- Root locus

Root locus technique: RulesRoot locus technique: Rules

Rule 7: for complex poles and zeroes only:Rule 7: for complex poles and zeroes only:

The angle of departure of the root locus from a pole of G(s) or 

arrival angle at a zero of G(s) can be found by the following 

expression

If you consider a test point t:
nm

    180ptzt
n

1i
i

m

1i
i  
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Root locus technique: examplesRoot locus technique: examples

3- Root locus3- Root locus

Root locus technique: examplesRoot locus technique: examples

Example 1:

Root Locus
2

Example 1: 

1

1.5

ar
y 

A
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Root locus technique: examplesRoot locus technique: examples

3- Root locus3- Root locus

Root locus technique: examplesRoot locus technique: examples

Example 2: 4
Root Locus

Example 2: 
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Setting of the gain and natural frequencySetting of the gain and natural frequency

3- Root locus3- Root locus

Setting of the gain and natural frequencySetting of the gain and natural frequency
Basic operation: to adjust the gain K to obtain a damping factor 

given by the poles in closed loop and fixed by the damping factor ζgiven by the poles in closed-loop and fixed by the damping factor ζ

)R (
Cf second-order systems: i

s
)sRe(



straight line doing an angle φ with the real axis (cos φ= ζ) sets an 

is
g g g φ ( φ ζ)

intersection point with the poles position, and k (and then K) is 

obtained solving the characteristic equationobtained solving the characteristic equation

Natural frequency for a second-order system: ωn=|si|

Control and guidance
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Gain settingGain setting

3- Root locus3- Root locus

Gain settingGain setting

0)s(KG1 
   
    0

pspsps
zszszsK1 m21 






The system total gain is computed thanks to the module condition

   pspsps n21 

szszsz
spspspKk m21





szszsz n21 

“total gain” = product of the distances from the poles of G(s) to the 

intersection point (= target pole) divided by the product of the 

distances from zeros of G(s)
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Gain settingGain setting

3- Root locus3- Root locus

Gain settingGain setting

0)s(KG1 

    0
pspsps

K1 





If there are no zeros:

   pspsps n21 

spspspK m21 
“total gain” =product of the distances between the poles of G(s) 

( )and the intersection point (= target pole)

Examples
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Gain settingGain setting

3- Root locus3- Root locus

Gain settingGain setting

4
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Gain settingGain setting

3- Root locus3- Root locus

Gain settingGain setting

1

Root Locus
3 0.5

S t

  2s1ss
1)s(G




1

2
System: sys

Gain:  1.04
Pole: -0.332 + 0.577i

Damping: 0.499
Overshoot  (%):  16.4

Designer requirement:
we want ζ=0.5
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Gain settingGain setting

3- Root locus3- Root locus

Gain settingGain setting

1

Root Locus
3 0.5

  2s1ss
1)s(G




1

2
System: sys
Gain: 1.04
Pole: -0.332 + 0.577i
Damping: 0.499
Overshoot (%): 16.4

Sys tem: sys
Gain: 1.04
Pole: -2.33

Designer requirement:
we want ζ=0.5 in

ar
y 

A
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s

0

1
( )

Frequency (rad/sec): 0.666Damping: 1
Overshoot (%): 0

Frequency (rad/sec): 2.33

This corresponds to 
Im
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-1 System: sys

Gain: 1.04
Pole: -0.332 - 0.578i
Damping: 0.498p

k=1.04
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Damping: 0.498
Overshoot (%): 16.5
Frequency (rad/sec): 0.667

Examples
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Gain settingGain setting

3- Root locus3- Root locus

Gain settingGain setting
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Gain settingGain setting

3- Root locus3- Root locus

Gain settingGain setting
Root Locus

2
0.7

2

1

1.5 System: sys
Gain: 1.32
Pole: -1.66 + 1.69i
Damping: 0.7
O h t (%) 4 6

3s2s
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Designer requirement:
we want ζ=0.7
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ry
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s

