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11 LaplaceLaplace transformtransform:: MOTIVATIONMOTIVATION11.. LaplaceLaplace transformtransform:: MOTIVATIONMOTIVATION
desired speed

position

actual speed
position
t t

CONTROL 
SYSTEM

PHYSICAL 
SYSTEM

position
temperature
etc…

temperature
etc…

SYSTEM SYSTEM

actual speed
iti

SENSORS

position
temperature
etc… SENSORS

Physical system usually modelized by differential equations (electrical 
systems, mechanical systems with application of Newton laws, etc…)

→ use of Laplace transforms to solve differential equations
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 use of Laplace transforms to solve differential equations



11 TransformsTransforms andand propertiesproperties1. 1. TransformsTransforms and and propertiesproperties

When system models are made from lineal y
differential equations with constraint coefficients, 
Laplace transform methods can be used withLaplace transform methods can be used with 
great advantage

Laplace transform of a function is:




 stdte)t(f)s(F)]t(f[L 
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1 Transforms and properties1 Transforms and properties1. Transforms and properties1. Transforms and properties

Inverse transform recovers the original function 
and returns 0 for time prior to t=0.
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1 Transforms and properties1 Transforms and properties1. Transforms and properties1. Transforms and properties

Linearity:

)s(bY)s(aX)]t(by)t(ax[L 
2)b,a( 
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1 Transforms and properties1 Transforms and properties1. Transforms and properties1. Transforms and properties

Derivation: )t(dx  )0(x)s(sX
dt

)t(dxL 





dt 
Can be generalized as:
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Integration:
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11 Transforms and propertiesTransforms and properties1. 1. Transforms and propertiesTransforms and properties

Initial value theorem:

sX(s)limx(t)lim 
Initial value theorem:

sX(s)limx(t)lim
s0t 




Final value theorem, for stable systems:

x(t)limsX(s)lim  ( )( )
t0s 
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1 Transforms and properties1 Transforms and properties Important transforms1. Transforms and properties1. Transforms and properties Important transforms
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1. 1. Transforms and propertiesTransforms and propertiesp pp p
Solving differential equations using Laplace transform

1. apply Laplace transform to linear differential equations 
with constraint coefficients linear algebraic equations

2. solve system of equations 
3. get the solution of differential equations by inverse3. get the solution of differential equations by inverse 

Laplace transform

Initial conditions may be included when using Laplace 
transform

d (t)Example 1 3y(0)with6e4y(t)
dt

dy(t) 2t 
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1. 1. Transforms and propertiesTransforms and properties

Decomposing into simple fractions:

p pp p

When calculating inverse transform: often have to develop a 
fraction in simpler fractions

1- If polynomial of numerator is of smaller order than the one p y
of denominator and it has no repeated roots, it is possible to 
determine constants K K called residues that lead to:determine constants K1, K2, …, called residues that lead to:

KKnumeratorpolynomialq(s)Y(s) 21  ...
bsasb)...a)(s(s

p y
p(s)
q( )Y(s) 21 
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1. 1. Transforms and propertiesTransforms and properties

Decomposition en simple fractions:

p pp p

Note that individual terms in the development represent 
exponential functions for t>0:p

0t...eKeKeK)t(y ct
3

bt
2

at
1  

Coefficients can be obtained through the following expression:
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1. 1. Transforms and propertiesTransforms and properties

Decomposition in simple fractions:

p pp p

Decomposition in simple fractions:

2- If polynomial in numerator is of bigger order than the one in 
denominator: there is a quotient polynomial and a 
remainder polynomial. 

polynomialremainder
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polynomialremainder polynomialquotient Y(s)
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1.1. Transforms and propertiesTransforms and properties
Decomposition in simple fractions:
3- If roots or factors in denominator are repeated, corresponding

1. 1. Transforms and propertiesTransforms and properties

3 If roots or factors in denominator are repeated, corresponding 
terms in the partial fraction development are:
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Inverse Laplace transform for a repeated root:Inverse Laplace transform for a repeated root:

)t(uetKKL at1nnn1 




 35sss

2sF(s) 23

2





)t(uet

)!1n()as(
L n

n
n






 

