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Abstract. We propose a modification of the Hamiltonian formalism which can be used for
dissipative systems, the Brezis-Ekeland-Nayroles principle. The formalism is specialized
to the standard plasticity in small strains and dynamics. We apply it to solve the classical
problem of a thin tube in plane strain subjected to an internal pressure. The continuum
is discretized with mixed finite elements.

1 INTRODUCTION

There are two types energy loss, one originated from external actions, another derived
from the internal effect. If the cause is internal, such as plasticity etc., we call them
dissipative system. Hamilton’s variational principle does not work in this case. The
proposition, the Brezis-Ekeland-Nayroles principle (in short, BEN principle) is presented
in the paper. For more detail of the BEN principle, see [1, 2, 3, 4, 5].

The symplectic version of the Brezis-Ekeland-Nayroles variational principle is proposed
in [4]: The natural evolution curve z : [t0, t1] → X × Y minimizes the functional:

Π(z) :=

∫ t1

t0

[φ(ż) + φ∗ω(ż −XH)− ω(ż −XH, ż)] dt (1)

among all the curves verifying the initial conditions z(t0) = z0 and, remarkably, the

minimum is zero.
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With φ dissipation potential, φ∗ω its Fenchel transform, and ω a natural symplectic
form. Observing that ω(ż, ż) vanishes and integrating by part, we have also the variant:

Π(z) =

∫ t1

t0

[φ(ż) + φ∗ω(ż −XH)−
∂H

∂t
(t, z)] dt +H(t1, z(t1))−H(t0, z0) (2)

One advantage of the BEN principle is its ability in solving a mechanical problem simulta-
neously for all time steps. It can avoid the usual computation failures in the step-by-step
method. Objective of this paper is to numerically test the feasibility of the BEN principle
by modeling a simple mechanical problem, the tube subjected to an internal pressure in
dynamics.

2 APPLICATION TO THE STANDARD PLASTICITY ANDVISCOPLAS-
TICITY IN DYNAMICS

Application of the BEN principle in statics case is discussed in [4, 5]. The small differ-
ence for the BEN principle between the case of statics and dynamics in the mechanical
sense is the consideration of the inertia term ṗ. In dynamics, the equilibrium equations

∇ · σ + f = ṗ on Ω, σ · n = f̄ on ∂Ω1 (3)

are satisfied. This expression can be transformed as follows. For sake of easiness, let us
put:

�l(t), u� =

∫

Ω

f(t) · u+

∫

∂Ω1

f̄(t) · u

Then,
∂H

∂t
(t, z) = −�l̇(t),u�

On the other hand

d

dt
[H(t, z(t))] = �

p

ρ
, ṗ�+ �σ,∇u̇− ε̇I� − �l(t), u̇� − �l̇(t),u�

For the minimizer, the kinematical conditions on ∂Ω0 and the balance of linear momentum
(3) are satisfied and using Green’s formula:

�σ,∇u̇� = �l(t), u̇�−�ṗ, u̇� (4)

that leads to
d

dt
[H(t, z(t))]−

∂H

∂t
(t, z) = −�σ, ε̇I� (5)

Putting (5) in (2) and time-integrating, we have:

Π(σ, u̇) =

∫ t1

t0

{ϕ(σ) + ϕ∗(∇u̇− Sσ̇)− �σ,∇u̇− Sσ̇�} dt (6)

among all curves u : [t0, t1] → U satisfying the kinematical conditions on ∂Ω0 and all
curves σ : [t0, t1] → E such that σ(0) = σ0 and the balance of linear momentum (3) are
satisfied.
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3 THE TUBE PROBLEM

We consider a tube of internal radius a and external one b within the plane strain
hypothesis. Its internal wall is subjected to an internal pressure p̃ > 0 monotonic in-
creasing from zero. The material is elastic perfectly plastic and isotropic with von Mises
model and yield stress σY . The initial stresses, displacements and velocities are null. The
problem is assumed to be axisymmetric, the stress tensor is diagonal in the local basis
of the cylindrical coordinates. The axial tensile stress being supposed as usual to be the
intermediate principal stress. We consider the elastic domain:

K = {σ such that f(σ)− σY ≤ 0}

The dissipation potential is:

ϕ(σ) =

∫

Ω

χK(σ)

In the sequel, the inelastic strain ε̇I is plastic and denoted ε̇
p. The Fenchel conjugate is

obtained conbining this rule with the expression of the dissipation power by unit volume
and the yield condition:

D = σ : ε̇p = σY ε̇
p
θθ (7)