0

0.5
Overshoot (%): 4.6
Frequency (rad/sec): 2.37

This corresponds to 
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-0.5 System: sys
Gain: 1.32
Pole: -1.66 - 1.69ip

k=1.32
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Damping: 0.7
Overshoot (%): 4.6
Frequency (rad/sec): 2.37

Examples
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R l ti t bilit i iR l ti t bilit i i

3- Root locus3- Root locus

Relative stability: gain marginRelative stability: gain margin

“Re(s)<0” criterion informs about the absolute stability of a system ( ) y y

but it says nothing about its relative stability

h f i i f h i bili h= how far it is from the instability → system strength

Gain margin: maximum proportional factor that can be introduced 

into the control loop until the system becomes critically stable.

Cr
G

kM 
actual

G k
M

Examples
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Gain settingGain setting

3- Root locus3- Root locus

Gain settingGain setting

1

Root Locus
3 0.5

  2s1ss
1)s(G
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System: sys

Designer requirement:
we want ζ=0.5 in
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y 

A
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s

0

1 System: sys
Gain: 5.97
Pole: 0.000761 + 1.41i
Damping: -0.00054
Overshoot (%): 100
Frequency (rad/sec): 1 41

This corresponds to 
k=1
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Roots locus exerciseRoots locus exercise

3- Root locus3- Root locus

Roots locus exerciseRoots locus exercise
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Roots locus exerciseRoots locus exercise

3- Root locus3- Root locus

Roots locus exerciseRoots locus exercise
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Roots locus exerciseRoots locus exercise

3- Root locus3- Root locus

Roots locus exerciseRoots locus exercise
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Damping: 0.511
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Roots locus exerciseRoots locus exercise

3- Root locus3- Root locus

Roots locus exerciseRoots locus exercise
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Gain settingGain setting

3- Root locus3- Root locus

Gain settingGain setting

Note that even though the closed-loop poles have this value of 

damping factor, the transitory response is not exactly sub-damped 

with that characteristic, because the ζ formula has been used as if 

it was a 2nd order system. 

However the approximation is valid to obtain a good ζ magnitudeHowever, the approximation is valid to obtain a good ζ magnitude 

order, the influence of poles and zeros on the response is seen in 

the following studythe following study
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Additional poleAdditional pole

3- Root locus3- Root locus

Additional poleAdditional pole

1. A second-order system is consideredy

2. A pole is added in s=-p

• system reference signal first affected by a first-order system and 
then by a 2nd order one

• for a step function, signal attenuated by an exponential, which isfor a step function, signal attenuated by an exponential, which is 
the 2nd order system entry

→ exit has less overshoot and it takes more time to reach its→ exit has less overshoot and it takes more time to reach its 
final value
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Additional poleAdditional pole

3- Root locus3- Root locus

Additional poleAdditional pole

)4.52.3)(15.0(
4.2

21 


sss
f

4523
4.2
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ss
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4.52.3  ss
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Additional zeroAdditional zero

3- Root locus3- Root locus

Additional zeroAdditional zero

4523
)2(2.1

21 



ss

sf
4.52.3  ss

4.2
f

Zeros (negative) 

4.52.322 


ss
f

( g )

• increase the initial slope,

• make the system faster so it 
reaches its final value earlier,

• can produce overshoot
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Effect of an additional pole in the roots locusEffect of an additional pole in the roots locus

3- Root locus3- Root locus
pp

Transfer function of a 8
Root Locus

vehicle cruise-control 
system: 4
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Effect of an additional pole in the roots locusEffect of an additional pole in the roots locus
3- Root locus3- Root locus

A pole is added on 0 
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Root Locus
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Effect of an additional zero in the roots locusEffect of an additional zero in the roots locus