3)(s1)(s
2s

2

2





Example 2
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1. 1. Transforms and propertiesTransforms and properties

Decomposition in simple fractions:

p pp p

4- If there is a complex number root:

  cbss
KsK

as
K

cbss)as(
Numerator)s(Y 2

321
2 








   cbssascbss)as( 

The inverse transform for a repeated root has the form of aThe inverse transform for a repeated root has the form of a 
sine or a cosine

1s2 
Example 3

2ss2s
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22 Transfer functions (TF)Transfer functions (TF)2. 2. Transfer functions (TF)Transfer functions (TF)
One of the most powerful tools to design control systems

For a simple in & out system, with x(t) input and y(t) output, 
transfer function that links the output with the input is defined 
as the following quotient 

)s(Y)s(T
)s(X

)s(T 

where Y(s): Laplace transform of output 

X(s): Laplace transform of inputX(s): Laplace transform of input

with initial conditions equal to zero
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2 Transfer functions2 Transfer functions

Given a described system for the following differential equation

2. Transfer functions2. Transfer functions

Given a described system for the following differential equation 
relating output y(t) with input x(t):

xb
dt
dxb...

dt
xdb

dt
xdbya

dt
dya...
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Applying Laplace transform on this equation, with zero initial 
diticonditions: 
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2 Transfer functions2 Transfer functions

Can be factorized as:

2. Transfer functions2. Transfer functions

 01
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The following transfer function is obtained:
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2 Transfer functions2 Transfer functions

Block diagram

2. Transfer functions2. Transfer functions

Block diagram

• describes systems schematically

• describes internal functions of a system (amplifiers,describes internal functions of a system (amplifiers, 
control engines, filters, etc.)

• offers a simpler alternative to directly study the 
tiequations
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2 Transfer functions2 Transfer functions
Block Diagram

2. Transfer functions2. Transfer functions

original system of equations can be replaced by a diagram 
formed by:formed by:

 branches (arrows) representing variables,

 blocks showing proportionality between 2 Laplace transform 
signals, inside of which TF relating input and output is shown,

 sums used to show signal sums or subtractions,

 unions showing that the same signal parts in two different unions showing that the same signal parts in two different 
ways

Schematics + Example 4
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2 Transfer functions2 Transfer functions
How to calculate TF?

2. Transfer functions2. Transfer functions

Transfer function in direct transmittance or 
open-loop systemsopen loop systems

control system
r(t) c(t) y(t)

control system

• no perturbation intakes )s(H)s(G)s(Y


R(s) C(s) Y(s)

• input not influenced by output results
)s(H)s(G

)s(R


G(s) H(s)
R(s) C(s) Y(s)
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2 Transfer functions2 Transfer functions2. Transfer functions2. Transfer functions
How to calculate TF?
Transfer function in a unitary closed loop system 
(with feedback):
• perturbation exists, 
• system not fully known: output information neededy y p

Control System
r(t) c(t) y(t)+

• verifies that the system output corresponds to the

-

verifies that the system output corresponds to the 
reference input 
• unstability is created
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2 Transfer functions2 Transfer functions2. Transfer functions2. Transfer functions
How to calculate TF?

Transfer function for unitary closed loop system:

G(s)
R(s) Y(s)

-

+ ε(s)

• R(s): desired response
• Y(s): actual response

)s(G)s(Y
• Y(s): actual response

• ε(s): system error )s(G1)s(R 
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2 Transfer functions2 Transfer functions2. Transfer functions2. Transfer functions
How to calculate TF?

