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Timed-Elastic Bands for Manipulation Motion
Planning

Bence Magyar1, Nikolaos Tsiogkas1, Jérémie Deray2, Sammy Pfeiffer3 and David Lane1

Abstract—Motion planning is one of the main problems studied
in the field of robotics. However, it is still challenging for the
state-of-the-art methods to handle multiple conditions that allow
better paths to be found. For example, considering joint limits,
path smoothness and a mixture of Cartesian and joint-space
constraints at the same time, pose a significant challenge for
many of them. This work proposes to use Timed-Elastic Bands
for representing the manipulation motion planning problem,
allowing to apply continuously optimized constraints to the
problem during the search for a solution. Due to the nature
of our method, it is highly extensible with new constraints or
optimization objectives.

The proposed approach is compared against state-of-the-art
methods in various manipulation scenarios. Results show that
it is more consistent and less variant while performing in a
comparable manner to the state-of-the-art. This behaviour allows
the proposed method to set a lower bound performance guarantee
for other methods to build upon.

Index Terms—Motion and Path Planning; Mobile Manipula-
tion; Collision Avoidance; Domestic Robots

I. INTRODUCTION

MOTION planning is one of the most important aspects
of any robotic system as it enables its interaction with

the real world. Operating in the real world requires fast and
efficient methods that find plans for the robot to achieve its
goals.

In general the motion planning problem requires solutions
that allow the robot to reach a goal from a starting config-
uration without colliding with obstacles or itself, while re-
specting its joint limits and other constraints. Such a desirable
property for a trajectory is smoothness. Smooth trajectories
have bounded and derivable acceleration and jerk. A smooth
trajectory is vital for safe robot operation as it prevents
stress of the robot’s parts and allows humans to feel more
comfortable around the robot.

The current state-of-the-art, while producing remarkable
results, still has many aspects that cannot be handled efficiently
or, even worse, cannot be handled at all. For example, joint
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Fig. 1. TEB2MP plans around an obstacle. The robot must move the end-
effector from an initial position right of the green obstacle to a final position on
the left. The generated plan guides the trajectory under the obstacle allowing
a successful motion to be performed.

limits are usually clamped to some maximum value, leading
to situations where an otherwise valid plan becomes infeasible
[1]. Smoothness is often not considered at all or doing so
is ill-fitted to the nature of the planner [2], leading to jerky
motions and mechanical stress of the hardware. Optimization
using simultaneously Cartesian and joint-space constraints is,
in many cases, not possible [3].

Given the limitations of the state-of-the-art, this work pro-
poses a method for motion planning that addresses all of
the aforementioned issues. The presented approach follows
the work of [4] on Timed Elastic Bands (TEB) for Model
Predictive Control (MPC). TEB was first applied to mobile
base trajectory optimization [5].

The experiments presented in [4] show that the TEB ap-
proach is capable of handling the computational complexity
of non-linear systems. The problem is formulated as a sparse
graph structure solvable by means of non-linear least-squares
optimization. The system is fast enough to be run at the
control loop rate. To allow dynamic obstacle avoidance it
can be combined with the work presented in [5], which



2 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JUNE, 2019

allows temporal information to be included in the optimization
problem.

This paper proposes the use of TEB for solving
manipulation motion planning problems on complex
manipulator systems such as the one depicted in Fig. 1.
The derived method is coined Timed Elastic Bands for
Manipulation Motion Planning (TEB2MP).

The contributions of this work are:
• Introduction of TEB2MP, a novel trajectory optimization

method for robot arms based on TEB.
• TEB2MP’s trajectory continuity, ensured by a revisited

formulation of interpolation on manifolds encouraging a
k derivable trajectory spline.

• TEB2MP’s ability to handle Cartesian and joint-space
constraints in a single framework.

• A collision checking method which provides smooth,
continuous gradients based on overlapping volumes, en-
suring that the optimization is always able to escape
colliding states.

• A rich comparison of TEB2MP and state-of-the-art meth-
ods in multiple challenging scenarios through various
benchmarks.

Experimental results show a consistent behaviour with a
performance comparable to the state-of-the-art for all the
examined metrics. The consistency is measured through the
low variance of the results and acts as a lower bound for the
performance of the proposed method. In addition, TEB2MP’s
planning time grows linearly with the optimization iterations
which is required for time-critical setups such as in a reactive
planner or a controller. This behaviour guarantees that even in
difficult cases, in which more iterations are required, the total
time can be kept at an upper limit.