3- Root locus3- Root locus

A zero is added 
i 0 12

Root Locus
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Design a controller/compensator in order to satisfy some 

desired angle of attack αref
d

actual angle of attack αdisplacement

constraints on the response of the system 

LONGITUDINAL 
CONTROL LONGITUDINAL 

DYNAMICS

speed uref
g

speed u
displacement 
of elevator δe

CONTROL 
SYSTEM DYNAMICS

t l l f tt k

SENSORS:

actual angle of attack α
speed u

SENSORS: 
INS, 

Anemometer

4- Controllers4- Controllers
Control and guidance
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4- Controllers4- Controllers

• Proportional controller: P: KP

I t l t ll I K• Integral controller : I:  

• Derivative controller: D: 
s
KI

sKD

tp M ts steady-state 
error

P decreases increases small changes decreases

I decreases increases increases eliminates (=0)

D small changes decreases decreases small changes

• these correlations may not be exactly accurate because K K and K• these correlations may not be exactly accurate, because KP, KI, and KD
are dependent of each other

• changing 1 of these variables can change the effect of the other 2
Control and guidance
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4- Controllers4- Controllers

• 2 kinds of controllers improve the transitory response:

Lead Compensator:
00

0
C zpwith

ps
zs)s(G 






adds 1 zero and 1 pole, but zero is more important: it moves the 
t l t th l ft i t bilit ( t i f t d h

0ps 

root locus to the left: improves stability (system is faster and has 
less overshoot)

Proportional Derivative Compensator: 

dd 1 i t bilit

sKK(s)G DPC 

adds 1 zero: improves stability
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4- Controllers4- Controllers

• 2 kinds of controllers improve the steady state response:

Lag Compensator:
00

0
C pzwith

ps
zs)s(G 






add 1 zero and 1 pole, but pole is more important: it moves the 
t l t th i ht d t bilit ( t i l d

0ps 

root locus to the right: decreases stability (system is slower and 
has more overshoot), but decreases the steady state error

Proportional Integral Compensator: 
KK(s)G I

PC g
s

( ) PC
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4- Controllers4- Controllers

• 2 kinds of controllers improve both transitory and steady state 
response:

Lead - Lag Compensator:

1100
10

C zpandpzwithzszs)s(G 





 1100
10

C pp
psps

)(


Proportional Integral Derivative (PID) Compensator: 

K sDI
PC K

s
KK(s)G 
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5- Frequency response5- Frequency response

11 FourierFourier transformstransforms andand propertiesproperties

22 FrequencyFrequency responseresponse

33 ExamplesExamplespp
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1 Fourier transforms and properties1 Fourier transforms and properties

5- Frequency response5- Frequency response

1 Fourier transforms and properties1 Fourier transforms and properties

The Fourier transform of a function x(t) is a function of theThe Fourier transform of a function x(t) is a function of the 
pulsation ω:


  dt)t(xe)(X)]t(x[F tj 

 dt)t(e)()]t([

→ It transforms a signal from the time domain to the 
frequency domain
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1 Transforms and properties1 Transforms and properties

5- Frequency response5- Frequency response

The inverse Fourier transform recovers the original function

1 Transforms and properties1 Transforms and properties

The inverse Fourier transform recovers the original function 
x(t):


   d)(Xe

2
1)](X[F)t(x tj1  2

This is true for an absolutely integrable signal:




dt)t(x 2  
dt)t(x
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1 Transforms and properties1 Transforms and properties

5- Frequency response5- Frequency response

Linearity:

1 Transforms and properties1 Transforms and properties

Linearity:

)(Y)(X)]t(y)t(x[F  )()()]t(y)t([ 

)t(dx 
Derivation:

)(Xj
dt
)t(dxF 





  )(Xj)t(xdF n
n





   )(Xj
dt
)(F n 
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1 Transforms and properties1 Transforms and properties

5- Frequency response5- Frequency response

Additional properties

1 Transforms and properties1 Transforms and properties

Additional properties

  



  X1)at(xF  






a

X
a

)at(xF

Duality     Xtx F   
   



x2tX
Xtx

F    x2tX
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1 Transforms and properties1 Transforms and properties