Transfer function for non-unitary closed loop system:

G(s)R(s) Y(s)+ ε(s)

-

H(s)

• R(s): desired response
• Y(s): actual response

)()(
)s(G

)(
)s(Y


• ε(s): system error
• H(s): observation

)s(G)s(H1)s(R 
Proof + Example 4
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H(s): observation Proof  Example 4



2 Transfer functions2 Transfer functions

Poles and zeros: definition

2. Transfer functions2. Transfer functions

Poles and zeros: definition

Function’s zeros = values of a variable for which 
function is equal to zero

Function’s poles = values of the variables for whichFunction s poles = values of the variables for which 
function goes infinite

In a transfer function: 

zeros = roots of numeratorzeros = roots of numerator

poles = roots of denominator
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2 Transfer functions2 Transfer functions

Poles & zeros locus

2. Transfer functions2. Transfer functions

Poles & zeros locus

• when zeros and poles of a function are shown in the 
complex plane → poles and zeros locus 

• important properties of the function can be deduced 

• zeros are shown as O in the graph

• poles are shown as X in the graph Example 4
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2 Transfer functions2 Transfer functions

Dynamic stability

2. Transfer functions2. Transfer functions

Dynamic stability

A system is asymptotically stable if its response for 
ll th ibl i t i t d t itall the possible inputs is zero or tends to it

A linear system, with transfer function T(s), has a 
different response for each root of T(s)’s denominator 
(each pole of T(s)).

→ each response is called a mode of the system
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2 Transfer functions2 Transfer functions

Dynamic stability

2. Transfer functions2. Transfer functions

Dynamic stability

A mode increases or decreases with time depending ifA mode increases or decreases with time depending if 
the pole is in the right semi-plane (RSP) or left semi-
l (LSP)plane (LSP). 

So, the given system will be asymptotically stable 
only if all its poles belong to the LSP

Ejemplo 4

Control and Guidance

Slide 29



2 Transfer functions2 Transfer functions
Speed

2. Transfer functions2. Transfer functions

The asymptotic stability condition ensures that a response 
tends to zero with time, but does not give any indication of , g y
the qualitative evolution of the signal

response s(t) is formed by the linear combination of 
elementary functions called modes

real poles correspond to aperiodic modes

conjugated complex poles correspond to oscillatory
modes
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2 Transfer functions2 Transfer functions
Speed

2. Transfer functions2. Transfer functions

time of disappearance of a transitory mode defines 
mode’s speedmode s speed

1
 ii pRe

  ipRe
Faster modes are associated to poles f rther

Examples 5

Faster modes are associated to poles further 
away from the imaginary axis
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2 System modeling2 System modeling

Introduction

2. System modeling2. System modeling

Introduction

Basic prerequisite in the development of almost anyBasic prerequisite in the development of almost any 
control strategy:

obtain a new mathematical model for the system part 
t t lto control

model is formulated as a system of differential equations
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33.. AircraftAircraft dynamicsdynamics

11.. LongitudinalLongitudinal dynamicsdynamics

2. Transfer function for longitudinal models2. Transfer function for longitudinal models

3. Lateral dynamics3. Lateral dynamics

4. Crossed coupling4. Crossed coupling

Ref: Ref: Automatic control of Aircraft and MissilesAutomatic control of Aircraft and Missiles, 2nd edition, , 2nd edition, 

John H. John H. BlakelockBlakelock
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1 Longitudinal dynamics1 Longitudinal dynamics1. Longitudinal dynamics1. Longitudinal dynamics

Objective: obtain differential equations for airplane 

longitudinal movements based on a slight perturbationlongitudinal movements, based on a slight perturbation 

(displacement of the elevator),

and then obtain transfer functions 

(for ex between displacement of the elevator and angle(for ex. between displacement of the elevator and angle 

of attack, …)

→ First step: apply Newton laws in the defined axis system
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1 Longitudinal dynamics1 Longitudinal dynamics

desired angle of attack αref
d actual angle of attack α

1. Longitudinal dynamics1. Longitudinal dynamics

displacement

LONGITUDINAL 
CONTROL LONGITUDINAL 

DYNAMICS

speed uref
actual angle of attack α

speed u
displacement 
of elevator δe

CONTROL 
SYSTEM DYNAMICS

t l l f tt k

SENSORS:

actual angle of attack α
speed u

SENSORS: 
INS, 

Anemometer
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1 Longitudinal dynamics1 Longitudinal dynamics1. Longitudinal dynamics1. Longitudinal dynamics

(U, V, W) speed of airplane’s mass center in the referential of 
the airplane with respect to the referential of the ground 

