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Abstract

Linguistic differences between specialists and laymen still represent an obstacle for a success-
full communication in technical environments. This is especially true in the medical domain
where the linguistic gap between clinicians and patients is a considerable issue: from one side,
diseases and symptoms must be described with a very specific vocabulary to avoid doubts and
ambiguity; from the other side, it can not be expected for patients, that are the main source of
information for an accurate diagnosis, to use the same technical jargon as physicians in order to
describe their symptomatology.

Themain objective of this project is to investigate a possible solution to this issue using a deep
learning approach to support the collection and description of all the traits of patients with rare
disease in the Share4Rare network. Machine learning techniques will be used to develop a
machine translation model that will be able to transform the input layman terms into specific
medical concepts.

In order to achieve this objective, the most common deep learning methods used in Natural
Language Processing will be explained and analyzed, with a particular focus on word embed-
ding techniques, convolutional neural networks and recurrent neural networks. Then, three
models that combine these techniques will be proposed, trying to outline strengths and weak-
nesses of each one. All the models will be created and tested with Python, a high-level, general-
purpose programming language. The neural network architectures will be created using Keras,
an open-source deep learning library for Python.

The proposed models will be trained and tested using the lexicon from the Human Pheno-
type Ontology, a formal ontology of human phenotypes with the aim of becoming the standard
vocabulary for clinical databases. Terms in the Human Phenotype Ontology contain synonyms
and descriptions of the phenotypes to which they refers that will be used as input for the differ-
ent models. Results will be evaluated with cross-validation, and domain specific performance
metrics will be adopted to carry out a specific analysis of the outcomes.
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1 Introduction

Nowadays, more and more people interact with computers: not only technicians and com-
puter scientists, but also people with less technological literacy. For this reason, the way we
communicate with computers is rapidly changing, adapting to users’ necessities and becoming
more accessible to everyone day after day.

In recent years, important breakthroughs have been achieved in order to make computers
capable of understanding natural languages as we do. Indeed, many efforts are continuously
made in order to break down the linguistic wall that separates humans and machines. The
branch of Computer Science and Artificial Intelligence that studies how humans interact with
computers using natural language is called Natural Language Processing, often shortened as
NLP.

In general, NLP is not an easy task. Languages aremore than a simple concatenation ofwords:
understanding a sentencemeans understanding the singlewords that compose the sentence but
it also means understanding how the concepts that those words represent are interconnected to
create the idea behind the sentence. It is a process that includes several obstacles for a computer:
words with ambiguous interpretations, methapors and figures of speech, irony, etc. are all
aspects that humans can easilymanage, but that can be insurmountable barriers for a computer.

The task of analyzing and understanding human language becomes even harder when NLP
tecnhiques are applied in very specific fields, that often have their own vocabulary and where
words have nuances that can be completely different form their general meanings. One of
the most important examples of a specific area with its own language is the biomedical field.
There exists a sub-field ofNLP specifically dedicated tomedical and biological languages, called
Biomedical Natural Languages Processing (BioNLP).

One of the most studied applications of NLP (and BioNLP) is the translation between lan-
guages. In this case the effort of the computer is twofold: on one side, it has to understand what
it has been said and, on the other side, it has to translate it into a correct sentence in a different
language. Above the classical idea of translation, i.e. from a language to another one, when one
is considering a specific field, the translation could be done from the specific vocabulary used
in that field to the generic vocabulary, also called layman vocabulary. Especially in the case of
the medical field, the differences between clinicians’ and laymen’s vocabularies are huge: most
of the people that are not used to medical terminologies could find very complex to understand
a medical test or, most importantly, they could not be able to describe their conditions appro-
priately.

The aim of this project is trying to fill the gap that exists between layman and specific ter-
minologies. Several methods will be proposed to translate between layman terms and short
sentences describing specific terms of the Human Phenotype Ontology (HPO).
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1.1 Motivation

The gap between layman and technical language in the medical field is indisputable: most
of the people describes their conditions using a general vocabulary and not the specific one, as
can be easily ascertained checking the frequency of search for layman terms in one of the most
common web search engines (Google Search) with respect to the corresponding medical term
(Figure 1). This is an expected result: medical terms are often unknown or unusual for most of
the people and it can not be expected for everyone to know the correct medical term to describe
his symptoms. However, the complexity of themedical vocabulary is justified from the necessity
of avoiding ambiguity and correctly identifying a symptom or a condition among plenty of
similar ones. On the contrary, layman expressions are often ambiguous or even inaccurate and
can bring to confusion and misunderstanding.