5- Frequency response5- Frequency response

C l i h

1 Transforms and properties1 Transforms and properties

Convolution theorems

       FFtff F      
     



FFtff

FFtff
F

21
F

21

      FFtff 2121

      



 dsstfsftffwhere 2121  
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1 Transforms and properties1 Transforms and properties

5- Frequency response5- Frequency response

1 Transforms and properties1 Transforms and properties

Time delay

      XeTtxF Tj    
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1 Transforms and properties1 Transforms and properties

5- Frequency response5- Frequency response

Important pairs of transforms

1 Transforms and properties1 Transforms and properties

δ(t-t0), unit impulse 
)t(f )(F

0tje 

2π δ(ω-ω0)tj 0e 
e

u(t), unit step
1

δ(ω)

)t(ue at

a)t(ue
 t2cos 0     002

1
 0

 t2sin 0
2

    00j2
1
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2 Frequency response2 Frequency response

5- Frequency response5- Frequency response

In previous examples we examined the free response of an airplane with 
step changes in control input

2 Frequency response2 Frequency response

step changes in control input

Other useful input function is the sinusoidal signal. Why? 

1. Input to many physical systems takes the form or either a step change 
or sinusoidal signal

2. An arbitrary function can be represented by a series of step changes 
or a periodic function can be decomposed by means of Fourier 
analysis into a series of sinusoidal waves

→ if we know the response of a linear system to either a step or 
sinusoidal input then we can construct the system's response to an 
arbitrary input by the principle of superposition
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2 Frequency response2 Frequency response

5- Frequency response5- Frequency response

2 Frequency response2 Frequency response

Example:

Examine the response of an airplane subjected to an external 
disturbance such as a wind gust

Wind gust can be a sharp edged profile or a sinusoidal profile (these 2 
types of gust inputs occur quite often in nature) + arbitrary gust profile 
can be constructed by step and sinusoidal functions
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1.5

2 Frequency response2 Frequency response

5- Frequency response5- Frequency response

0.5

1

2 Frequency response2 Frequency response

Arbitrary wind gust profiles:
0

0.9

1

-1

-0.5

0.6

0.7

0.8

0 1 2 3 4 5 6 7 8 9 10
-1.5

0.3

0.4

0.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2
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2 Frequency response2 Frequency response

5- Frequency response5- Frequency response

2 Frequency response2 Frequency response

Definition of “ frequency response”:

Response in steady state to a sinusoidal input

We will demonstrate that the steady state response is another 

sinusoidal with the same frequency
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2 Frequency response2 Frequency response

5- Frequency response5- Frequency response

2 Frequency response2 Frequency response

Similarity with Laplace functions with regard to the 

operational properties (ex: differentiation)

→ the transfer function models can be transformed from one 

method to the other replacing jω with s (or s with jω). (for 

causal signals: signals defined for positive time)
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2 Frequency response2 Frequency response

5- Frequency response5- Frequency response

2 Frequency response2 Frequency response

Given any system:

R(s) G(s) C(s)

Hypothesis: stable system

Sinusoidal input

                  22s
tsinLsRtsintr
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2 Frequency response2 Frequency response

5- Frequency response5- Frequency response

2 Frequency response2 Frequency response

It can be demonstrated that the steady state response is:

    tsinjG)t(c

         
  

 jGImjGRejGwith 22

     
  










jGRe
jGImarctanjGargand    jGRe
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Parametric estimationParametric estimation

5- Frequency response5- Frequency response

Parametric estimationParametric estimation

a. Firsta. First--orderorder
 

a. Firsta. First orderorder

Frequency response:    
 21
j1K

j1
KjG








 1j1 

Gain:   KjGGain:  
 21

jG




Delay:   arctany   arctan
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5- Frequency response5- Frequency response

b. Secondb. Second--orderorder

   
KjG

2
n    j2

jG
n

22
n 



Gain:
 