(P, Q, R) angular speed in the referential of the airplane with ( , , ) g p p
respect to the referential of the ground 

(L M N) roll pitch and yaw momentum
Control and Guidance

Slide 36
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1 Longitudinal dynamics1 Longitudinal dynamics

Hypothesis # 1: X and Z axis are in the airplane’s 

1. Longitudinal dynamics1. Longitudinal dynamics

symmetrical axis and center of gravity = origin of the 
axis system

J0I 
Inertia tensor: 

0JandJbecause0I0
J0I

yzxyy

xzx









I0J
yzxy

zxz

y








   dmzyI
S

22
x

Remember:

 dmxyJxy

Remember:
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1 Longitudinal dynamics1 Longitudinal dynamics





 





 Vmd T

1. Longitudinal dynamics1. Longitudinal dynamics

Newton Law:
 



 FF
dt

F 0Ext







 MMHdM 0E t   MM
dt

M 0Ext

Where H is the angular momentum.

Airplane is considered in equilibrium before perturbation 
occurs, thus 0F0 



0M

0

0

0
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1 Longitudinal dynamics1 Longitudinal dynamics

H th i # 2 C t t i l

1. Longitudinal dynamics1. Longitudinal dynamics

Hypothesis # 2: Constant airplane mass

Vd 








Vdm
Vmd

T
T












Hypothesis # 3: Airplane = rigid body
dtdt

yp p g y

Hypothesis # 4: Ground  = inertial referential (a free 
particle has a rectilinear uniform translation 
movement)
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1 Longitudinal dynamics1 Longitudinal dynamics

Vectorial derivation: takes into account: changes in the 

1. Longitudinal dynamics1. Longitudinal dynamics

linear velocity VT and in ω, total angular velocity of the 
aircraft with respect to the Earth

V
dt

dVI
dt
Vd

T
T

V
T

T





kji

dtdt
Tierra
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1 Longitudinal dynamics1 Longitudinal dynamics
Under these hypothesis:










 



 x mRVQWUF

1. Longitudinal dynamics1. Longitudinal dynamics
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1 Longitudinal dynamics1 Longitudinal dynamics

Hypothesis # 5:  Leveled flight, non turbulent and non-

1. Longitudinal dynamics1. Longitudinal dynamics

accelerated

I f l it di l t dIn case of longitudinal study:

→ there is only pitch movement /Oyy p y

→ there is variation in Fx and Fz but not in Fy (speed V=0)

→ there is no roll nor yaw momentum → angular speed 
P=R=0P=R=0
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1 Longitudinal dynamics1 Longitudinal dynamics

Simplified longitudinal equations:

1. Longitudinal dynamics1. Longitudinal dynamics

Simplified longitudinal equations:

QWUF 



 



 x QWUmF 





 

z UQWmF 





 



 z Q









yIQM 
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1 Longitudinal dynamics1 Longitudinal dynamics1. Longitudinal dynamics1. Longitudinal dynamics

Exterior forces:

• Weight → Fx and Fz

• Thrust

• Aerodynamic forces (lift + drag)
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1 Longitudinal dynamics1 Longitudinal dynamics

Notation (cf Schematics)

1. Longitudinal dynamics1. Longitudinal dynamics

Notation (cf. Schematics)

U=U0+u ,  W=W0+w ,  Q=Q0+q

U0 , W0 , Q0 values in equilibrium 

u w q changes due to perturbationu, w, q changes due to perturbation.

Hypothesis # 6: small equilibrium perturbations 

compared to equilibrium valuesp q

u<< U0 , w<< W0 , q<< Q0 → linearization
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1 Longitudinal dynamics1 Longitudinal dynamics

• Since OX0 is lined up with the longitudinal airplane

1. Longitudinal dynamics1. Longitudinal dynamics

Since OX0 is lined up with the longitudinal airplane 

axis: W0=0

→ U=U0+u ,  W=w 

• Airplane initially non accelerated: Q0=0 → Q=q= p y 0 q

 F  



 
 

wqumFx 




 uqqUwmF 0z  
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1 Longitudinal dynamics1 Longitudinal dynamics