Figure 1: Google searches in the last 6 months of layman terms commonly used to describe
medical conditions (red) whit respect to the corresponding HPO concepts (blue)(Images

from: google.com/trends)

This difference between vocabularies becomes relevant when clinicians try to reconstruct the
clinical phenotype of patients, i.e. the set of behaviors, physiological aspects andmorphological
characteristics that differentiate diseased and healthy subjects. The precise analysis of the clini-
cal phenotypes of an individual is known as deep phenotyping and it includes medical history,
physical examination, blood and laboratory tests and behavioral studies, among others. Data
obtained through deep phenotyping has great potential to accelerate the identification of dis-
ease with prognostic or therapeutic implications[1]

Using precise phenotyping for diagnosis is of special relevance for the case of rare diseases,
life-threatening diseases or chronically debilitating conditions that affect a limited number of
peoplewith respect to the entire population (less than 5 people per 10,000 inhabitants according
to European legislation)[2]. Due to the limited knowledge about rare diseases, diagnosis is one
of the most challenging tasks for a physician, often implying delays in the treatment or even
wrong diagnosis and therapies. In an European survey involving 17 countries concerning eight
of the most common rare diseases in EU, it was discovered that 25% of patients had to wait
between 5 and 30 years from the appearance of the first symptoms to a correct diagnosis of their
disease. Furthermore, in the first case the diagnosis received was wrong for 40% of the patients
[3].

https://www.google.com/trends


Automatic translation between layman and HPO terms p. 13

Share4Rare (S4R, www.share4rare.org) was born with the idea of helping patients affected
by rare diseases: it is a collective online platform that aims to create a community where pa-
tients suffering from rare diseases, their caregivers, clinicians, and researchers will cooperate
to generate new knowledge about these conditions. Patient users of the platform will provide
clinical information about their condition i.e. diagnosis, symptoms, age of onset, etc. In re-
turn they will enter into a social media platform in which they will be able to access curated
quality information, participate in different research initiatives, and track the results of their
participation through charts and descriptive statistics. In a nutshell, patients will get access
to information about their diseases that will improve their diagnosis and care process, while
clinicians and researchers will collect data about patients’ phenotypes, crucial for research and
future diagnosis.

Inside a big cooperative project like this, a standardization of the medical terms that describe
phenotypes becomes of central importance, and for this reason theHuman PhenotypeOntology
will be used. On the other hand, it can not be expected that patient users know this specific
terminology. There it lies the necessity of a system that automatically translates users’ layman
terms used to describe their condition into HPO terms that can be appropriately stored in S4R
databases.

1.2 Objectives and planning

The main objective of this project is to provide an instrument based on machine learning al-
gorithms for the automatic translation between the layperson terminologywithwhich common
people describe their symptoms and a specific vocabulary of phenotypic abnormalities such as
the Human Phenotype Ontology.

In order to achieve this main goal, some intermediate steps through the process of achieving
the general objective should be defined, in particular:

• The design of specific text pre-processing algorithms, specifically designed for medical
and HPO terms.

• The embedding of HPO terms into a vector space that maintains the semantic relation-
ships existing between terms.

• The encoding of layman terms (after pre-processing) into a vector space.

• The creation of a function to map layman terms into the HPO vector space.

• The definition of metrics to evaluate results that go beyond a simple correct/wrong classi-
fication.

These intermediate goals, as well as the main objective of this project, were achieved during a
period of 4.5 months through a well defined planning that included: a review of the state of the
art and already existing solutions, the implementation of the proposed methods for both em-
bedding and mapping, the evaluation of the models with cross-evaluation, and finally writing
this document.

www.share4rare.org
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1.3 Outline

The rest of this report is dedicated to explaining how objectives listed in Section 1.2 were
achieved, in particular Chapter 2 is dedicated to a small review of what an ontology is, with
a particular focus on HPO: examples will be shown, trying to make the reader as familiar as
possible with the architecture of this representation of human phenotypes.

After this introduction about HPO, in Chapter 3 the State of Art of the most relevant NLP
techniques for automatic translation is described. Particularly, this chapter is divided in three
sections that, respectively, summarize themost common techniques for representingwords and
sentences inside more complex machine learning algorithms, describe the machine learning
techniques generally used in NLP, and introduce the techniques that can be used for the task of
labeling synonyms with the corresponding HPO term.

Chapter 4 explained the methods that have been proposed to solve the problem of layman
terms’ translation. It is divided in two sections, one explaining the embeddings created to rep-
resent HPO, and the other explaining the machine learning strategies adopted to map layman
terms in these spaces.

In Section 5, the experimental setup created to evaluate the methods of the precedent chapter
are described. Particular attention is given to the creation of a training and test set as well as to
the definition of the parameters that can be tuned and that can influence final results.

Chapter 7 is dedicated to a brief analysis of costs and resources needed to carry out this
project, as well as a concise reasoning on the environmental impact that the project could pro-
duce.

Finally, Chapter 6 outlines themain results, trying to analyze the embeddings and themodels
separately and to evaluate the outcomes (i.e. the predictions over input layman terms) not only
in terms of correct or wrong prediction, but with a more detailed analysis that tried to hold in
consideration the semantic similarity between correct and predicted terms.
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2 The Human Phenotype Ontology

An ontology can be defined as a formal and explicit description of concepts (also called
classes) and the relationships between these concepts. For this reason an ontology is very useful
to define a common and standardized glossary for researchers to share information in specific
domains, limiting ambiguity [4]. Ontologies combinemachine-interpretable definitions of basic
concepts in a specific domain with relations between these concepts. The domain of the classes
can vary a lot, from very general databases as WordNet [5] that aim to collect all English nouns,
verbs, adjectives and adverbs, to more specific ones such as SNOMED CT [6], that contains
clinical nomenclature, or the Gene Ontology [7], that aggregates genes and gene products.