222

21

KjG





 










 



nn
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D l 









 nω
ω2ξ

arctanDelay:





















 2

nω
ω1

arctan
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5- Frequency response5- Frequency response

For a system composed by series of blocks:
c. c. HigherHigher--orderorder

=

C(s)
G1(s)

R(s)
G2(s) G3(s)

=

G(s)
C(s)R(s)

       GGGGi h        
       


jGjGjGjG

sGsGsGsGwith 321

        jGjGjGjG 321

       321 jGjGjGjG        
321

321 jGjGjGjG
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6- Bode diagram6- Bode diagram

1 Introduction1 Introduction1. Introduction1. Introduction

2. Construction rules2. Construction rules

3. Stability3. Stability
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G l f th B d di

6- Bode diagrams6- Bode diagrams

Goals of the Bode diagrams:

To show the frequency response characteristics in a graphical form

2 graphics for the frequency using a logarithmic scale: 

• one for the logarithm of a function magnitude (in decibels):

• one for the phase angle (in degrees):

dB
)j(G 

 )j(Garg one for the phase angle (in degrees):

The decibel is a unit measure used to compare a certain value with a

 )j(Garg 

reference one. It is basically used to measure a signal power, and it is

defined as:

 )j(GP
2
   )j(Glog20

1
)j(G

log10
P
Plog10)j(G

ref

medida
dB
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6- Bode diagrams6- Bode diagrams

Semi-logarithmic axes: with lineal scale for the magnitude or the 
phase, and logarithmic for the frequencyp , g q y

Represents the complex transfer function adding each pole or zero 
effect, which compose this function (adding property of the log)
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GainGain

6- Bode diagrams6- Bode diagrams
GainGain

The gain is a factor that only modifies the magnitude and its angular 
value is 0º; that is the gain value remains constant for any frequencyvalue is 0 ; that is, the gain value remains constant for any frequency 
value, because it does not depend on it.
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Integral and derivative factorsIntegral and derivative factors
6- Bode diagrams6- Bode diagrams

gg

An integral factor or a pole centered in zero, has a transfer function of:

j11

Its magnitude is therefore:






j

j
1)j(G

s
1)s(G

Its magnitude is, therefore:

)log(201log20)j(G
dB












For a logarithmic frequency axis: it corresponds to a straight negative

line of -20 dB per decade

 

line of -20 dB per decade

The phase is:
1j1 



   90
0

1
arctanjarg

j
1arg)j(Garg 
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I t l d d i ti f tI t l d d i ti f t

6- Bode diagrams6- Bode diagrams

Integral and derivative factorsIntegral and derivative factors

For a derivative factor or a zero centered in zero, the results are

deduced using a similar development:

)log(20)j(G
dB



  90)j(Garg 
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Integral and derivative factorsIntegral and derivative factors

6- Bode diagrams6- Bode diagrams

Integral and derivative factors Integral and derivative factors 
20

B ode Diagram

Bode diagrams of the0
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FirstFirst--order factors: firstorder factors: first--order poleorder pole

6- Bode diagrams6- Bode diagrams

FirstFirst order factors: firstorder factors: first order poleorder pole




j1
1)j(G 









 221
1log20Its magnitude is:

 j1  1

    01log201log20)j(G11for 22 
It seems more complicated, but approximations are made:

    01log201log20)j(G,1for
dB






    log201log20)j(G,11for 22
dB

   


gg)j(,
dB

• substitute the curve by its two asymptotes

• magnitude is 0 dB until it reaches the point where both asymptotesg p y p
meet: ωτ=1, this point is called cut frequency

• from there: other asymptote with a 20 dB per decade slope• from there: other asymptote, with a -20 dB per decade slope.