The rest of the paper is organised as follows. Sec. II
presents an overview of the state-of-the-art literature on the
Motion Planning problem. In Sec. III the proposed approach
is presented in detail. Sec. IV presents the experimental setup,
along with the evaluation metrics and results. Finally, in Sec. V
the paper is concluded and future work is presented.

II. RELATED WORK

The problem of motion planning has been actively re-
searched in the past years. The work of [6] introduces the con-
cept of Probabilistic Road Maps (PRM) for motion planning.
This approach initially constructs a roadmap by randomly
sampling the configuration space and creating a graph of
configurations. Then multiple queries can be performed by
adding a start and a goal configuration to the graph and
perform a graph search in order to find a valid path. Rapidly-
exploring Random Trees (RRT) [7] constructs a tree by ran-
domly sampling the configuration space and trying to connect
each sample to its nearest neighbour in the tree. The tree is
rooted on the start configuration of the motion planning query.
The search stops when the newly connected node is close
enough to the goal configuration. Rapidly-exploring Random
Tree Connect (RRTConnect) [2] extends the previous work by
iteratively constructing two trees rooted on the start and goal

configurations. The search stops when the two trees get con-
nected. These sampling-based methods’ main advantage is to
generate trajectories in complex and high dimensional spaces.
Despite their ability to generate feasible trajectories fast, the
quality of the produced solution is often poor. These methods
use randomness in the search procedure which often leads
to redundant or jerky motions reducing solution quality. As
the solution provided by the aforementioned sampling-based
motion planners is usually non-optimal, new asymptotically
optimal planners have been introduced in the work of [8].
It provides new methods, specifically the Rapidly-exploring
Random Tree* (RRT*) and Probabilistic Road Maps* (PRM*)
algorithms, that are almost certainly converging to the optimal
path given a cost metric.

Even though sampling-based methods are able to find
optimal paths, the provided solutions can potentially violate
constraints imposed by the robot hardware. For example,
the solution may not be feasible since they do not consider
any kinematics constraints. Recently some extension to RRT*
did incorporate kinematics considerations for simple models
such as a mobile-base [9]. To the best of the authors knowl-
edge, no sampling-method is able to handle the complicated
kinematics chains of a robotics arm. To impose constraints
that are respected by the found plan trajectory optimization
techniques have been introduced. These methods take an
initial trajectory as an input and optimize it based on a set
of cost functions. This initial trajectory can be generated
by the aforementioned sampling-based methods, interpolation
or other means. A prominent approach in this category of
motion planners is the Covariant Hamiltonian Optimization
for Motion Planning (CHOMP) [10] and its variants [11],
[12]. These methods optimize the cost function using covariant
gradient descent. Stochastic Optimization for Motion Planning
(STOMP), presented in [13], performs optimization on non-
differentiable constraints by drawing samples stochastically
from a set of noisy trajectories. Unfortunately, these methods
can potentially be computationally expensive as they require
a finely discretised trajectory to perform obstacle collision
checks and guarantee a smooth solution and may fail to
converge on even moderately hard problems. In addition,
the performance of STOMP is heavily dependent on the
parameters used for noise generation. In many cases a set of
parameters will produce good results, while the same set will
perform badly in a different problem.

To avoid the potential computational complexity of CHOMP
and STOMP the Trajectory Optimization for Motion Planning
(TrajOpt) method was introduced as a solution in [14]. It
proposes to formulate the optimization problem as a Sequential
Quadratic Programming (SQP) problem with continuous-time
collision checking. The reduced computational cost is achieved
by using a sparse solution, where a trajectory is represented
by a small number of states and using continuous-time colli-
sion checking. In addition, the SQP formulation allows hard
constraints to be imposed such that the produced plan is
guaranteed to respect them. TrajOpt was also proven versatile
in a series of different tasks presented in [15].

The work of [3] proposes a joint-space trajectory representa-
tion using Reproducing Kernel Hilbert Spaces. They elaborate
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on the optimization process and update rules with respect to
smoothness and obstacle avoidance constraints and show to
perform better than CHOMP in a simulated scenario. There
is a strong motivation for using such representations as they
make reasoning about smoothness, described by acceleration,
jerk, snap etc., trivial. Unfortunately, the many open param-
eters make this method hard to tune for any practical appli-
cation. The authors propose using different kernels which all
come with their respective parameters on top of the parameters
of the proposed optimization method. Unfortunately, there
was no suggested method to tune the parameters making it
hard to apply in a different problem or even replicate the
results. Moreover, adding additional constraints in a gradient-
dependent system requires adapting the optimization process
itself.