A phenotype can be defined as the set of all the observable characteristics of an organism (or
a cell). This includes its individual form, its functions and other characteristic aspects such as
height, color, blood type and enzyme activity [8]. Therefore, the Human Phenotype Ontology
(HPO) is an ontology dedicated to human phenotypes: it contains an analytic, complete and
well-defined collection of more than 14,000 classes that describe human phenotypic abnormal-
ities and more than 15,500 subclass relations between these classes. [9]

Each term in HPO describes a human abnormality through its technical names and other de-
scriptors. In particular, terms are identified by a unique ID and a Label (i.e. its name). Most
of the terms also contain a brief description of the term itself provided by clinicians or external
databases and a list of synonyms obtained with various methods (see Section 3.3 for further
details). Finally, HPO terms are linked to classes in other ontologies, for example to the corre-
sponding class in SNOMED CT, or to the causal genes in the Gene Ontology. The relationship
between terms is transitive and of type is-a. As an example, consider the HPO term that refers
to a particular malformation of the fingers, the arachnodactyly. The corresponding HPO class is:

Id: HP:0001166

Name: "Arachnodactyly"

Description: "Abnormally long and slender fingers"

Synonyms: "Long slender fingers"; "Long, slender fingers"; "Spider fingers"

Is a: "Slender finger"; "Long fingers"

Xref: MSH:D054119; SNOMEDCT_US:62250003; UMLS:C0003706 (references to other on-
tologies)

The transitive relationship between terms allow to structure HPO as a direct acyclic graph
(DAG), improving the flexibility and descriptiveness of the ontology with respect to a simpler
hierarchical graph (i.e. a tree). For example, the HPO term used as an example few lines above
is both a Slender finger and a Long fingers abnormality: this means that this node has two parents
in the ontology, that in turn could have more parents and so on, till reaching the unique root
node.
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Figure 2: HPO structure: from upper nodes to specific ones.

In particular, as reported in Figure 2, HPO is divided in 5 sub-ontologies defined by the chil-
dren of the root node of the ontology ("HP000001: All") at depth 1:

• Phenotypic abnormality: it is the main sub-ontology; it contains the description of the
phenotypes collected in HPO.

• Mode of inheritance: it contains terms that describe the way a particular trait is passed
through generations, e.g. Mitochondrial inheritance or Autosomal dominant inheritance.

• Clinical modifier: it contains terms that can be used to describe and characterize pheno-
types in terms of severity (as Severe, Moderate, etc.), triggering factor (as Triggered by cold)
and so forth.

• Clinical course: it describes how a particular abnormality could evolve, e.g. Neonatal
onset, Slow progression, etc.

• Frequency: it represents frequency of specific phenotypes (Occasional, Frequent, etc.).

The structure of HPO allows us to define 29 categories (or branches) as the 25 descendants
of the Phenotypic abnormality node plus the other 4 describing sub-ontology root nodes (Mode of
inheritance, Clinical modifier, Clinical course, Frequency). The children of the Phenotypic abnormality
class (that, as mentioned before, define most of the branches) at the first level refer to abnormal-
ities of specific systems or body parts in general and they will contain most of the other HPO
classes. Examples of these branches are Abnormality of limbs, Abnormality of the cardiovascular
system or Growth abnormality. Since HPO is a DAG, each concept belongs at least to one branch
(except for the root of HPO), with several terms belonging to two or more branches. The only
exception is for a few terms labeled as Obsolete that stand for their own, without connections to
other terms. Since obsolete terms do not contain anything but an ID and a label and, as the name
suggests, they refer to terms that are no longer used, they will not be considered for the devel-
opment of this work. Note that, from now on, when talking about HPO, it will be implicitly
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considered a version of HPO without these terms.

The structure of the ontology can be used as well to define the depth of a term as the total
number of hypernyms that the term has. Formally, given an HPO term ti and the set of terms
that are included in the path between ti and the root node (S(ti)), its depth is:

depth(ti) = |S(ti)| (1)

Hence, for example, the depth of the root is depth(“All”) = 0 since it is the root node, the
depth of a branch root is e.g. depth(“Abnormality of the breast”) = 2 and so on. The depth of
the precedent example term is, for example, depth(“Arachodactyly”) = 15, while the maximum
depth of a term is 42 (for the term Synostosis of the proximal phalanx of the thumb with the 1st
metacarpal).

Finally, a function of similarity between two terms can be defined using the position of the
terms in the ontology, as proposed by Seco et al. [10]. In particular, among all the alternatives,
we decided to use Jiang and Conrath’s formula [11] since Seco et al. demonstrated that it is
the one that was more correlated with a similarity score proposed by experts. Thus, given two
terms t1, t2 ∈ HPO, the similarity sim(t1, t2) is defined as:

sim(t1, t2) = 1− ic(t1) + ic(t2)− 2× simres(t1, t2)

2
(2)

Where ic(ti) is the information content of a term and simres(t1, t2) is the Resnik similarity
function [12]. Let |HPO| be the total number of terms in HPO and S(t1, t2) the set of terms that
subsume t1 and t2, then ic(ti) and simres(t1, t2) are calculated as:

ic(ti) = 1− log(depth(ti) + 1)

log(|HPO|)
(3)

simres(t1, t2) = max
τ∈S(t1,t2)

ic(τ) (4)

In what follows, similarity, depth, and branches of a term will be crucial in order to evaluate
results.
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3 State of the art

Natural Language Processing is the research field that studies how machines interact with
natural languages, with the particular aim of understanding, analyzing and manipulating texts
or speech [13]. It includes several areas of research, with methods and techniques from very
different fields: statistics, computer science, information engineering, artificial intelligence, etc.
The aim of this chapter is to briefly summarize the most important techniques introduced in
NLP in recent years, with a particular focus on those techniques that could be more useful for
the specific application of this work. A summary of the recent trend in NLP can be found in
[14]. Moreover, an introduction to machine learning can be found in [15].

