
Vehicle pose estimation via regression of semantic
points of interest

1st Javier Garcı́a López
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Abstract—In this paper we address the problem of extracting
vehicle 3D pose from 2D RGB images. An accurate methodology
is presented that is capable of locating 3D coordinates of 20
pre-defined semantic vehicle points of interest or keypoints from
2D information. The presented two-step pipeline provides a
straightforward way of extracting three-dimensional information
from planar images and avoiding also the usage of other sensor
that would lead to a more expensive and hard to manage system.
The main contribution of this work is the presented dedicated
network architectures that are able to locate simultaneously
occluded and visible semantic points of interest to convert
these 2D points into 3D space in a simple but efficient way.
The presented method uses a robust network based on Stack-
Hourglass architecture for precise prediction of semantic 2D
keypoints from vehicles even if they are occluded. Furthermore,
in the second step another dedicated network converts the 2D
points into 3D world coordinates and therefore, the 3D pose of
the vehicle can be automatically extracted, outperforming state-
of-the-art techniques in terms of accuracy.

Index Terms—image processing, deep learning, 3D pose esti-
mation

I. INTRODUCTION

Obtaining accurate and trustworthy surrounding information
is one of the biggest challenges of the autonomous driving.
Being able to extract what surrounds a vehicle, its position,
shape and relative velocity is very important to avoid obstacles
or to follow a driving lane properly, e.g. For that reason, recent
techniques like sensor fusion have provided accurate infor-
mation extracted from several sensors mounted on the ego-
vehicle, that collect as much data as possible. This techniques
are able to provide accurate environmental data but they also
have a limitation which is the required computational time to
record, synchronize and process this data.

To avoid such limitations, over the years several image
based techniques have been presented for extracting 3D pose
by only using cameras. Furthermore, the appearance of deep
learning techniques has meant a significant step forward in
image processing, by being able to extract and learn simulta-
neously several features from the same image set, so that by
designing and training properly a network, no need of other
resources or processing steps are needed to extract the 3D
pose.

Fig. 1. Predicted 3D semantic keypoints from calculated 2D keypoints . For
each column, the original vehicle image is shown first, followed by keypoint
heatmaps, detected vehicle semantic keypoints on the original image (being
the filled red circles de 2D ground truth, filled yellow circle the predicted
keypoint (non-occluded), the red circumferences the ground truth for occluded
keypoint and lastly the blue circumferences is the predicted occluded keypoint.
Underneath this image is the predicted 3D model of the semantic keypoint
and lastly is this model adjusted to the original image to compare the results.

II. RELATED WORK

Pose estimation is a well studied problem and many ap-
proaches have been presented over the years as a solution to it.
In this section, we motivate this work explaining the network
architecture this work is based on and defining the challenge
of the 3D pose calculation.



A. Stacked Hourglass Architecture

The Stacked-Hourglass method proposed by Newell et al.
in [1] for human pose estimation implied a big step forward
into robust and accurate 3D human pose extraction. This
network is based on the successive steps of pooling and up-
sampling that are done to produce a final set of predictions,
as presented in Figure 1.

In the case of human pose estimation, extracting human
joints and learning typical spacial relationships between them
has proven to provide good results to the problem of human
pose extraction. Research works like [2] cluster detections and
predict the probable location of a neighboring joint [1]

The hourglass is a simple, minimal design that has the
capacity to capture multiple features and bring them together
to output pixel-wise predictions [1]. The aim of using this
network architecture is to obtain full context information
important for pose extraction, meaning that, not only the exact
prediction of the position of the keypoints is important, but
also the pose estimation requires a full understanding of the
vehicle.

B. Pose estimation

In the last years, works like DeepPose [3] introduced a new
approach to the typical ones for solving the problem of human
pose extraction. This work presented a network to calculate
the (x,y) coordinates of human joints. Further research like
[4] proposed a similar idea as the one presented in this paper
based on heatmap calculation around detected human joints.

In the field of vehicle pose extraction, research works like
[5] or [6] cluster detections and predict the probable location of
a neighboring joint. Then a comparison of multiple projected
3D models and the 2D contours calculated from the detected
2D points is performed, until a 3D model that matches the
calculated 2D projection is found. This work uses the 3D
projection compared with image contours to refine the pose
estimated by discriminative part based model detector using
the Pascal3D+ dataset [7].