The work of [1] presents a method for motion planning
using Gaussian Processes (GPs). A trajectory is represented
as a continuous valued function that maps time to robot
states. Trajectory optimization is performed using probabilistic
inference. A GP is used to provide a prior function that encour-
ages smoothness. Collision free trajectories are encouraged
by a likelihood function. The posterior distribution of the
GP prior with the likelihood function is used to calculate
the maximum a posteriori (MAP) estimate of the trajectory.
This method, coined Gaussian Process Motion Planner 2
(GPMP2) provided comparable success rates with the state-of-
the-art while requiring much less computational effort. Despite
the presented benefits the presented approach is limited in
various ways. Joint limits are respected only by clamping
their maximum values in the initial trajectory. This can lead to
situations that the found trajectory may not be valid after the
clamping operation and there is nothing explicitly encouraging
the optimizer to respect joint limits. Moreover, trajectory
smoothness is only encouraged by using a prior having no
acceleration. While this may be enough in basic cases, it
does not guarantee that the final generated trajectory will be
smooth. Finally, the presented method does not consider the
generated trajectory length in either euclidean or joint space,
nor it allows for the introduction of waypoints that must be
reached in various stages of the generated trajectory.

III. METHODS

In this section, we describe in detail the proposed method
(i.e., TEB2MP) after a brief description of TEB.

A. Timed-Elastic Band

Timed Elastic Bands was originally developed for mobile
base robots [5] navigation planning. It is formulated as a
sequence of n+ 1 robot poses ∈ SE(2) linked together from
an initial configuration to a goal:

X = {x0, . . . , xn} (1)

Consecutive poses are connected by time intervals,

∆T = {∆t1, . . . ,∆tn} (2)

with ∆ti denoting the time interval required for the robot to
move from a pose xi−1 to xi along the trajectory.

Defining the set of pairs,

Q = {(x1,∆t1), . . . , (xn,∆tn)} (3)

the TEB is formulated as a multi-objective optimization prob-
lem:

Q∗ = argmin
Q

∑
k,i

wkek,i (4)

which can be solved by means of a least-squares non-linear
solver. The terms wk are weights used to balance the different
contributions, and ek,i the i-th cost contributions of objective
k during the interval ∆ti.

B. Timed-Elastic Bands for Manipulation Motion Planning

To achieve a smooth trajectory that respects joint limits and
avoids obstacles, a trajectory optimization method is proposed.

Unlike [5] which TEB’s states lie in Cartesian space, our
states are expressed in the joint space so that we have:

Θ = {θ0, . . . ,θn} (5)

the joint-space trajectory, where θi is the complete joint state
of the arm at time i, and

Q = {(θ1,∆t1), . . . , (θn,∆tn)} (6)

is our new set of pairs.

Algorithm 1 Timed Elastic Bands for Manipulation Motion
Planning
Input: Start,Goal
Output: Trajectory

1: Θ0 ← GENERATEINITIALTRAJECTORY(Start,Goal)
2: G← BUILDGRAPH(Q)
3: i← 1
4: e← GETERROR(G)
5: while e > 0 or i ≤ NumIter do
6: G← NLSOPTIMIZATION(G)
7: e← GETERROR(G)
8: i← i+ 1
9: Trajectory ← GETTRAJECTORY(G)

10: return Trajectory

First, an initial trajectory Θ0 is generated in order to seed
the optimization. Given an initial configuration θ0 and a final
pose xn of the end-effector, the desired final configuration θn
is retrieved by means of inverse kinematics using Trac-IK. Θ0

is then generated using an interpolation algorithm.
The next step is to represent the problem as an optimization

graph G. It is constructed with vertices that represent robot
configurations and time increments, the variables to be opti-
mized. Vertices are then connected by edges that constrain
different aspects of the robot motion (velocity, continuity,
obstacle-avoidance...), and are further detailed hereafter. A
vertex in the presented system is a unit of data subject to
optimization. Vertices do not need to be homogeneous across
the graph, in fact TEB2MP employs two types: a robot state
vertex defined by the robot states θi; a time difference vertex
∆ti defines the time difference between two consecutive robot
states. The robot state is represented by a set of joint position
values, denoted by θi and the corresponding Cartesian-space
end-effector pose xi. The number of vertices used is the
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Fig. 2. An illustration of a non-specific TEB2MP sub-graph: Vertices (circles) θ represent different configurations over time while ∆t are the time intervals.
Vertices are connected through factors (squares) representing the various cost functions.