The rest of the chapter is structured as follows: at first a brief summary of the most used
technique for word representation is given (Section 3.1); then Section 3.2 reports the machine
learning schemes most widely used in NLP; finally, a description of the methods that can be
used for labeling HPO synonyms is reported in Section 3.3.

3.1 Word Embeddings

Word Embedding (WE) refers to a series of different techniques where words from a vocab-
ulary or short sentences are mapped in a vector space of N dimensions, with N usually varying
between some hundreds to one thousand. Thus, a WE can be defined as an encoding of words
in a relatively high-dimensional vector space [16]. It has been extensively shown that manyWE
are able to capture semantic properties and relationships betweenwords and, as a consequence,
WEs are the most common features used as input (or output) to machine learning models for
many NLP tasks (e.g. information extraction, information retrieval, sentiment analysis, trans-
lating, question answering...) [17].

At first, the vector representation of words was based on statistical and frequency based tech-
niques. The most basic way to do that is through one-hot encoded vectors: the vector size N
corresponds to the size of the vocabulary and each dimension corresponds to oneword. Vectors
in theWEwill contain a "1" in the position corresponding to theword that the vector represents.
Limitations of this approach are evident: dimensionality of the embedding rapidly increases
with the size of the dictionary, and to compare vectors is meaningless (except for equality check-
ing).

A more useful technique is the latent semantic analysis (LSA) [18]: it takes a corpus of docu-
ments as input and it returns a vector representation of fixed dimensions of eachword contained
in the corpus. The first step is to build a term-document matrix which represents the frequency
of words in the documents: one dimension of the matrix corresponds to documents and the
other one to words; elements in the matrix are computed using some frequency statistic, such
as the term frequency-inverse document frequency (Tf-idf) [19] index, calculated as the prod-
uct of two different statistics. Given a word w, a corpus D and a document di ∈ D

tf -idf(wj , di, D) = tf(wj , di)× idf(wj , D) (5)

Where:
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• tf(wj , di) is the term frequency index, usually calculated as the number of times the word
wj appears in the document di, i.e. its frequency in the document i (fj,i), normalized by
the maximum frequency of a word in the document:

tf(wj , di) =
fj,i

maxk fk,i
(6)

• idf(wj , D) is the inverse document frequency index: let nj be the number of documents that
contain the word wj , over a total of N documents in the corpus, then:

idf(wj , D) = log2(
N

nj
) (7)

The tf -idf index of a word should indicate howmuch a word is characteristic of a document.
Thus, a word that appears in almost all the documents will have a very low idf and, as a con-
sequence, a very low tf · idf . On the contrary a word that appears several times in only one
document will have both high idf and tf and therefore, a high tf -idf .

The results of this first step of LSA is a matrix with as many rows as the number of words in
the corpus, and as many columns as the number of documents:

X =

tfidf(w1, d1, D) tfidf(w1, d2, D) ...
tfidf(w2, d1, D) tfidf(w2, d2, D) ...

... ... ...


Finally, the dimensionality of X is reduced via singular value decomposition (SVD), obtaining

a newmatrixXk that approximates the information contained inX in a lower dimensional space,
projecting the vectors associated with each word in a space of fixed dimension [20].

In recent years, the growing attention to machine learning techniques, alongside the increas-
ing computational power of modern computers that allows the analysis of huge text corpora
have put aside classical embedding techniques such as LSA, in favour of neural-network (NN)
models. Among the huge number of techniques proposed in the last years (e.g Glove [21] or
Senna [22]), the most popular is, without a doubt,Word2Vec[23], a vector representation based
on two different NN models: the continuous bags of words (CBOW) and skip-gram models.
Both models are based on the distributional hypothesis, i.e. the idea that words with similar
meanings should appear in similar contexts in a text [24]: based on this idea, CBOW calculates
the probability of a target word conditioned on a given set of context words that surround the
target word across a window of size k. On the other hand, the skip-gram model behaves the
opposite way: it predicts the probability of the surrounding context words given the central
target word [14].

As reported in Figure 3, CBOWconsists of a simple fully connectedNNwith one hidden layer.
The inputs of the model are usually one-hot vectors representing context words, thus it has V
neurons per each context word, where V is the vocabulary size; the hidden layer has N neurons
and the output layer, that represents the softmax probability over all the words, has again V
neurons. The weight matrices of the hidden and output layers, W ∈ RV×N and W ′ ∈ RN×V ,
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Figure 3: CBOWmodel (image from [25])

are used to extract the vector representations of the words: the ith word of the vocabulary is
represented by:

vc = W(i,:) vw = W ′:,i

The Skip-grammodel is very similar, but with the context words as output and a single word
as input.