Deep Manta bases the first step of its pipeline in FAST R-
CNN [8] for a precise vehicle location. This is followed by
a refinement step using Non-Maximum Suppression [9] algo-
rithm and ending with a 2D-3D matching phase for comparing
the extracted 2D vehicles and their 2D information (visible
parts, part coordinates, ...) with multiple 3D models the extract
the best 3D model that would fit into the information extracted
from the first step of the pipeline.

Methods like the mentioned [5] have proofed to be very
accurate and trustworthy although one of the biggest con-
straints of such approaches is the need of a big amount of
training data (2D and 3D models) together with a multi-
step pipeline that requires long training time. In this work,
a fast, straightforward two-step pipeline that overcomes such
limitations from other methodologies and also is able to
perform a precise keypoint location from occluded points,
which has been typically another important challenge in 3D
pose extraction problems, is presented.

III. PROPOSED METHOD

In this paper, we follow a similar approach than [10] by
representing the 3D pose from a vehicle with N=20 keypoints
and parameterized by a 3N vector P = [p1, .., pN], where
pi is the 3D location of the i-th keypoint. Similarly, 2D
poses are represented by 2N vectors U = [u1, ..,uN], where
ui are pixel coordinates. Our goal is then estimate the 3D
pose vector y. This will be achieved by using a simple but
effective network architecture, adding residual connections and
using batch normalization, trained on vKITTI dataset [11] with
labelled vehicle keypoint and taking into consideration the
camera frame as global coordinate frame following the idea
of [12] since this makes the 2D to 3D problem similar across
different cameras.

In the presented work we use monocular input images with
a resolution of 256x256 pixels that correspond to images in
which only one vehicle is present. The vehicle in the image
can be in multiple positions and with a hard, moderate or light
occlusion. The training and validations image-sets correspond
to both real and virtual images (virtual images extracted
from the vKITTI dataset [11]). This method also predicts
the probability of a keypoint of being occluded based on the
notation of the training dataset. This probability is displayed
together with the calculated heatmaps with Gaussians around
predicted keypoints.

This network needs full input resolution of 256x256 and the
highest resolution of the hourglass is 64x64. The full network
starts with a 7x7 convolutional layer with stride of 2, followed
by a residual module and a round of max pooling to bring the
resolution down from 256 to 64 [1].

Given an input image, the network joint optimization
minimizes the global function:

L = L1 +L2 (1)

being L the global network loss function,L1the loss func-
tion for the heatmaps prediction following the least squares
method (Equation 2) and L2the loss function for the occlusion
prediction.

L1 =
1
N ∑

i
(pi− p′i)

2 (2)

L2 = log(
eyi

∑i eyi
) (3)

In the loss calculation, pi is the predicted location for keypoint
i, p′i the keypoint location as ground truth for keypoint i and
yi is the i-th position of the output vector of the final FCN
layer for the occlusion prediction in the forward pass.

A. Dataset generation

For the purpose of this research we have used a set of
43600 images of different vehicles in different positions in
which 20 semantic points have been labeled, following the
procedure defined by [13]. We have increased the training
and validation dataset formed by real images with synthethic
images of vehicles extracted from vKITTI dataset [11] and



Fig. 2. Presented network architecture in this paper with 8 loops of down-
sampling/up-sampling and parallel occlusion prediction. Heatmaps extracted
from encoder/decoder architecture are followed MSE (Mean Squared Error)
loss calculation and occlusion prediction is followed by a fully connected layer
and posterior softmax loss calculation. A parallel residual block runs with the
series of convolutional / deconvolutional for a more precise up-sampling of
the image from 64x64 to input resolution (256x256).

labeled in a similar way as in 3. Also, the original VeRi Dataset
was extended with the notation of the occluded keypoints in
the images plus one binary term indicating if the keypoint is
occluded or not. This labeling is necessary for the occlusion
prediction explained in Section III-B.

Fig. 3. Labeled semantic keypoints on the vehicles present in the training
dataset [13].

As explained in section III together with the keypoint
detection, our method is capable of predicting the probability
of a keypoint to be occluded in the image. This is obtained by
the labeling of the training and validation dataset, by defining
the position of the keypoints followed by a binary term (0 or
-1) indicating not occluded or occluded respectively.

Fig. 4. Predicted heatmaps with Gaussian drawn around detected keypoints
extracted during training and validation phase.

For the final step of the presented pipeline an image set
based on virtual Kitti [11] has been created and self labeled
in a similar way than the real dataset used for the keypoint
detector. The training data for the 3D calculation network has
been pre-processed (rotated and translated) to have all training

data in a single global camera frame following the approach
presented in [12].