same as the number of points making up the initial trajectory
Θ0. These vertices are then connected by edges describing
constraints in the robot’s motion as error functions to be
minimized. Their connections to vertices define the parameters
of the functions they represent. The graph structure underlying
the TEB2MP problem is highlighted in Fig. 2. It shows a sub-
graph in the form of a factor graph for readability. Algorithm
1 summarizes the overall method.

The different constraints employed by the method are de-
tailed below.

1) Joint-space position, velocity and acceleration limits:
The first set of edges are limiting the joints positions, velocities
and accelerations by enforcing upper and lower boundaries
(i.e. inequality constraints).

Similarly to [4] we use a non-linear least-squares solver to
optimize the problem. Inequality constraints are approximated
by two-sided quadratic penalties.

The joint position limits are inspired by Eq. 83 in [16]. It is
adjusted so that P : Rdof → [0, 1] where 0 is the value given
when the joint is within the limits and 1 is when outside.

el =

{
0, ϑi ∈ [ϑL

i , ϑ
U
i ]

‖exp( (ϑi−ϑL
i)∗(ϑU

i−ϑi)

(ϑU
i−ϑL

i)2
)‖, otherwise

(7)

where the variable ϑi denotes the state of a single joint which
may be an angle or a position, for rotary and linear joints
respectively. We define θ = [ϑ0, ..., ϑdof]

T to represent a full
joint state configuration. Variables ϑL

i , ϑ
U
i are the joint limits

for ϑi, while el is a vector containing the individual error el,i
for each joint.

The rest of the constraints hereafter use a common penalty
function,

β(ν, νL, νU) =


−ν + νL, if ν < νL

+ν − νU, if ν > νU

0, otherwise
(8)

with ν a constrained variable, νL and νU respectively ν’s lower
and upper bounds, and <, > are element-wise comparisons.

Velocity and acceleration are approximated by using back-
ward finite differencing through a sliding window over TEB
of, respectively, the past two and three states.

θ̇i =
θi − θi−1

∆ti
(9)

θ̈i =

θi−θi�1

∆ti
− θi�1−θi�2

∆ti�1

∆ti + ∆ti−1
(10)

The respective errors are then,

ej̇ = β(θ̇i, θ̇
L, θ̇U) (11)

ej̈ = β(θ̈i, θ̈
L, θ̈U) (12)

2) Cartesian-space velocity and acceleration limits:
Similarly to Eqs. 9-12, TEB2MP also supports veloc-
ity/acceleration constraints in Cartesian-space where the pose
of a target frame is retrieved through forward kinematics.
Given,

x =

[
R t
0 1

]
, (t,q) ∈ SE(3) (13)

with t a position vector and R, q orientation representations
(respectively rotation matrix and unit quaternion), we have,

ẋi =
xi − xi−1

∆ti
(14)

ẍi =

xi−xi�1

∆ti
− xi�1−xi�2

∆ti�1

∆ti + ∆ti−1
(15)

with the respective errors,

eċ = β(ẋi, ẋL, ẋU) (16)

ec̈ = β(ẍi, ẍL, ẍU) (17)

3) Ck Smooth Curve: The smoothness cost function aims at
pushing the optimized trajectory onto a smooth (differentiable)
curve on a manifold. First a few definitions are introduced.

A Lie group is an analytically differentiable (aka smooth)
manifold. It implies the existence of a unique linear space
tangent to any point of it. Given χ a point on a manifold space
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M, a vector space tangent M at χ exists and is represented
by TM(χ).

In the scope of this work, we consider elements of the group
SE(3). Its tangent space is se(3) whose elements are expressed
in the isomorphic Cartesian space such that v ∈ R6. The
mapping relating R6, Lie algebra se(3) and Lie group SE(3)
is as follows:

v ∈ R6 '−⇀↽−
'

se(3)
exp(·)−−−−⇀↽−−−−
log(·)

x ∈ SE(3) (18)

where log(·) and exp(·) map the SE(3) element to/from R6.
We define the operators ⊕ and 	 such that:

x⊕ v = x ◦ exp(v) (19)
v ⊕ x = exp(v) ◦ x (20)

xa 	 xb = log(x−1
b ◦ xa) (21)

The smoothness constraint proposed here results from a
revisited formulation of a geometric algorithm to generate
smooth curve on Lie manifold [17]. Given two poses xi and
xi+1, the method in [17] allows for interpolating a pose xt
with t ∈ [i, i+1], so that it lies on a smooth curve connecting
xi and xi+1.