In addition to the fact that it maps words that appear in similar context close, Word2Vec
encodings combined through linear operations result in vectors that are semantic composites
of its components [14][26], for example:

vec(king)− vec(man) + vec(woman) ≈ vec(queen)

vec(Germany) + vec(Capital) ≈ vec(Berlin)

A big limitation of word embeddings created with neural models is that they must be pre-
trained with large corpora that influence the final representations: as a consequence, a domain
specific vocabulary with a small training corpus will probably not be well represented in the
vector space. On the contrary, techniques such as LSA are created based on the specific corpus
and could better capture domain specific semantics, even if the vector representation is not as
accurate as the one obtainedwithWord2Vec or similar techniques. In literature, there are several
works that try to concatenate different embeddings in order to capture the different strenghts of
the models. W. Yin and H. Schütze [27], for example, tested several approaches: from a simple
concatenation of the vectors to a NN model that mixes the different embeddings. With the
same aim, Sarma et al. [28] created a Domain Adapted WE (DA): they used non-linear kernel
canonical correlation analysis to create a new embedding from a generic embedding such as
Word2Vec and an embedding created with LSA.
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The problem of correctly representing the semantic content of words in a specific domainwas
also addressed by M. Pilehvar and N. Collier [29] with an embedding specific for HPO terms.
They first use BabelNet [30], a big semantic network that merges knowledge from WordNet
and Wikipedia, to extract concepts from each HPO term (e.g. from the HPO term ti =flexion
contracture of digit to the list of concepts C = {flexion, contracture, digit}). They then extract
theWikipedia pages of each concept, and from them they get the ordered list of themost specific
words in comparison with all the Wikipedia articles, Ri = [w1, w2, ..., wn]. Finally, they used a
pre-trained WE such as Word2Vec to create the representation of the HPO terms. Given V (wj)
the vector representation of the jth word in the order list Ri, the vector representation ofHPOi
is :

V (HPOi) =
∑
wj∈Ri

e−λjV (wj) (8)

With λ being a decay factor fixed to 0.2.

3.2 Deep learning in NLP

The problem of mapping layman terms to the corresponding HPO terms can be seen, in a
nutshell, as a translation problem between a specific language (the HPO vocabulary) and a
layperson one. Machine translation (MT) has been studied since the 1950s [31], and still re-
mains a topic of interest in the research community, as demonstrated by the increasing trend of
publications on the matter (Figure 4).

Figure 4: MT related papers published on arXiv (Image from proz.com)

Another way to address the issue of layman translation is to consider it as a text classification
problem, where each entry (layman terms) should be classified into a specific category (HPO
terms).

BothMTand text classification tasks have experimented a step forward in the last years, due to
the increasing interest of the research community in these topics and to the introduction of deep
learning architectures. Deep learning is a diversified group of machine learning techniques

https://www.proz.com/translation-news/?p=138416
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that share one characteristic: the use of several layers of non-linear functions trained on huge
datasets. They are used for a wide range of applications: supervised or unsupervised feature
extraction and transformation, pattern analysis, classification, etc. [32].

(a) Artificial neuron (b) Fully-connected deep neural network example (image from
orbograph.com)

Figure 5: Deep neural network basic functioning.

The computing unit of deep learning models is an artificial neuron, depicted if Figure 5.a.
The input of a neuron is a vector x = [x1, x2, ...xn] and the output, y is a combination of the
values in x:

y = σ(

n∑
j=1

wjxj + b) (9)

Where σ(·) is the activation function (common activation function are linear, relu, sigmoid, etc.),
andwj j = 0...n are the weights, that in the networks play the role of trainable parameters. Finally,
b is the bias term that is also a trainable parameters. Neurons are trained using loss functions
that define an error between the predicted output (ŷ) and the correct output y. A common loss
function is l = 1

2(ŷ − y)2, but there are plenty of alternatives. Weights are iteratively adjusted
during the training phase trying to minimize this loss function.

Neurons are connected in several layers to create a deep neural network, as reported in Figure
5.b. The basics functioning of each neuron is the same as before, hence the output of the i− th
layer (ai) can be calculated as:

ai = Σi(W i · ai−1 + bi) (10)

W =

wi11 wi12 ... wi1n
...
wim1 wim2 ... wimn

 (11)

Where wlij is the weight that connect the j-th neuron in the layer l − 1 to the i-th neuron in
the layer l and Σi idicates the activation functions of layer i.

https://orbograph.com/deep-learning-how-will-it-change-healthcare/
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This simple scheme can be modified in several ways, creating different models. Among the
vast amount of possible architectures proposed in the last years, there are two solutions that
have become widespread for deep learning in NLP : convolutional neural networks (C-NN)
and recurrent neural networks (R-NN).

3.2.1 C-NN for NLP

The weight matrices in the architecture seen before have a number of parameters that tend to
explode when the dimension of the input increases. Convolutional neural networks overcome
this issue introducing some filters that reduce the number of weights sharing them between the
input elements of a layer.