B. Vehicle keypoint localization

Once the dataset has been generated, we follow the net-
work architecture presented in [III] to train the model with
35000 images for predicting the semantic keypoints and the
occlusions of these keypoints.For this purpose, six steps
of encoding-decoding (7x7 Convolution followed by Batch-
normalization and pooling layers together with their respective
residual blocks as specified in [1]) as part of the applied
Stacked-Hourglass architecture have been implemented. The
training images will come into each processing step and the
output of the processing will be input of the next loop of
encoding-decoding. This mechanism allows the network to
learn not only local but also global context of the extracted
features, which is one of the main advantages of this network
architecture.

These steps allow the network to obtain several features
from the training data We will then obtain a set of vehicle
part candidates ∆J for multiple keypoints, where ∆J = {d j :
f or j ∈ {1...N j}}, with N j the number of candidate keypoint
and d j ∈ ℜ2 is the location of the j-th detection candidate
vehicle keypoint.

Fig. 5. Results of keypoint detection vs. ground truth labeling considering also
self-occluded points in the vehicle. The yellow circles are the predictions and
the red squares mark the ground-truth with non-occluded points. Blue circles
are ground truth are re circles are predictions of keypoint position with self-
occluded points (partially or totally occluded).

As detailed in the architecture, after the down-sampling/up-
sampling phases of the Stacked-Hourglass we calculate the
MSE (mean squared error) as loss function and feed it as
input for the back-propagation phase.

In parallel to the keypoint extraction, we predict the oc-
clusion of the detected kepoint by labeling it properly in
the ground truth with the position of the vehicle keypoint
plus one third number indicating if the point is occluded or
not. As shown in Figure 2 we have added one output to the
hourglass network for the occlusion prediction including a final



FCN (fully connected layer) plus a logarithmic softmax error
calculation that will provide the probability for the point to
be occluded. Therefore, this network is not only able to detect
the 2D position of visible keypoints of the vehicle, but also
their position when they are occluded (partially or totally) and
their possibility of being occluded.

C. 3D vehicle pose calculation

Typically in human pose extraction there are several ap-
proaches that have proven good results like [14], [15], [16],
[17], [18], or [19]. One of the main limitations of these
proposed methods was the need of large training and validation
datasets. For that reason, it seemed reasonable the appearance
of new methodologies splitting the pose estimation in a two-
step pipeline ([20], [21]) and due to the good results provided
by these approaches for human-pose extraction problem, we
applied a similar idea to the vehicle pose calculation issue.

In this proposed research, once the 2D keypoints have been
precisely detected, we would need to convert them from 2D
to 3D to obtain the 3D pose of the vehicle in the image.
For that, this work proposes a network architecture formed
by consecutive linear layer, batch normalization, RELU and
pooling (Figure 6). This network is based on [12] which is
meant for human pose estimation but adapted to the purpose
of this research of obtaining the vehicle keypoint from an
image with a single vehicle.

Fig. 6. Implemented network for converting 2D coordinates to 3D coordinates
using vKITTI dataset [11] and using a network architecture based on [12].

For training this network we make use of images from
the vKITTI dataset [11] due to its full labeling in 2D and
3D, tuned for this purpose. This dataset has depth annotated
and the intrinsic and extrinsic parameters of the cameras
are known. For the generation of the training dataset the
virtual images had to be first cropped and labeled following
the semantic keypoints explained in III-A using the proper
coordinate system. We apply standard normalization to the 2D
inputs and 3D outputs by subtracting the mean and dividing by
the standard deviation. The results of the 3D model calculation
are shown in Table II.

By training the explained network in Figure 6 we are able to
convert the detected 2D vehicle keypoints to 3D coordinates,
so that we can extract 3D information from planar images,
which was the main goal of the research.

Following the approach proposed by [12] we have avoided
the use of raw images for training the proposed network ar-
chitecture and use 2D and 3D points labeled in the determined
dataset. Although these contain less information as the image,

using points we achieve bigger training speed. In the presented
work we have trained this second network for 5000 epochs,
obtaining a mean error of 43mm (measured on the image
plane) between labeled 3D position and predicted one.

Once the vehicle keypoints have been converted to 3D
coordinates, the pose will be extracted by calculating the
direction-vector of the vehicle in VCS (Vehicle Coordinate
System) as shown in Figure 7 and following the methodology
for pose calculation proposed in [22], which origin is on the
rear axle on the floor and in the middle point between the
rear wheels. The direction-vector will be extracted starting on
the origin of the VCS and pointing to the keypoint 9 (front
side). Comparing the calculated pose with the labeled vehicle
orientation from the vKITTI dataset the results of table II were
extracted.