With the hypothesis of small perturbations, the 

1. Longitudinal dynamics1. Longitudinal dynamics

product of the perturbations (product of 2 smalls 

terms) is negligible in front of a simple term:terms) is negligible in front of a simple term:

 umF

 








x

UF

umF

  0z qUwmF

  yy IIqM
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1 Longitudinal dynamics1 Longitudinal dynamics1. Longitudinal dynamics1. Longitudinal dynamics

Eventually, we write the variations of the parameters 

with respect to the equilibrium as u'
p q

U
uu' 

U
w' 

w
U

' 


U
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1 Longitudinal dynamics1 Longitudinal dynamics1. Longitudinal dynamics1. Longitudinal dynamics

FX
'

X

'

X
'
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Z
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1 Longitudinal dynamics1 Longitudinal dynamics

With: S: wing span

1. Longitudinal dynamics1. Longitudinal dynamics

With: S: wing span

q: dynamic pressure 





  2U

2
1

c: average aerodynamic chord

C : non dimensional coefficients (examples:



C...: non-dimensional coefficients (examples: 
variation of drag and thrust with u, lift and drag 
variations along X, gravity, downwash effect on 
drag, effect of pitch rate on drag, etc…)

all angles in radians
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2 Transfer functions for the longitudinal model2 Transfer functions for the longitudinal model2. Transfer functions for the longitudinal model2. Transfer functions for the longitudinal model
Consider a transport airplane, with 4 engines flying straight 
and leveled at 40,000ft with a constant speed of 600ft/sec 
(=355 knots)

Θ=0

Mach=0.62

M=5800 slugs (lb.s2/ft 1slug=14.594kg)

U 600ft/secU= 600ft/sec

S=2400 sq.ft

c=20.2ft (1ft=0.3048m)

…
Control and Guidance
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2 Transfer functions for the longitudinal model2 Transfer functions for the longitudinal model

1. With a fixed elevator:

2. Transfer functions for the longitudinal model2. Transfer functions for the longitudinal model

1. With a fixed elevator:

 

Differential system of equations is



 



0θ(t)0.74α(t)'0.392u(t)'0.088(t)u'13.78




 



0(t)θ13.78α(t)'4.46(t)α'13.78u(t)'1.48





 0(t)θ0.192(t)θ0.514α(t)'0.619(t)α0.0552'
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2 Transfer functions for the longitudinal model2 Transfer functions for the longitudinal model2. Transfer functions for the longitudinal model2. Transfer functions for the longitudinal model

1 With a fixed elevator:

Applying the Laplace transform (initial conditions

1. With a fixed elevator:

Applying the Laplace transform (initial conditions 
being zero):

0)s(s78.13)s()46.4s78.13()s(u48.1
0)s(74.0)s(392.0)s(u)088.0s78.13(

''

''




0)s()s192.0s514.0()s()619.0s0552.0(0 2' 
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2 Transfer functions for the longitudinal model2 Transfer functions for the longitudinal model2. Transfer functions for the longitudinal model2. Transfer functions for the longitudinal model

1 With a fixed elevator:

The only solution different from (0 0 0) needs the

1. With a fixed elevator:

The only solution different from (0, 0, 0) needs the 
system determinant to be zero:

74.0392.0088.0s78.13 
0

s1920s51406190s055200
s78.1346.4s78.1348.1

2





s192.0s514.0619.0s0552.00 
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2 Transfer functions for the longitudinal model2 Transfer functions for the longitudinal model2. Transfer functions for the longitudinal model2. Transfer functions for the longitudinal model

1. With a fixed elevator:

Equivalent to:

 
19205140619005520
s78.1346.4s78.13

088.0s78.13 2


 

s192.0s514.0619.0s0552.0 2 

0
74.0392.0

481 


 0
s192.0s514.0619.0s0552.0

48.1 2 
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2 Transfer functions for the longitudinal model2 Transfer functions for the longitudinal model2. Transfer functions for the longitudinal model2. Transfer functions for the longitudinal model

1 With a fixed elevator:

We obtain the system determinant: 