In the discrete domain, the convolution between two functions f and h is define as:

(f ∗ h)(m) =
inf∑

n=− inf

f(n)g(m− n) (12)

For example, in the case of a 2D input (as an image), h is a filter of dimensions [2a ∗ 2b], and
Equation 12 becomes:

(f ∗ h)(x, y) =
a∑

s=−a

b∑
t=−b

h(s, t)f(x− s, y − t) (13)

Usually C-NN are composed by several banks of filters composed by trainable weights that
extract features from the input, followed by layers that select only the most salient features (e.g.
max-pooling layers).

Given their effectiveness in computer vision tasks, C-NNs were also applied to solve NLP
probems, with optimal results principally in texts and sentences classification tasks ([33], [34]).
The basic model for the application of C-NN in NLP was deeply analyzed by Y. Zhang and B.
Wallace [35] as reported in Figure 6.

The main idea of this approach is to embed each sentence in a matrix of fixed dimensions the
rows of which are vector representations of the words of the sentence itself, obtained with aWE
technique. It is now possible to effectively deal with this sentence matrix as usually C-NNs deal
with images, that is, it is possible to perform convolution on it via linear filters [35]. A common
strategy is to apply a bank of filters of different sizes that can extract features from the sentence
matrix. Each feature then passes through a max-pooling function to reduce the dimensionality
and create a unique feature vector of fixed dimensions. Finally, this feature vector is used to
feed a softmax layer that maps it in a specific category.

This simple architecture, with some modifications, has been demonstrated to achieve good
results in several NLP tasks, from Part-of-Speech taking [36] to sentiment classification, from
semantic related words identification to MT tasks [37]. In particular C-NNs, thanks to the con-
volutional filters, perform very well in extracting features at different positions of the sentence,
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Figure 6: C-NN architecture (Image from [35])

even if they are not able to capture correlation between words in different positions in the input
sentence. To resolve this limitation, R-NNs have been introduced in NLP.

3.2.2 R-NNs for NLP

As mentioned before, a big limitation of C-NNs is their inability to model long distance de-
pendencies between words as well as their position inside the sentence. Furthermore, C-NNs
are unable to model texts of different lengths. For these reasons, R-NNs, that are able to process
sequential information, are better suited for their use in many NLP tasks, first and foremost for
MT.

The basic architecture of a R-NN is reported in Figure 7.a: the input of the net at time t, xt
is a vector representation (a WE) of the tth word of the input sentence. At each time step there
is a hidden state st = f(Uxt + V st−1) that depends on the current input and on the precedent
state. f is an activation function andU, V,W areweightmatrices shared across the different time
steps. The output of the net is ot and it is often obtained applying a non-linear transformation.
Since the hidden state is propagated to future steps, it is considered to be a kind of memory
element, that accumulates knowledge about the previous inputs. Classical R-NNs are difficult
to train, due to the vanishing gradient and the exploding gradient problems. In NLP, these issues
have been overcome with two R-NN variants : long short-termmemory (LSTM) [39] and gated
recurrent units (GRUs)[40].
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(a) R-NN architecture (Image from [38]) (b) LSTM block (Image from
colah.io)

Figure 7: R-NN architecture and LSTM block

LSTM, the structure of which is reported in figure 7.b, introduces 3 gates that are combined
to calculate the output: the input gate (it) decides how much an input at time step t influences
the hidden state; the forget gate (ft) regulates the update of the precedent hidden state in the
current one, being able to leave aside some values; finally, the output gate (ot) decides howmuch
of the current state is passed to the next time step [41]. The equations that regulate these three
gates and the hidden state/output calculations are:

ft = σ(Wf [ht−1, xt] + bf ) it = σ(Wi[ht−1, xt] + bi) ot = σ(Wo[ht−1, xt] + bo) (14)

ct = ft · ct−1 + it · tanh(Wc[ht−1, xt] + bc) (15)

ht = ot · ct (16)

GRUs blocks are very similar to LSTM, but with only two gates (named update gate and reset
gate), the function of which is comparable to LSTM gates’ function. The first gate operates as
the forget and input gate of an LSTM: it decides what new information to discard and what
new information to keep. The second gate, on the contrary, decides what information from the
precedent time step to preserve.

Many applications have been found for LSTMs and R-NNs in NLP; for instance the encoder-
decoder model proposed by Sutskever et al. [42] has rapidly become the state of art in machine
translation tasks as well as in different tasks that required text generation [43]. The main idea of
the model, reported in Figure 8, is to use a chain of LSTM blocks to encode the input sentence in
a vector of fixed dimensionality, using then a second LSTM chain to decode the target sequence
from the vector. Authors also demonstrated that the vector produced by the encoder part can
be considered as an embedding of the input sequence, with sentences with similar meaning
forming clusters in a vector space of fixed dimensionality.

Figure 8: encoder-decoder architecture (Image from [42])

https://colah.github.io/posts/2015-08-Understanding-LSTMs/
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We have seen that C-NNs are able to learn local responses from temporal or spatial data but
lack the ability of learning sequential correlations. On the other hand, R-NNs canmodel sequen-
tial correlations but are unable to extract features in a parallel way [44]. Aiming at integrating
the two models in order to benefit from strengths of both, Zhou et al. [44] proposed a Con-
volutional LSTM model (C-LSTM). This architecture is composed of two main blocks: first, a
bank of convolutional filters is applied to the sentence matrix. The aim of this first step is to ex-
tract n-gram features at different positions of the sentence; second, the features extracted with
the filters are used to feed an LSTM recurrent net, in order to capture long term dependencies
between features. C-LSTM appears to improve both LSTM and C-NN results.