The interpolation algorithm is adapted so that, given three
consecutive poses xi−1, xi and xi+1 of the end-effector in
Cartesian-space, and their associated time intervals ∆ti and
∆ti+1, the cost term can be described as follows:

l = xi−1 ⊕ (t · vi−1) (22)
r = xi+1 ⊕ ((t− 1) · vi+1) (23)

ρ = log(r ◦ l−1) (24)
x̂i = (φ(t) · ρ)⊕ l (25)

where t = ∆ti/(∆ti + ∆ti+1) and vi is the tangent to the
curve at point i:

vi = xi 	 xi−1 (26)

The resulting error function is then,

es = x̂i 	 xi (27)

The smooth aspect of Eq. 25 lies partly in the real valued
smoothing function φ(t). The reader can refer to [17] for more
detailed reference and proofs of these critical properties.

4) Collision avoidance: This set of edges aims at avoiding
collisions with the environment as well as with the robot
itself. To detect collisions the robot is modeled by Axis-
Aligned Bounding Box (AABB) representations and collisions
are detected using Flexible Collision Library (FCL) [18].
This method efficiently approximates complex shapes using
bounding box segments in otherwise expensive computations.

TEB2MP implements the collision error as a cost function.
It is computed as the sum of the overlapping area of the
AABB with the environment and the distance of the robot
with the closest obstacle (Eq. 29). To ensure continuity in
collision checking, TEB2MP proposes inter-vertex collision
cost computation by linearly interpolating Nc configurations
between the two corresponding vertices, computing the cost
over these states and the first vertex. A visual example is

Fig. 3. Box scenario: Starting from the right hand side of the box,
the robot has to reach the goal on the left side of the box.

shown on the right side of Fig. 2 (smaller intermediate yellow
robots). The collision cost function reads,

g(θ) = V̆ (θ) + β(Γ(θ), dL) (28)

eo = [g(θ1), g(θ1→2,1), ..., g(θ1→2,Nc
)]T (29)

where θ1,θ2 are the two waypoint vertices associated to
each instance of this edge, θ1→2,i denotes the i-th linearly
interpolated intermediate state between θ1 and θ2, V̆ is the
overlapping volume of the robot at state θ, Γ is the distance
to the closest collision point and dL denotes the minimum
distance to keep from obstacles.

5) Cartesian Viapoint: Viapoints are used to push the robot
end-effector to pass through specific points (xv) in Cartesian-
space. The cost function reads,

ev =

[
‖pi,pv‖
d(qi,qv)

]
(30)

where xv is a Cartesian pose of the end-effector, xi = (pi,qi)
and d(q1,q2) is the unit quaternion distance ([19], Eq. 10).
Currently, TEB2MP uses it to implement goal tolerance.

IV. EXPERIMENTS

To validate the proposed TEB2MP method a series of
simulated experiments were designed. This section describes
the experimental setup along with results extracted from
simulations.

TEB2MP is compared against state-of-the-art planners,
RRTConnect, STOMP and TrajOpt in three different scenarios.
Every scenario uses the TIAGo1 robot which provides an 8
Degrees of Freedom (DoF) manipulator system: a 7 DoF arm
on an elevating torso. In the first scenario the robot has to
move its arm toward an end-effector goal position in an empty
world. In the second scenario the robot has to plan a path
around a free-standing box placed in front of it (Fig. 3). In
the third scenario the robot has to perform a manipulation task

1http://wiki.ros.org/Robots/TIAGo
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Fig. 4. Industrial manufacturing scenario: Starting from the top right shelf,
the robot has to reach the goal on the left of the bench.

in an industrial setting first introduced in [1]. In this setting,
the robot has to reach the top of a shelf on it right-hand
side and move to a bench on its left-hand side as depicted
in Fig. 4. Our TEB2MP implementation relies on the General
Graph Optimization (g2o) library [20] for building and solving
the non-linear least-square problem and on the manif library
[21] for the Lie theory aspect. All the scenarios are simulated
using Robot Operating System (ROS) and MoveIt!, the output
of these planners are directly applicable to real robots using
ros control [22].