• point where approximation error is maximum corresponds to the cut
frequency and the error is 3 dB
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FirstFirst--order factors: firstorder factors: first--order poleorder pole

6- Bode diagrams6- Bode diagrams

similar for the phase, the phase real value is:

FirstFirst order factors: firstorder factors: first order poleorder pole
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1arg)j(Garg 22

However the approximation in this case is:
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FirstFirst--order factors: firstorder factors: first--order poleorder pole

6- Bode diagrams6- Bode diagrams

1

FirstFirst order factors: firstorder factors: first order poleorder pole
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FirstFirst--order factors: firstorder factors: first--order poleorder pole

6- Bode diagrams6- Bode diagrams

For the study of the first-order zeros, similar development, there is only 
a sign change:  j1)j(G

FirstFirst order factors: firstorder factors: first order poleorder pole

a sign change:  j1)j(G

   2222 1l101l20M it d    2222 1log101log20 Magnitude:

Angular contribution:
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arctanj1arg)j(Garg
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FirstFirst--order factors: firstorder factors: first--order poleorder pole

6- Bode diagrams6- Bode diagrams

Example:

FirstFirst order factors: firstorder factors: first order poleorder pole
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SecondSecond order factorsorder factors

6- Bode diagrams6- Bode diagrams

SecondSecond--order factors order factors 
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The magnitude is:
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SecondSecond--order factorsorder factors 222
 

6- Bode diagrams6- Bode diagrams

SecondSecond order factors order factors 

it can be approximated this way:
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F l f i t i ht li t 0dBFor low frequencies: straight line at 0dB

For high frequencies: straight line with a –40 dB per decade slope. 

Both asymptotes cross on ω=ωn. 

However, in the second-order poles a resonance effect can appear.However, in the second order poles a resonance effect can appear. 

In the frequency domain the resonance is shown as a peak close to the 
cut frequency; the resonance peak value is conditioned to the ζ value
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6- Bode diagrams6- Bode diagrams

SecondSecond order factors order factors 
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The phase graphic form depends also on ζ
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SecondSecond--order factors order factors 
6- Bode diagrams6- Bode diagrams

Bode diagram of 
a second-order 
pole for different 
ζ values
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SecondSecond--order factors order factors 
6- Bode diagrams6- Bode diagrams

Example: -20

Bode Diagram
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Stability conditionStability condition

6- Bode diagrams6- Bode diagrams

Stability condition Stability condition 

)º180G()0G( forº180andfor0G Notation: )180G()0G( 

The Bode diagram in open loop is studied

Stability condition:

0GforAnd
º180,forIf )0G(





0GforOr
º180,forIf )0G(





0G,forAnd )º180(   0G,forOr )º180(  

THEN the system is STABLE THEN the system is UNSTABLETHEN the system is STABLE THEN the system is UNSTABLE

in closed loop in closed loop
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Stability conditionStability condition

6- Bode diagrams6- Bode diagrams

Stability condition Stability condition 

STABLE
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Stability condition Stability condition 
6- Bode diagrams6- Bode diagrams

yy

UNSTABLE
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Stability marginsStability margins

6- Bode diagrams6- Bode diagrams

Stability margins Stability margins 

Common values:Common values:

Minimum gain 

margin: 10 a 12 dB,

Minimum phaseMinimum phase 

margin: 45 a 50º
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6- Bode diagrams6- Bode diagrams

Stability margins Stability margins 
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Stability margins Stability margins 
6- Bode diagrams6- Bode diagrams

2)1)(ss(s
1G(s)




MG=14.5dB 

with roots locus: 

MG=6, G ,

and note that:

20log(6)=15.5dB 
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MΦ=51º
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Stability margins Stability margins 
6- Bode diagrams6- Bode diagrams
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Bode Diagram
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Transfer function of a vehicle cruise-control system
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Stability margins Stability margins 
6- Bode diagrams6- Bode diagrams

A pole is added on 0 (integrator): Bode diagram shifted downward : + unstable
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Stability margins Stability margins 
6- Bode diagrams6- Bode diagrams

A zero is added in -0.12: Bode diagram shifted upward : + stable

Bode Diagram
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