3.3 HPO translation

As far as I know, there is no work explicitly focused on automatically mapping layman terms
and in general small texts into specific medical concepts. Nevertheless, to try to spot similar
sentences in texts is not a new topic, and various solutions were proposed among the years.

V. Vydiswaran et al.[45] proposed a pattern-based method to catalog couples of consumer
health terms and professional expressions from Wikipedia, "a large text corpus created and
maintained by the community". They identified a series of phrases that usually link terms
with their synonyms, e.g also called, commonly known as, sometimes referred to as, etc., and they
used these phrases to identify medical-variant term couples inside the Wikipedia Health and
Medicine corpus. Their method was able to identify synonym pairs in texts and, using the fre-
quency of the term insideWikipedia to understandwhether it was a common term or amedical
term, automatically labeling them as either specific or layman with good results.

In general it has been widely demonstrated that co-occurrence counts of pairs of words and
other contextual information extracted from large corpora can be used for spotting synonym
couples: M. Baroni and S. Bisi [46] for example demonstrated that the mutual information be-
tween couples of words obtained using co-occurrence count in a very big corpus can recognize
couples of semantically related terms with very high accuracy. Similarly, Hagiwara et al. [47]
used words dependencies (as subject-object relationship), sentence co-occurrence, and proxim-
ity for automatic synonym acquisition from general corpora.

Soğancıoğlu et al. developed BIOSSES, a "web-based system for biomedical semantic sen-
tence similarity computation" [48]. Specifically, in thiswork authors analyzed themost common
approaches for sentence semantic similarity computation, showing that, in the biomedical do-
main, most of these approaches produce poor results and seem to not be able of encompassing
the actual biomedical knowledge [48]. The approches they analyzed can be divided in three
main areas:

• String similarity measures, i.e. methods based on characters and terms similarity func-
tions, as Q-gram similarity [49] or Overlap coefficient [50].

• Distributional vector model, i.e. measures based on a vector representation of sentences
(a sentence embedding).

• Ontology-based similarity, i.e. the usage of ontologies (WordNet [5] and UMLS[51]) to
calculate words distances used to get sentences similarity measures.
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Finally, the authors introduced a regression model that exploits the prediction of the prece-
dent approaches. With this newmethod, satisfying results in sentence-level semantic similarity
computation were achieved.

Results comparable with the ones of BIOSSESS were obtained by Q. Chen et al. with the
embedding BioSentVec[52]: a "sentence embeddings trained with over 30 million documents
from both scholarly articles in PubMed and clinical notes in the MIMIC-III Clinical Database"
[52], created using the sent2vecmodel [53] . It is the first publicly available sentence embedding
in the biomedical field. Authors tested BioSentVec using the same test set used to evaluate
BIOSSESS, outperforming results that Soğancıoğlu et al. obtained with their general sentence
embedding and reaching results similar to the ones of the regression model. Doing so, they
demonstrated the importance of the training corpus to build vector representations of words:
a sentence embedding trained on domain specific corpora can achieve state of the art results
in sentence similarity tasks, while the same embedding trained on a general corpus achieves
unsatisfactory results.

Also the HPO specific word embedding proposed by M. Pilehvar and N. Collier [29], ob-
tained with linear combinations of embeddings of salient words related to each HPO term (see
Section 3.1 for more details) can somehow capture the relationships between layman and HPO
terms: in order to have a qualitative evaluation of the embedding, synonyms were mapped in
the space created as the semantic representation of HPO, and it was found that when a domain
specificWEwas used for representing individual words, the correct HPO term associated to the
synonym was the closest point in the vector space in more than 35% of the terms tested. Con-
sidering that finding the correct HPO class of a layman term corresponds to picking up a term
from a list of more than 14,000 possibilities, this result shows that an appropriate embedding is
crucial for the proposed task.

It is worth remembering that most HPO classes already contain synonyms and layman terms:
thanks to the works of N. Vasilevsky, S. Köhler, P. Robinson et al. [54], [55], [56] at the moment
HPO contains more than 17,500 synonyms, of which 45% are labeled as "layman term". Fur-
thermore, 57% of the HPO terms contain at least one synonym, and 35% of them have at least
a layperson term, classified as Exact, Narrow, Broad or Related. This remarkable work of label-
ing synonyms to HPO terms was done systematically using different methods, from checking
online knowledge such asWikipedia andMedlinePlus, to using different ontologies, terminolo-
gies, and texts (e.g. mapping SNOMED CT terms into HPO, see [57]).
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4 Methods

As seen in Section 3.3, there is no standard solution to the synonym identification problem.
Furthermore, there seems to be a lack of studies when the problem is restricted to a very spe-
cific field as it is the case of HPO terms. Methods based on statistics and counts of words can
not work in this case, due to the limited corpora available for some HPO classes: since some
terms are very specific, it could be very difficult to find texts that describe them and provide
synonyms and layman words at the same time. The high specificity of the terms makes the
usage of tools for similarity calculation such as BIOSSES or BioSentVec inappropriate as well,
since many sentences are not represented.