As ε̇pθθ must be non negative, the Fenchel conjugate function is:

ϕ∗(ε̇p) =

∫

Ω

{
σY ε̇

p
θθ + χR+

(ε̇pθθ)
}

In plane strain and axisymmetry, the displacement is radial. The only non vanishing
components of the strain rate tensor are:

ε̇rr =
du̇r

dr
, ε̇θθ =

u̇r

r
(8)

In plane strain, Hooke’s law reads:

εrr =
1

Ē
(σrr − ν̄ σθθ), εθθ =

1

Ē
(σθθ − ν̄ σrr)

with: Ē = E
1−ν2

, ν̄ = ν
1−ν

. Hence the compliance operator reads:

S =
1

Ē

[
1 −ν̄
−ν̄ 1

]

In this problem, there is no supports (∂Ω0 = ∅). As the minimum is certainly finite, the
functional (6) becomes:

Π̄(σ,u) =

∫ t1

t0

{
(

∫

Ω

σY ε̇
p
θθ)− �σ,∇u̇− Sσ̇�

}
dt (9)

where ε̇pθθ is given by normality rule, among all the curves among all curves (σ,u) :
[t0, t1] → U×E such that σ(t0) = 0, u(t0) = 0, satisfying the yield condition f(σ)−σY ≤
0 and the normality rule and the balance of linear momentum:

d

dr
σrr +

1

r
(σrr − σθθ) = ρ ür for a < r < b,

σrr(a, t) = −p̃(t), σrr(b, t) = 0 (10)
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4 MIXED FINITE ELEMENT OF TUBE PROBLEM

The continuum is discretized with mixed finite elements. There are two methods to
model the tube problem: (i) Method A: balance of linear momentum satisfied exactly, (ii)
Method B: balance of linear momentum satisfied in Gauss points.

4.1 Method A

Displacement field. We choose the displacement field:

ur = v1 + v2r + v3r
2 + v4r

3 (11)

which provides the strain field:

εrr =
dur

dr
= v2 + 2 v3r + 3 v4r

2, εθθ =
ur

r
=

v1
r
+ v2 + v3r + v4r

2

There is two connectors:

q1 = ur |r=α, q2 = ur |r=β, (12)

Considering two intermediate equidistant nodes of position, γ = 2α+β

3
, δ = α+2β

3
, we

introduce two extra degrees of freedom internal to the element (not connected with the
other ones):

q3 = ur |r=γ , q4 = ur |r=δ

that defines a cubic Lagrange interpolation:

ur(r) =

1

16
[−(1− r̄) (1− 9 r̄2), −(1+ r̄) (1− 9 r̄2), 9 (1− r̄2) (1− 3 r̄), 9 (1− r̄2) (1+ 3 r̄) ]




q1
q2
q3
q4




(13)

where r̄ = 2 r−(β+α)
β−α

. In short, we have:

ur(r) = Ne(r) qe

The corresponding strain field can be expressed in term of the nodal displacement:

ε(r) =

�
εrr
εθθ

�
=




dNe

dr̄

dr̄

dr
Ne

r


 qe = Be(r) qe

After calculation, one has:
Be(r) =

1

16

�
J (1 + 18 r̄ − 27 r̄2) J (−1 + 18 r̄ + 27 r̄2) J (−27− 18 r̄ + 81 r̄2) J (27− 18 r̄ − 81 r̄2)

−
1

r
(1− r̄) (1− 9 r̄2) −

1

r
(1 + r̄) (1− 9 r̄2)

9

r
(1− r̄2) (1− 3 r̄)

9

r
(1− r̄2) (1 + 3 r̄)

�

with J =
dr̄

dr
= 2

β−α
.
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Stress field. We consider an axisymmetric element occupying a volume α < r < β
with four stress connectors:

g1 = σrr |r=α, g2 = σθθ |r=α, g3 = σrr |r=β, g4 = σθθ |r=β (14)

The choice of a polynomial statically admissible stress field is guided by the aim to avoid
the global (or structural) equations of linear momentum balance in the constrained min-
imization problem. Only remains the local yield condition. The general solution of:

∇ · σ = ṗ

is the sum of the general solution σh of the homogeneous equation and a particular solution
σd of the non homogeneous equation. Following a method due to Schaefer ([6, 7]), this
last one is of the form:

σd = 2∇w − (∇ ·w) I , (15)

where the vector potential w is solution of ∇2
w = ṗ. For the displacement field, we seek

a radial vector potential. The previous equation reduces to:

d2wr

dr2
+

1

r

dwr

dr
−

wr

r2
= ρ (v̇1 + v̇2r + v̇3r

2 + v̇4r
3)