1. With a fixed elevator:

6770s9980s9128s79s597 234 
And after simplifying it we obtain the following

677.0s998.0s9.128s79s5.97 

234

And after simplifying it we obtain the following 
characteristic equation:

000695.0s0102.0s32.1s811.0s 234 
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2 Transfer functions for the longitudinal model2 Transfer functions for the longitudinal model2. Transfer functions for the longitudinal model2. Transfer functions for the longitudinal model

2. With a displacement of the elevator:

δe: elevator deviation (rad), δe > 0 : elevator goes down

0)s(74.0)s(392.0)s(u)088.0s78.13( '' 

)(7100)()19205140()()619005520(

)s(246.0)s(s78.13)s()46.4s78.13()s(u48.1
2'

e
''





)s(710.0)s()s192.0s514.0()s()619.0s0552.0( e
2 
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2 Transfer functions for the longitudinal model2 Transfer functions for the longitudinal model2. Transfer functions for the longitudinal model2. Transfer functions for the longitudinal model

2. With a displacement of the elevator :
Remember: use determinant to solve algebraic 
equations (Cramer):


 326



 

 122
123

632
Where is the





















361

122
x

3zy2x2
6z3y2x

Where       is the 

determinant of the 








 

132
3612zy2x3 system of 

homogeneous 





 


123
y equations
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2 Transfer functions for the longitudinal model2 Transfer functions for the longitudinal model2. Transfer functions for the longitudinal model2. Transfer functions for the longitudinal model

2. With a displacement of the elevator :

 74.0392.00




s1920s51406190s05507100
s78.1346.4s78.13246.0

)s(u 2'







s192.0s514.0619.0s055.0710.0
)s(
)s(u

e

Where:

677.0s998.0s9.128s79s5.97 234 
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2. Transfer functions for the longitudinal model2. Transfer functions for the longitudinal modelgg

6770s9980s9128s79s597
223.2s3691.3s0494.0

)s(
)s(u

234

2'







The determinant of the system (=denominator of the 
transfer f nctions) has 4 comple conj gated roots

677.0s998.0s9.128s79s5.97)s(e 

transfer functions) has 4 complex conjugated roots:

j0717.14032.0s 

j0728000230
and

 j0728.00023.0s 
Remember: real roots of the denominator (= poles of the 
transfer function) associated to non-oscillatory modes, 
and complex poles to oscillatory modes
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2 Transfer functions for the longitudinal model2 Transfer functions for the longitudinal model2. Transfer functions for the longitudinal model2. Transfer functions for the longitudinal model

Note: iii js 

W d fi th ti t t
1

We define the time constant: 
 isRe



And the damping factor:
  ii ||sRe 

And the damping factor: 
2
i

2
iis 
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2 Transfer functions for the longitudinal model2 Transfer functions for the longitudinal model

From the 2 pairs of conjugated roots we can identify

2. Transfer functions for the longitudinal model2. Transfer functions for the longitudinal model

From the 2 pairs of conjugated roots we can identify 
2 periodic modes:

1
Mode 1: s48.2

4032.0
1







352.04032.0
 .

0717.14032.0 22 


→ high frequency: short period oscillation mode
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2 Transfer functions for the longitudinal model2 Transfer functions for the longitudinal model

• Variations of ´α y θ with little change of speed ´u

2. Transfer functions for the longitudinal model2. Transfer functions for the longitudinal model

• Variations of α y θ, with little change of speed u

• If ζ is too low, we need a feedback system (closed ζ y (
loop) to increase the damping factor ζ
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2 Transfer functions for the longitudinal model2 Transfer functions for the longitudinal model2. Transfer functions for the longitudinal model2. Transfer functions for the longitudinal model

Mode 2: s8.4341





0023.0

00230 032.0
0728000230

0023.0
22





0728.00023.0 

→ low frequency: phugoid mode
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2 Transfer functions for the longitudinal model2 Transfer functions for the longitudinal model

• variations of ´u and θ with ´α nearly constant

2. Transfer functions for the longitudinal model2. Transfer functions for the longitudinal model

• variations of u and θ, with α nearly constant

• kinetic and potential energy exchange

• airplane tends to a sinusoidal flight

• values of period and ζ depend on the airplane and itsvalues of period and ζ depend on the airplane and its 
flight conditions
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Linear SpeedLinear SpeedLinear SpeedLinear Speed