Given the probabilistic nature of some planners multiple
trials are performed for each scenario and statistical results
are presented. Specifically, each planner is executed a 100
times for each scenario and results were compiled from these
trials. For TrajOpt and STOMP a linear initial trajectory is
used that is generated by linearly interpolating between the
start and end joint states. For TEB2MP both a linear and a
cubic polynomial interpolation method is benchmarked. This
is done to see the behaviour of the proposed approach using
different initialization methods. Additionally, to achieve a fair
comparison TEB2MP, STOMP and TrajOpt are initialized
with the same length of initial trajectories, each one having
20 points.

To ensure equal ground for the algorithms all experiments
were conducted using the MoveIt! framework [23] and were
ran on a system having an Intel i7-4710MQ, 2.5GHz CPU,
8GB of RAM and running on Ubuntu 16.04.

The first evaluation metric is the time required to find a
valid plan. As the robot operates in the real environment it
is important to be able to find plans in a timely manner.
The second metric is the success rate of each planner at
each scenario. It is used to demonstrate the ability of each
planner to find a path. The third metric is the smoothness of
each generated path measured in rad/s2. Smoother trajectories
require less acceleration or deceleration, therefore putting less
stress on the mechanical parts of the robot. It must be noted
that for the smoothness metric, the lower the score the better.

TABLE I. Metrics used in our experiments.

Metric Description

Planning time in s τ
Success rate in % sr
Smoothness in rad/s2 θ̈

Distance from joint limits

n∑
i=1

m∑
j=1

ϑi,j�ϑmin
i,j
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i,j

�ϑmin
i,j
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(d) Distance from joint limits

Fig. 5. Empty scenario experiment results from 100 queries with each
planner. All planners manage to find a plan in every query. RRTConnect
is performing better regarding planning time but worse in the other metrics.
TrajOpt is the best in smoothness, while STOMP is the best in joint limit
distance. The proposed TEB2MP method performs on par with the other
methods.

Finally, the last metric is distance from joint limits. This metric
is used to show how far on average each joint is from its limits.
Being further away from the joint limits is beneficial as plans
that are close to the joint limits may be harder to execute due
to hardware lock-in or precision errors. In addition, operating
close to the joint limits, may have a negative effect in the
manipulability [16] and the ability to find new plans.

A. Empty environment

This section describes the results of the empty world sce-
nario which acts as a baseline experiment. The start and the
goal states for the robot are marked by coordinate frames in
Fig. 3 but the collision box was removed.

Statistical results for the various tested planners can be
seen in Fig. 5. Regarding the planning time metric we can
see that RRTConnect performs better than any other planner.
STOMP and TEB2MP perform on average six times slower
than RRTConnect. TrajOpt comes last requiring on average
2.5 times the time of STOMP and TEB2MP. Success rate is
100% for every planner. An expected result since the scene is
empty. Regarding the smoothness metric TrajOpt outperforms
every other method. STOMP and the two variants of TEB2MP
are performing equally good, while RRTConnect performs
worse than any other method. Finally, regarding the average
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Fig. 6. Floating box scenario experiment results from 100 queries with each
planner. RRTConnect has the best planning time and success rate but the worst
smoothness and distance from joint limits. TrajOpt has the best smoothness,
while STOMP has the best distance from joint limits. Both have limited
success rate though. TEB2MP provides an overall good performance that is
consistently close to the best in all metrics.

normalized minimum joint limit distance STOMP performs
best. TEB2MP with linear initialization is second, while cubic
initialization comes third. TrajOpt performs a bit worse than
the cubic TEB2MP, while RRTConnect performs the worst of
all.

B. Box environment
Fig. 3 depicts the second scenario with a floating box where

the planners were tested. The results for this experiment are
presented in Fig. 6.

RRTConnect is still the best regarding the planning time.
STOMP has high variance performing better than TEB2MP
in at least 50% of the cases but there were cases that it
performed much worse. Both flavours of TEB2MP required
more time on average but performed more consistently than
STOMP. TrajOpt again required the most time to find a plan.
Regarding the success rate of finding a plan, RRTConnect
managed to find a plan in 90% of the cases being the top
planner in that metric. TEB2MP is second achieving a score
of almost 80%. STOMP provided a success rate close to
45%, while TrajOpt had the lowest score. When it comes to
smoothness, TrajOpt performs better than the other planners.
STOMP performs marginally better than TEB2MP. On the
other hand RRTConnect performs much worse and shows
big variance in its results. Finally, regarding the joint limit
distance, STOMP performs better than any other method.
TEB2MP is slightly worse but shows a much more consistent
performance, while RRTConnect and TrajOpt are the worst.