Clearly, a solution is given by a homogeneous polynomial in r of degree five. Introducing
it in the previous equation, we obtain by identification:

wr = ρ

(
v̇1
3
r2 +

v̇2
8
r3 +

v̇3
15

r4 +
v̇4
24

r5
)

condition (15) reads in polar coordinates:

σrr = 2
dwr

dr
−

1

r

d

dr
(r wr), σθθ = 2

wr

r
−

1

r

d

dr
(r wr)

leads to the expression of σd:

σrr = −σθθ = ρ

(
v̇1
3
r +

v̇2
4
r2 +

v̇3
5
r3 +

v̇4
6
r4
)

Besides, the stress field being defined by four connectors, we choose for σh:

σrr = h1 + h2r + h3r
2 + h4r

3

Using the internal equilibrium equation in (10), the hoop stress is:

σθθ = h1 + 2h2r + 3h3r
2 + 4h4r

3

In matrix form, the total stress field in terms of stress and displacement parameters reads:
[
σrr

σθθ

]
= σe(r) = Re(r)he+Se(r) v̇e

5
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=

�
1 r r2 r3

1 2 r 3 r2 4 r3

�



h1

h2

h3

h4


+ρ

�
r
3

r2

4
r3

5
r4

6

− r
3

− r2

4
− r3

5
− r4

6

�



v̇1
v̇2
v̇3
v̇4




stress connectors (14) are linearly depending on the stress and displacement parameters:

ge = Cehe+Dev̇e

with the connection matrix:

Ce =




1 α α2 α3

1 2α 3α2 4α3

1 β β2 β3

1 2 β 3 β2 4 β3


 De = ρ




α
3

α2

4
α3

5
α4

6

−α
3

−α2

4
−α3

5
−α4

6
β

3
β2

4
β3

5
β4

6

−β

3
−β2

4
−β3

5
−

4

6




Hence, one has: he = C
−1
e (ge −Dev̇e). By identification of (11) with (13), we obtain the

relation between displacement parameters and connectors:

ve = Aeq̇e

A
T
e =




1
16

�
9[ α̂

β̂
]3 + 9[ α̂

β̂
]2 − α̂

β̂
− 1

�
1
8

�
−27 α̂2

β̂3
− 18 α̂

β̂2
+ 1

β̂

�
1
4

�
27 α̂

β̂3
+ 9 1

β̂2

�
−9

2β̂3

1
16

�
−9[ α̂

β̂
]3 + 9[ α̂

β̂
]2 + α̂

β̂
− 1

�
1
8

�
27 α̂2

β̂3
− 18 α̂

β̂2
− 1

β̂

�
1
4

�
−27 α̂

β̂3
+ 9 1

β̂2

�
9

2β̂3

1
16

�
−27[ α̂

β̂
]3 − 9[ α̂

β̂
]2 + 27 α̂

β̂
+ 9

�
1
8

�
81 α̂2

β̂3
+ 18 α̂

β̂2
− 27

β̂

�
1
4

�
−81 α̂

β̂3
− 9 1

β̂2

�
27

2β̂3

1
16

�
27[ α̂

β̂
]3 − 9[ α̂

β̂
]2 − 27 α̂

β̂
+ 9

�
1
8

�
−81 α̂2

β̂3
+ 18 α̂

β̂2
+ 27

β̂

�
1
4

�
81 α̂

β̂3
− 9 1

β̂2

�
−27

2β̂3




where: α̂ = α+ β, β̂ = β − α. Eliminating the stress parameters provides the stress field
in terms of stress and displacement connectors:

σe(r) = Te(r)ge+Ue(r)q̈e

where:
Te(r) = Re(r)C

−1
e , Ue(r) = (Se(r)−Re(r)C

−1
e De)Ae

4.1.1 Space discretization of the principle

Introducing the plastic multiplier λ ≥ 0, the yield rule reads:

ε̇
p = λ

∂f(σ)

∂σ

6
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and the dissipation power (7) becomes:

D = σY λ

As usual, the integral are approximated by numerical integration on every element:

� β

α

A(r) 2 π r dr ∼=

ne�
g=1

wg A(rg) 2 π rg

In particular, the total dissipation power in the element reads:

� β

α

D(r) 2 π r dr = ΛT
e λe

where:

Λe = σY




w1 2 π r1
· · ·
wne

2 π rne


 , λe =




λ̇1

· · ·

λ̇ne




Performing the assembling thanks to the localization matrices Le,Me,Pe such that:

ge = Meg, qe = Leq, λe = Peλ

the discretized form of the functional is:

Π̄(g, q,λ) =

� t1

t0

�
ΛT

λ(t)− q̇
T (t) (Gg(t) + G̃ q̈(t))

+ g
T (t)F1 ġ(t) + q̈

T (t)F2 ġ(t) + g
T (t)F3

...
q (t) + q̈

T (t)F4

...
q (t)

�
dt

(16)

with:

Λ =
n�

e=1

P
T
e Λe,

G =
n�

e=1

� β

α

L
T
e B

T
e (r)Te(r)Me 2 π r dr, G̃ =

n�
e=1

� β

α

L
T
e B

T
e (r)Ue(r)Le 2 π r dr,

F1 =
n�

e=1

� β

α

M
T
e T

T
e (r)S Te(r)Me 2 π r dr F2 =

n�
e=1

� β

α

L
T
e U

T
e (r)S Te(r)Me 2 π r dr

F3 =
n�

e=1

� β

α

M
T
e T

T
e (r)SUe(r)Le 2 π r dr F4 =

n�
e=1

� β

α

L
T
e U

T
e (r)SUe(r)Le 2 π r dr

The Brezis-Ekeland-Nayroles claims that we have to find the minimum of (16) with respect
to the path t �→ (g(t), q(t),λ(t)) under the constrains of:

• equilibrium (on the boundary, the internal equilibrium being satisfies a priori):

gr=a(t) = −p(t), gr=b(t) = 0

7
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• plasticity (at every integration point g of every element e):

fg(g, q̈)− σY ≤ 0, λg ≥ 0 NY λg = Be(rg) q̇e − S (Te(rg) ġe +Ue(r)
...
q e)

• initial conditions:

g(t0) = 0, q(t0) = 0, λ(t0) = 0

ġ(t0) = 0, q̇(t0) = 0, q̈(t0) = 0,
...
q (t0) = 0

4.1.2 Time discretization of the functional

For the time discretization of any physical quantity a, we put:

aj = a(tj), ȧj = ȧ(tj), · · ·

On each step, we approximate the time rates at t = tj by:

ȧj =
aj − aj−1

tj − tj−1

, äj =
ȧj − ȧj−1

tj − tj−1

,
...
a j =

äj − äj−1

tj − tj−1

Considering m time step from t0 to tm and enforcing the yield condition only at the
beginning and the end of the step, we have to minimize the objective function:

Π̄(g0, · · · , gm,q0, · · · , qm,λ0, · · · ,λm) =

j=m∑
j=1

[
ΛT

λj − q̇
T
j

(
Ggj + G̃ q̈j

)
+ gj

T (t)F1 ġj(t)

+ q̈j
T (t)F2 ġj(t) + gj

T (t)F3

...
qj(t) + q̈j

T (t)F4

...
qj(t)

](
tj − tj−1

)
(17)

under the constrains of:

• equilibrium (on the boundary, at each time step):

gr=a,j(tj) = −p(t), gr=b,j(tj) = 0

• plasticity (at every integration point g of every element e and at every time step):

fg,j(g, q̈)−σY ≤ 0, λg,j ≥ 0, NY λg,j = Be(rg)Leq̇
T
j − S [Te(rg)Meġj +Ue(rg)Le

...
q j]

• initial conditions:

g0 = 0, q0 = 0, λ0 = 0, ġ0 = 0, q̇0 = 0, q̈0 = 0,
...
q 0 = 0

4.2 Method B

The balance of linear momentum is satisfied in Gauss points.

8
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Displacement field. Same as Method A.

Stress field. We choose the same position for the radial and hoop stress field.

σrr = h1 + h2 r + h3 r
2 + h4 r

3 σθθ = h5 + h6 r + h7 r
2 + h8 r

3

There are four degrees of freedom for each stress:

g1 = σrr |r=α, g2 = σrr |r=β, g3 = σrr |r=γ , g4 = σrr |r=δ (18)

s1 = σθθ |r=α, s2 = σθθ |r=β, s3 = σθθ |r=γ , s4 = σθθ |r=δ (19)

In matrix form, we have:

σrr(r) = Ne(r) ge σθθ(r) = Ne(r) se

Thus:

σ(r) =

[
σrr

σθθ

]
=

[
Ne(r) 0
0 Ne(r)

] [
ge

se

]
= Te(r) te

4.2.1 Space discretization of the principle

Same as Method A.
Performing the assembling thanks to the localization matrices Le,Me,Pe such that:

te = Met, qe = Leq, λe = Peλ

the discretized form of the functional is:

Π̄(t, q,λ) =

∫ t1

t0

(ΛT
λ(t)− q̇

T (t)Gt(t) + ṫ
T (t)F t(t)) dt (20)

with:

Λ =
n∑

e=1

P
T
e Λe,

G =
n∑

e=1

∫ β

α

L
T
e B

T
e (r)Te(r)Me 2 π r dr F =

n∑
e=1

∫ β

α

M
T
e T

T
e (r)S Te(r)Me 2 π r dr

The Brezis-Ekeland-Nayroles claims that we have to find the minimum of (20) with respect
to the path t �→ (t(t), q(t),λ(t)) under the constrains of:

• equilibrium (on the boundary, the internal equilibrium being satisfies a priori):

gr=a(t) = −p(t), gr=b(t) = 0,
d

dr
σr(rg) +

1

rg
[σr(rg)− σθ(rg)] = ρür(rg)

• plasticity (at every integration point g of every element e):

fg(t)− σY ≤ 0, λg ≥ 0, NY λg = Be(rg) q̇e − S Te(rg) ṫe

• initial conditions:

g(t0) = 0, q(t0) = 0, λ(t0) = 0, ġ(t0) = 0, q̇(t0) = 0, q̈(t0) = 0

9
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Figure 1: Comparison of radial displacement history of different data when p̃ = 1 MPa in elastic case
(i) analytical solution (ii) reference numerical solution (Cast3M software) with 10 time steps (iii) BEN
method A solution with 20 time steps (iv) BEN method B solution with 20 time steps

Figure 2: Comparison of radial displacement history of different data when p̃ = 1 MPa in elastic case
(i) analytical solution (ii) reference numerical solution (Cast3M software) with 30 time steps (iii) BEN
method A solution with 600 time steps

4.2.2 Time discretization of the functional

Same as Method A.
Considering m time step from t0 to tm and enforcing the yield condition only at the
beginning and the end of the step, we have to minimize the objective function:

Π̄(t0, · · · , tm, q0, · · · , qm,λ0, · · · ,λm) =

j=m∑
j=1

(ΛT
λj − q̇

T
j Gtj + ṫ

T
j F tj) (21)

under the constrains of:

10
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Figure 3: Comparison of radial displacement history of different data when p̃ = 10 MPa in plastic case
(i) analytical solution (ii) reference numerical solution (Cast3M software) (iii) BEN method A solution
with 400 time steps

• equilibrium (on the boundary, at each time step):

gr=a,j = −p(tj), gr=b,j = 0,
d

dr
σr(rg,j) +

1

rg,j
[σr(rg,j)− σθ(rg,j)] = ρür(rg,j)

• plasticity (at every integration point g of every element e and at every time step):

fg,j(t)− σY ≤ 0, λg,j ≥ 0, NY (rg)λg,j = Be(rg)Leq̇j − S Te(rg)Meṫj

• initial conditions:

g0 = 0, q0 = 0, λ0 = 0, ġ0 = 0, q̇0 = 0, q̈0 = 0

4.3 Simulation results

The program is coded inMatlab, the solver fmincon is applied to find the local minimum
of the constrained functional (17, 21). Material parameters are, E = 210 GPa, ν = 0.3,
σY = 360 MPa, a = 100 mm, b = 101 mm, ρ = 7.8 e−9 Kg/mm3. Simulation results
are displayed in figure (1), (2) and (3) for elastic and plastic cases. There is a good
consistence between the BEN principle solution and the analytical or numerical solution.
The BEN principle requires sufficient time steps to have a better precision than the one
step-by-step. The method A and B does not change the simulation results.

5 CONCLUSIONS AND PERSPECTIVES

Thanks to the simulation results, the BEN method is numerically confirmed in dy-
namics. The BEN method allows to have a global view of all time steps which can avoid
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the usual difficulties in step-by-step method. As the computation time is significantly
expansive, application of the Proper Generalized Decomposition (PGD) is the concept to
obtain of a more effective program. Final objective of the present work is to apply the
symplectic BEN principle in finite displacement to observe its ability in avoiding usual
step-by-step method convergence problem.

6 ACKNOWLEDGMENT

This work was performed thanks to the international cooperation project Dissipative
Dynamical Systems by Geometrical and Variational Methods and Application to Viscoplas-

tic Structures Subjected to Shock Waves (DDGV) supported by the Agence Nationale de

la Recherche (ANR) and the Deutsche Forchungsgemeinschaft (DFG).

REFERENCES

[1] Brezis, H., Ekeland I. Un principe variationnel associé à certaines équations
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