677.0s998.0s9.128s79s5.97
223.2s3691.3s0494.0

)s(
)s(u

234

2

e

'





We obtain: )(e

6

7
Step Response

Response to a step 
input using Matlab

5

6

input using Matlab

3

4

Am
pl

itu
de

1

2

0 500 1000 1500 2000 2500
0

1

Time (sec)
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Linear SpeedLinear SpeedLinear SpeedLinear Speed
To obtain a u value for the step input δe we use the final 

l th ( t i t bl )value theorem (system is stable):

  1)s(1)t(for)s(uslim)t(ulim ee
'

0

'

t



 

67709980912879597
223.2s3691.3s0494.01slim)t(ulim

s

234

2
'

0st








 




rad1for28.3u

677.0s998.0s9.128s79s5.97s
)(

e
'

2340st







 





d1fft1969
sec

ft600UwithUuuand '



 

1969rad1forsec
ft1969u e  º1forsec

ft36.34180
1969u e 
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Angle of AttackAngle of Attack 00800s00890s38871s01790)s( 23'Angle of AttackAngle of Attack
)311.1s806.0s)(0053.0s00466.0s(

0080.0s0089.0s3887.1s0179.0
)s(
)s(

22
e 







R t tResponse to a step 
input using Matlab: 0

Step Response

Can also be obtained
-0.4

-0.2

Can also be obtained 
using the final value 
th

-0.8

-0.6
Am

pl
itu

de

theorem:

º1forº14.1'  1 2

-1

1for14.1 e

0 500 1000 1500
-1.4

-1.2

Time (sec)
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Low period oscillation modeLow period oscillation modeLow period oscillation modeLow period oscillation mode

• low period: de 0.6 a 6s0 x 10-3
Step Response

• difficult to know its -2

existence: cause can be 

a wind burst or a sudden
-4

Am
pl

itu
de

a wind burst or a sudden 

activation of flight 
-6

controls

• fast damping without
0 5 10 15 20

-8

Time (sec)

Low period oscillation mode only: 

angle of attack ’α

• fast damping without 

effort from the pilot
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Phugoid ModePhugoid ModePhugoid ModePhugoid Mode
• phugoid’s period 

varies between 25s at8

9
Step Response

varies between 25s at 

low speed to several 
6

7

8

minutes at high speeds 

l d i
4

5

Am
pl

itu
de

• low damping 

• easy to control by pilot
2

3

easy to control by pilot 

(high period → more 
0 500 1000 1500 2000 2500

0

1

Time (sec)

time to react and 

activate flight controls)
Phugoid mode only: linear speed ’u
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Longitudinal ModesLongitudinal Modes
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Longitudinal ModesLongitudinal ModesLongitudinal ModesLongitudinal Modes

Amplitude oscillation period and damping depend onAmplitude, oscillation period and damping depend on

- aircraft (C coefficients…)

- altitude (air density)

- airspeedairspeed

• phugoid period increases with speed, and 
d ith ltit d t fi d M h bdecreases with altitude at fixed Mach number

• short-period oscillation mode does the opposite: 
decreases with speed and increases with altitude
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3 Lateral dynamics3 Lateral dynamics3. Lateral dynamics3. Lateral dynamics

Using the same hypothesis for longitudinal mode:Using the same hypothesis for longitudinal mode:





 

 Y WPURVmF 





 

  XZYZXZX JPQIIQRJRIPL 
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3 Lateral dynamics3 Lateral dynamics

Under the same airplane model we obtain the

3. Lateral dynamics3. Lateral dynamics

Under the same airplane model we obtain the 
characteristic equation:

0s00011350s02750s018760s018270s007480 2345  0s0001135.0s0275.0s01876.0s01827.0s00748.0 

Can be factorized:Can be factorized:

0)0040s)(092s)(8131s380s(s 2  0)004.0s)(09.2s)(813.1s38.0s(s 
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3 Lateral dynamics3 Lateral dynamics3. Lateral dynamics3. Lateral dynamics

