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Abstract. This paper presents the development of Meshless Methods based on the weighted least 
squares approximation (MLS) [1,3,14] to solve 2D mechanical problems. A particular construction 
support of weight functions involved in the construction of the MLS shape functions is elaborated. We 
propose a numerical simulation based on the coupling between the FEM and the MLS method. A 
Huerta et al. formulation is used to build the MLS shape function in the transition area FEM/MLS. 
 

1 INTRODUCTION 
Meshless methods have been proposed to deal with some numerical problems for solid 

mechanics such as large deformations, occurrence of high stress gradient or singularities and 
mechanical fields’ discontinuities. However, these methods are not easy to implement and 
shape functions are generated by iteration process [1]. In this paper, MLS approximation for a 
2D problem is developed. The influence of different weight functions on numerical 
implementation response, especially for weight interpolating functions [4,10,13] is studied. A 
new smooth support C1 weight function is proposed to manage some numerical integration 
problems. On the other hand, a method of nodal integration regularized gradient [5] was 
developed, to deal with rational functions integration problems. For Finite Element Method 
(FEM) and MLS method coupling [2], a 2nd order polynomial consistency was satisfied. 
Galerkin variational form is used to solve equilibrium [1,6]. A tensile test example of a 2D 
plane specimen with nonlinear elastoplasticity model and small perturbations is simulated 
with Abaqus® software and compared with our own software of FEM /MLS coupling. 

2 MOVING LEAST SQUARE APPROXIMATION (MLSA) 
For an available meshless approximation scheme, the moving least square (MLS) is 

considered to approximate random data from a discrete solution. Approximate function and 
gradient continuity are assumed. For a 2D problem, we consider   a polynomial basis, with m 
is the basis dimension. The linear basis is    〈     〉 (m=3) and the quadratic one is 
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   〈       
 

     
  
 〉 (m=6). Considering a 2D sub-domain Ω we approximate the 

distribution of the vector displacement    〈     〉 in the domain, over a number of 
randomly located nodes     〈     〉, i=1, 2,…, ntot. The MLS approximation        of 
  ,      , can be written as: 

   ( )    ( )      (1) 

Considering y an evaluation point different from MLS nodes for an approximation 
centered scheme. 

  ( )   ( )    (   )       (2) 

The approximant MLS        of           is expressed as follow: 

   ( )    ( )      (3) 

The coefficient vector      is resolved by minimizing a weighted discrete L2 norm defined 
as: 
                   ( )  ∑   (    )   (    )  ( )   ̂      

          ( )   ̂          ( )   ̂                (4) 

Where   (    )  the weight function associated to the node I, nloc the number of nodes 
MLS “I” for which   (    )  0,  ̂  are the nodal displacement of a node I along x direction, 
the matrix   and   are defined as: 
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Eq. (4) leads to the subsequent linear relation between      and  ̂: 

                    . 0A x x p   (5.a) 

 
 ( )        ∑          (    )    

                 (5.b) 

The MLS approximation is defined when the matrix  ( ) is non-singular if   rank is equal 
to m and regular if     ≥m. However, if the support is wide on a number of rather important 
nodes n, we lose the local interpolation character. 

By solving Eq. (5.a) and substituting       into Eq. (3) we obtain the following expression 
of the shape function: 

           ( )  ∑      ( )    
        avec      ( )    (    )  (    ) ( )       (6) 

Where      ( ) is the shape function of the MLS Approximation corresponding to a nodal 
point   .      ( )    when   (    )    (see Eq.6); thus the similarity of the support of both 
functions conserves the local character of the MLS approximation. We note that if 
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  (    )  Ck(Ω) and   ( )   Cl(Ω), I=1,2,..,     , j=1, 2,..,m; then      ( )  Cr(Ω) where 
r=min(k,l). This work is available for nodal displacement ûyi along y direction since    
〈     〉. 

3 WEIGHT FUNCTION 
Consider the decomposition of domain   ∑     

    based on set of MLS nodes. Each node 
affects the built of the shape functions associated with its neighborhood or domain of 
influence which can be of any shape: square, circular, etc.  In this paper we propose a 2-
dimensional boundary line, built with     sub-domains, as a support of the weight function. 
Each support granted to each node MLS (here node xi) is built by sweeping starting from a 
point xc on the support (Fig.1.c). The computing of the weight function for a point M is 
ensured by the fraction s like follow: 

  (    )  

{
  
 

  
   (

‖    ‖
  

)                                    

  (
|(    )  ⃗|

  
)  (

|(    )  ⃗|
  

)               

  (
‖    ‖
‖    ‖

)                                   

         (7) 

 
Figure 1: Weight function support definition a) circular support, b) rectangular support, c) polygonal support 

A smoothing of the polygon’s corners was carried out by a Bezier curves so as to guarantee 
at least a C1 continuity.  The construction of a Bezier curve (Fig.2) is carried out by respecting 
the tangency character on A0 and A2 and fixing their position with the radius curve  (Eq.8.a).  