Fig. 7. Pose extraction on Vehicle Coordinate System. Red arrows represents
the direction-vector from the orientation vehicle with origin in the center of
the rear vehicle axle.

IV. EVALUATION AND EXPERIMENTAL RESULTS

In this section we will evaluate the presented method and
compare it with results obtained from other methods.

The results for the presented pipeline has been compared
to other state-of-the-art methodologies for pose estimation.
This comparison can be seen in table II. As proposed by the
KITTI Benchmark [23] the used indicator for evaluating the
calculated vehicle pose is the average orientation similarity
(AOS).

The results shown in Table II demonstrate a good perfor-
mance compared to other methods of the presented simple and
straightforward pipeline in terms of orientation extraction for
different occlusion possibilities.

The accuracy of the final pose reconstruction compared to
other methods is shown in Table III.



Keypoint PCK1 (%) PCK2(%)

Front left wheel 92.26 65.12
Rear left wheel 90.11 62.45
Front right wheel 93.14 68.39
Rear right wheel 88.74 59.25
Front right anti-fog 86.89 66.27
Front left anti-fog 84.41 61.88
Front right light 72.74 61.49
Front left light 69.31 52.97
Front brand symbol 94.11 68.67
Front license plate 93.23 64.98
Left mirror 88.14 72.03
Right mirror 87.69 72.34
Front left roof corner 76.12 63.91
Front right roof corner 68.64 58.91
Rear left roof corner 70.45 63.27
Rear right roof corner 61.98 53.41
Rear left light 88.54 71.13
Rear right light 89.67 69.47
Rear brand symbol 89.14 69.91
Rear license plate 88.23 68.24

TABLE I: Table representing the accuracy of the semantic
keypoint detection measured in PCK (percentahe of correct
keypoint) with a threshold of 15 pixels (second column,
PCK1). This has been evaluated over 12077 images of ve-
hicles in different positions. Third column, PCK2, shows the
performance of the keypoint detection only for points labeled
as occluded (partially or totally).

Method Hard Moderate Easy

Deep Manta [5] 80.55 89.91 96.32
3DVP [24] 65.38 75.77 87.46
SubCNN [25] 76.68 88.62 90.67
3DOP [26] 76.62 86.10 91.44
DPM [27] 46.54 61.84 72.28
OC-DPM [28] 52.40 64.42 73.50
AOG [29] 24.75 30.77 33.79
Mono3D [30] 76.84 86.62 91.01
Voxel [24] 78.29 65.73 54.67
Ours 79.25 86.11 92.47

TABLE II: Results for orientation extraction (AOS) on vali-
dation set. AOS is defined as ”average orientation similarity”
(AOS = 1

N ∑s(r)). s(r) is measuring what fraction of detected
car orientations are similar to ground truth car orientations in
the image. In order to make comparative results with other
state-of-the-art methods, the test set of the KITTI Benchmark
[31] was used. The labeling of this dataset has the occlusion
distinguished between visible point (easy), partially occluded
(moderate) and very occluded (hard).

Method Rotation (Âº) Translation (cm)

Viewpoints [32] 9.10 N/A
3DVP [24] 11.18 N/A
ObjProp3D [33] 17.37 N/A
Reconstruct [34] 12.57 N/A
Monocular [35] 2.87 / 4.4134 4.73 / 6.21
Ours 3.40 6.10

TABLE III: Results for pose extraction on test set of KITTI
dataset evaluated as orientation and translation errors. These
errors of the estimated pose with respect to the ground truths
are expressed as geodesic distance for the rotation and distance
between the centroids of two point sets for the translation error
[35] respectively.

V. CONCLUSIONS

In this work a two-step pipeline for vehicle pose estimation
has been presented. It has been proofed that good results can
be achieved by using a dedicated network architecture and
proper labeling. It is one of the motivations of this work
to present a methodology that avoids usage of more sensors
than cameras, which would lead to an expensive and hard to
manage system. This shown methodology outperforms most
of the state-of-the-art methods (see Table II and III) in terms
of accuracy and performance.

ACKNOWLEDGMENT

This work was supported by the Catalan Government inside
the program ”Doctorats Industrials” and by the company
FICOSA ADAS S.L.U. J. Garcı́a López is supported by the
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F. Moreno-Noguer, “Single image 3d human pose esti-
mation from noisy observations,” Computer Vision and
Pattern Recognition (CVPR), 2012.
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