C. Industrial environment
The last and most complex scenario shown in Fig. 4 is an

industrial setting presented in [1]. The results can be seen in
Fig. 7.
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Fig. 7. Industrial scenario experiment results from 100 queries with each
planner. RRTConnect is the best planner regarding planning time and success
rate. TrajOpt performs better in terms of smoothness. Regarding the distance
from joint limits all methods perfom equally good. TEB2MP is performing
consistently good in all the cases.

As with the previous experiments RRTConnect performs
better than any other planner in terms of planning time.
STOMP is second, with the TEB2MP following. The least
performing in this metric is again TrajOpt. Regarding the suc-
cess rate RRTConnect manages to find a path in all the cases.
TrajOpt is second, with TEB2MP and STOMP following a
bit behind. For the smoothness criterion TrajOpt performs the
best. STOMP is coming second, showing a better behaviour
than TEB2MP in half of the paths that it found. The other 50%
performs the same as the TEB2MP. RRTConnect performs
much worse in this metric. Finally, in the joint limits distance
all the methods perform comparably good. It is noteworthy
that RRTConnect performs consistently good in all the plans
found.

Since the examined environment mimics one of the envi-
ronments presented in [1] a comparison can be attempted with
TEB2MP. Although our experiments do not include GPMP2
with the TIAGo robot, an approximate comparison can be
made as the PR2 robot is fairly similar from a motion planning
perspective. In the same environment with the PR2 robot
GPMP2 generated plans reported an average planning time
of 20ms, adding this to the computation time for the Signed
Distance Field (SDF) used there, a GPMP2 plan takes 800ms,
similarly to the proposed method of this work method without
using SDF. Regarding the success rate [1] reports a single
number for the PR2 robot while two different problem sets
and scenes were used. Therefore, a direct comparison cannot
be made. Nevertheless, even in the case that GPMP2 has a
higher success rate, no guarantee is provided regarding the
smoothness of the trajectory or the distance from joint limits.

V. CONCLUSIONS AND FUTURE WORK

The work presented in this paper studies the manipulation
motion planning problem. It proposes the Timed-Elastic Band
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for Manipulation Motion Planning (TEB2MP) planner. This
planner allows for multiple aspects of the motion plan to be
constrained or optimized during planning. Examples include,
position, acceleration or velocity constraints in Cartesian and
joint-space and path smoothness. The proposed approach is
compared against state-of-the-art methods in three different
scenarios of increasing difficulty. Results show that in the
worst case it performs in a comparable manner with the state-
of-the-art in every chosen metric. In general it provides an
overall improved performance which is consistently delivered
with a lower variance.

Despite the demonstrated benefits of the proposed approach
there are several directions for future exploration that could
further improve it. Firstly, the optimization could be improved
by using a Sequential Quadratic Programming (SQP) solver
with hard constraints as proposed in the recent work of [24].
Compared to the currently used Linear Block Solver (LBS),
the use of SQP will move towards a pure Model Predic-
tive Control (MPC) formulation which can generalize better.
Additionally, the planner’s performance in highly cluttered
environments could be improved by dynamically increasing
the resolution of the planner around often colliding points.
Different initialization methods could improve the success
rate of the planner as well. For example, instead of using
linear or cubic interpolation, joint or Cartesian trajectories
from other motion planners such as RRTConnect could be
used to initialize the planner. Finally, the planning speed can
be improved by introducing more efficient collision checking
methods, such as precomputed SDFs as done in the work of
[1] or locally updated collision environments.

As further research targets one could look at the nature
of the original TEB implementation. Given that there is the
notion of time in the planning procedure one could extend
the planners capabilities by introducing dynamic information
for both obstacles and goals. This way a fully dynamic
environment can be supported. In addition, the planner could
be extended to allow sequential tasks by adding multiple
goals. This would allow for planning more complex, multi-
step tasks. Finally, the presented approach could be integrated
with systems having complex dynamics as the ones presented
in [25]. The limits in the acceleration and the velocity of the
manipulator imposed by the proposed approach can potentially
facilitate the control task of such a highly coupled dynamic
system.
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