   
Figure 2: Smooth support construction - Bezier curve 

                   ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗          ⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  
                   ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗          ⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  

    (8.a) 
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Then, a spline tangent is built with      and     , which leads to the curve construction 
as below in Eq.8.b. 

In implementing the MLS approximation, the basis function and weight functions should 
be selected at first. Weight function   (    ) is strictly positive in a sub-domain containing xi 
and zero outside what is called the support of influence of xi.  Both Gaussian and spline 
weight functions with compact supports have been developed. But in the present paper, the 
cubic spline weight functions were chosen to assume some integration difficulties (see [3]). 
Weight functions were considered as follow: 

           2 3 41 6 8 3pw s s s s          (9) 

To avoid the strong dependence of shape functions to the domain of influence caused by 
MLS approximation approach, a regularized weight functions were proposed (see [4, 10, 14]). 
Considering ∑          

     , we build singular weight functions satisfying the following 
condition:  

                (    )    (    )      (    ) ⁄  , i=1, 2,…,n, here    (|    |)             (10.a) 

To fulfill MLS interpolation condition (     ( )     ) with high accuracy the expression of 
interpolated weight function     of a node i at an interpolant point x is as follow: 

                (    )     (    ) ∑    (    ) 
   ⁄  , i=1, 2,…,n, here    (|    |)             (10.b) 

4 COUPLED FEM/MLS 

4.1  Consistency  

Consider a set of nodes xi in MLSFEMMLSFEM / / n  which FEM/MLS  is the 
transition zone between MLS and FEM shape functions (Fig.3). The MLS method is based on 
an approximation where the shape functions do not satisfy the Kronecker condition. 
Therefore, Huerta et al [9] proposed a combination of MLS and finite elements in the 
transition zone (Eq.11) ensuring a consistency condition (Eq.12) (see [2,6, 8,9,10]). 

   MLSFEMx /          ( )  ∑              ( )       ∑      ( )                     (11) 

MLSFEMx / ,  e
jN x  and      ( ) are MLS and FEM shape functions respectively,    

   are their nodal values. In the case of a centered scheme, the consistency condition is 
expressed bellow: 

       ( )  ∑              ( )          ∑      ( )                        (12) 
 

This coupling changes the equation 5.a as follow: 
         ( )  ( )   ( )   ∑              ( )           (13) 

                   ⃗⃗⃗⃗⃗           ⃗⃗ ⃗⃗ ⃗⃗⃗             ⃗⃗⃗⃗⃗⃗⃗       ⃗⃗ ⃗⃗ ⃗⃗⃗ (8.b) 
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4.2 Shape functions 

Dirichlet boundary conditions are taken into account at the interface FEM/MLS (Fig.3.A) 
[6,11]. In the studied example, linear evolutions of     and       shape functions, along x or y 
direction is at first evaluated. The line evaluation « a » (Fig.3) shows the generation of MLS 
shape functions for 1 ≤  ≤ 5 𝑚𝑚𝑚𝑚. The appearance of the combination of shape functions     
and      as gradually as 0 ≤  <1 𝑚𝑚𝑚𝑚 and 5 ≤  <6 𝑚𝑚𝑚𝑚 is shown in Fig.3.B. 

 

 Figure 3: (A) Coupled FEM/MLS flat 2d example and radius of influence (B) Evolution of shape functions for 
a radius of influence  ri=2mm along « a » y=2.5mm  

The curve generation shows the contribution of all nodes FEM and MLS for a given field 
of influence. The appearance of MLS shape functions depends on several parameters such as 
the order of consistency of the polynomial basis, the choice of weight functions          and 
MLS nodes distribution in the MLS domain (Fig.3). MLS shape functions      =0 when 
x=6mm (and by symmetry x = 0mm). Besides,       (6, y) = 0 for all equal consistency 
between MEF and MLS domains is fulfilled. According to Huerta et al., MLS shape functions 
      take care of the consistency of the approximation. In fact, MLS shape functions adapt 
their shape to recover the linear interpolation (Fig.3.B) in the interface domain FEM/MLS. 

Linear evolutions of     and       shape functions, along x or y direction with           
and          (Fig.4) are also outlined to estimate the shape function evolution along a well 
specific transition domain. Thus, The evaluation lines of « b » y = 5.5 mm along     [0 3] 
(Fig.4.b) and « c » x = 0.5 along     [3 6] (Fig.4.c) represent the shape functions curves at the 
corner transition zone MEF/MLS. The evaluation along the limit edge between MEF/MLS and MLS 
« d» (y = 5mm) denotes the disappearance of FE shape functions     (Fig.4.d) and this 
gradually as the distance from the line « b » to MLS domain. 
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Figure 4: Evolution of shape functions along lines: (b) y=5.5mm along x (c) x=0.5mm along y (d) y=5mm 
along x (e) x=1mm along y  

5   NUMERICAL IMPLEMENTATION 

5.1 Smooth nodal conforming integration 

A method of a regularized gradient nodal integration is developed to fulfill the problem of 
spatial integration of rational shape functions generated by MLS method. Only MLS nodes 
are used as integration points. Therefore, MLS  field is generated by Voronoi cells. Each cell 
defines a domain of nodal integration L of the representative domain associated to the MLS 
node "L" with x coordinates    (fig.5). The integration by Gauss-Legendre method is applied 
on the FEM domain because of its simplicity and robustness. For the stability of the integration 
scheme, a smoothing technique is proposed deformations by Chen et al. [5]. Thus, the 
modified strain tensor in the node "L" is as bellow. 