• solution s=0

once disturbed, airplane recovers its original flight path

2 09 ll b id d• s= -2.09 roll subsidence mode:

airplane’s response to an aileron movement

• s=0.004 spiral divergence mode:

long time constant : easily controlled by pilot
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3 Lateral dynamics3 Lateral dynamics

Directional and spiral 

3. Lateral dynamics3. Lateral dynamics

divergence:

Aircraft has much directional staticAircraft has much directional static 
stability and small dihedral

Perturbation turns downward the 
left wing and turns leftleft wing and turns left 

Dihedral: left wing goes up

If dihedral is too small no time to 
recover horizontal position
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3 Lateral dynamics3 Lateral dynamics

08131s380s2 

3. Lateral dynamics3. Lateral dynamics

Dutch roll
0813.1s38.0s 

characteristics of both divergences: 

• strong lateral stability

• low directional stability• low directional stability

Needs artificial damper if natural 
damper is too low (yaw damper)
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3 Lateral dynamics3 Lateral dynamics

Dutch roll Mode

3. Lateral dynamics3. Lateral dynamics

If slip occurs airplane has a yaw movement in a givenIf slip occurs, airplane has a yaw movement in a given 

direction and a roll movement in the opposite direction
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3 Lateral dynamics3 Lateral dynamics3. Lateral dynamics3. Lateral dynamics

β: slip angle (between relative wind and roll axis)β p g ( )

ψ: yaw angle (between roll axis at equilibrium and 

actual roll axis)

Φ: lateral inclination angle (between yaw axis at 

equilibrium and actual yaw axis)
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3 Lateral dynamics:3 Lateral dynamics:3. Lateral dynamics: 3. Lateral dynamics: 

Transfer functions for rudder variationTransfer functions for rudder variation

)0040)(092)(8131380(
)73.2s)(53.1s(485.0

)(
)s(

2






)0660s0050s)(072s(381)s(

)004.0s)(09.2s)(813.1s38.0s(s)s(
2

2
r





)004.0s)(09.2s)(813.1s38.0s(s
)066.0s005.0s)(07.2s(38.1

)s(
)s(

2
r 







)75.37s)(06.2s)(01.0s(0364.0)s(
))()(()(r





)004.0s)(09.2s)(813.1s38.0s(s)s( 2
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3 Lateral dynamics:3 Lateral dynamics:3. Lateral dynamics: 3. Lateral dynamics: 

Transfer functions for aileron variationTransfer functions for aileron variation

)67.1s4.0s(1.22)s( 2 




)451)(299)(141(1710)(
)004.0s)(09.2s)(813.1s38.0s(s)s( 2

a




)004.0s)(09.2s)(813.1s38.0s(s
)45.1s)(29.9s)(14.1s(171.0

)s(
)s(

2 






)15.0s)(75.18s(171.0)s(
)004.0s)(09.2s)(813.1s38.0s(s)s(a




)004.0s)(09.2s)(813.1s38.0s(s)s( 2
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3 Lateral dynamics3 Lateral dynamics3. Lateral dynamics3. Lateral dynamics

1 5
Step Response

Dutch roll approximation
1.5

only slip and yaw: 1

e

37.1)s( 0.5
Am

pl
itu

de

64.1s27.0s)s(
)(

2
r 
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0
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4 Crossed coupling4 Crossed coupling4. Crossed coupling4. Crossed coupling

= when a turn movement or a maneuver over an axis

produces movement over a different axisp

Under hypothesis of small perturbations: movement

can be separated, the only coupling is lateral/directional:

- rudder movement → lateral turn

elevator deflection → pitch only- elevator deflection → pitch only
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4 Crossed coupling4 Crossed coupling

With higher angles of attack

4. Crossed coupling4. Crossed coupling

With higher angles of attack,

- pitch can generate roll and yaw (and thep g y (

opposite)

- roll maneuver → pitch and yaw (divergent)

→ pilot training

installation of roll speed limiters and mechanism that→ installation of roll speed limiters and mechanism that

increases angular damping
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