                ̃        
   
∫     

 

   
    

 

   
     

  
 =     ∫                

 
  

 (14) 

L is the boundary of the representative domain    of node "L" which area is    ∫     
  

. 

                ̃ (  )  ∑   ̃  (  )   
           (15) 

Where GL is a group of nodes in which their associated shape function supports cover node 
"L".   ̃ 

         ̃     ̃      ̃   ,       ̂    ̂   ,  ̃  is the stabilized gradient matrix used for 
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the nodal integration for the MLS domain (Eq.16) and    is the group of nodes "I" as     
         (Fig.5). 

                 ̃  (  )  [
 ̃  (  )  
  ̃  (  )

 ̃  (  )  ̃  (  )
], Tel que  ̃  (  )  

 
  
∫         (  )
 
  

     (16) 

 

 

Figure 5: Voronoi cells for MLS and supp (  ) generation 

Nodal evaluation components  ̃  (  ) are calculated at nodal location    (Eq.16). A 
boundary integration of representative nodal domain is required; letting    ⋃      

   as 
   are the boundary segments of   , Ns the total number of segments and M = Ns+1 the node 
number of the L domain. A five Simpson rule for each segment of the representative nodal 
boundary    is considered. The internal force vector reflecting mechanical equilibrium of the 
system is obtained from the following relationship: 

                 int int int int int
/ .



     
MLS

T
MEF MEF MLS MLS MEF L L L

L

F F F F F B x x A   (17) 

5.2 Numerical example 

Tensile test of a flat 2D plane strain specimen is chosen to test the numerical methodology 
(Fig.6.a). The material behavior is governed by an elastoplastic model without hardening: 

  3 : 0
2

  dev dev
Sf      (18) 

Where   is the Cauchy stress tensor, dev the deviatoric part of the stress tensor and S  a 
yield stress value. The material parameters used for this example are: Young's modulus 
E=210 GPa, Poisson's ratio  = 0.3 and S = 500 MPa. Some boundaries conditions are 
imposed to represent the fixation of the specimen with the grips. Displacement boundary 
conditions are imposed at one extremity as in Fig.6.b. Abaqus® software was used at first to 
simulate the plastic deformation of the specimen, the FE specimen is meshed with CPE4R 
elements (1.5x1.5 mm2 size). An implicit scheme resolution is used to solve equilibrium (see 
Fig.6.b). In Fig.6.c the same tensile test is used with our numerical FEM/MLS method is 
presented. The heads of the specimen are meshed with 2D FEM elements "assumed strain" 
which references are given in the following article [15]. The useful part of the specimen is 
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discretized with MLS nodes. Transition FEM/MLS and boundaries are discretized with 
transition elements FEM/MLS (pink area). Square weight functions with a radius of influence 
a = b = 2.5mm in order to assume an efficient MLS node number for   matrix construction. 

a) 

b) c) 

Figure 6: a) Plane specimen dimensions, b) Initial mesh of CPE4R elements + Dirichlet conditions, c) MEF, 
MEF/MLS, MLS domains repartition and MLS node initial position. 

After a maximum displacement of 0.3mm, displacement and stress distribution in the 
specimen for Abaqus® and numerical method based on coupled FEM/MLS are revealed 
below. 
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Figure 7: Numerical result comparison  between  Abaqus® software and the numerical method based on coupled 
FEM/MLS 

Figure 7 shows that results in displacement are coherent. However, low amplitude 
oscillations appear in y components for FEM/MLS approach. These oscillations are probably 
generated by nodal integration revision and the occurrence of zero-energy mode. Von Mises 
and various stress tensor results are qualitatively similar for both approaches. Plastic flow is 
confined in the center of the specimen by both approaches; nevertheless, FEM/MLS method 
seems to have a better zone location for a proper and specific MLS node position. 

The representation of the evolution of the stress xx is shown in Fig.8. We find that the two 
numerical approaches give equivalent results. However we visualize a difference in the 
transition zone FEM/MLS which is the highest stress gradient. 
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Figure 8: S11 stress evolution along the specimen length  

6 CONCLUSIONS 

A first validation of the coupled approach FEM/MLS is fulfilled. Results are hopeful, but 
some problems like zero-energy mode occurrence, nodal integration method sensitivity 
according to Voronoi cells construction, and weight functions radius sensitivity still remain. 
However, results give the possibility to set up some improvements to deal further with large 
deformation problems. 
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