As shown in Figure 9, the proposed method is based on two steps: On the first place, a vector
space to represent HPO terms, an HPO embedding, was created; then, I trained an algorithm
to map layman terms and other text descriptors in general into this space.

Figure 9: General architecture for synonyms identification.

The rest of the chapter is dedicated to the explanation of how the HPO embedding and the
MT net have been implemented.

4.1 Word Embedding

As seen before, there are many possibilities for creating an embedding: following the nomen-
clature of Sarma et al. [28], it is possible to divide the embeddings in three categories:

• Domain specific WE (DS WE), is a category of WEs created from a specific corpus with,
for example, statistical techniques.

• Generic WE (Gen. WE), embedding trained on huge corpora, such as Word2Vec, Glove,
etc.

• Combined WE, created aligning generic and domain-specific embeddings, for instance
Sarma DAWE (see Setion 3.1).

In Section 3.1, we have seen that DS WEs are usually unable of representing words as well
as Generic embeddings but, when the application field is very specific, they could capture se-
mantic nuances that other techniques can not. On the other hand, a combination of the two
techniques could potentially overcome both DS WE and Gen. WE, even if combining multiple
embeddings is not a straightforward task. Since a correct representation of HPO could be cru-
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cial for a good translation, I studied the three techniques separately, trying to understand their
drawbacks and usefulness for the task at hand.

4.1.1 Domain Specific WEs

Due to its ease of implementation and its widespread use before the introduction of the Gen.
We, I decided to test the LSA embedding (WELSA(ti)). A generic introduction to this tech-
nique was given in Chapter 3, however I should clarify how I implemented it for the specific
application to HPO classes.

The first step is to define a corpus C of documents each one representing an HPO term: for
each class I extracted name, description, synonyms and parents and I concatenated them in a
unique body of text. Then, I cleaned each text eliminating punctuation and replacing numbers
with their analogous in letters (for further details about the cleaning algorithm see Chapter 5
andAlgorithm 1 inAppendix A). Finally, each cleaned text was used as a document to represent
the corresponding HPO concept. An example of the creation of a document for an HPO class
is reported in Figure 10.

Figure 10: Example of document extraction for LSA.

The second step is to create amatrix Xwhose rows represent HPO concepts and columns rep-
resent words of the corpus. For example from theHPO concept t3 = HP : 0000003 =’Multycistc
Kidney Displasya’ I got the document C[t3] = {’multicystic kidney dysplasia multicystic kidneys mul-
ticystic dysplastic kidney multicystic renal dysplasia renal cyst’} and consequently the row of X cor-
responding to t3 contains all zeros except for the 7 tf -idf indices of the seven unique words of
C[t3]:

X[3,multicystic] = 0.85 X[3, kidney] = 0.28 X[3, dysplasia] = 0.26 . . .

Where X[i, w] indicates the element of the matrix X in the row ith and in the column corre-
sponding to the word w.

Each line of X is already a representation of the corresponding HPO term, but in a space of
more than 9,000 features (the cardinality of the corpus of document); after feature reduction via
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SVD to obtain a fixed number of columns k, the rows of the new matrix are used as WE:

WELSA(ti) = Xk[i, :] (17)

With Xk the matrix obtained after SVD dimension reduction and Xk[i, :] the ith row of this
matrix. Both tf -idf indices and SVD were calculated using Scikit-learn Python library [58].

4.1.2 Generic WEs

Among the various possibilities for a Gen. WE, I decided to use an implementation of an
embedding based on Word2Vec. Since the training of this model requires a big amount of re-
sources, including time, RAM, data etc., I preferred to use a pre-trainedmodel. McDonald et al.
[59] published a Word2Vec model for biomedical applications: this WE was created using a
skip-gram model with a window size of 5 and with 2 versions, one with an embedding dimen-
sion of 200 and the other with an embedding dimension of 400. They trained the model with
more than 27M of biomedical articles from MEDLINE/PubMed.

HPO terms are, more than single words, concepts described by a sentence (e.g. Atrial septal
defect, Abnormal mitral valve morphology, etc) thus, to obtain an HPO representation, vectors of
the McDonald’s WE should be somehow combined, even if in literature there does not exist
a standard method to combine multiple embeddings [28]. I implemented three alternatives,
denominatedWEG1(ti),WEG2(ti) andWEG3(ti).

The first version of the Gen. WE is motivated by the compositionality of Word2Vec, i.e. by
the fact that the sum of different word vectors results in a vector that represents a word that is
semantically related with the words represented by its component vectors. For each HPO term
ti, I extracted the list of words (lemmatized, without stop words nor punctuation) contained
in ti, Rt(ti)= {w1, w2, .., wn} (for more details on the construction of Rt see Algorithm 2 in
Appendix A). Then, the vector representation of ti, is just the sum of the vector representation
of the words wi i = 1, .., n in McDonald’s WE, v(wi):

WEG1(ti) =
∑

wj∈Rt(ti)

v(wj) (18)

WEG1 considers each word in Rt the same way, no matter how much influence it has on the
semantics of the HPO term. For example, for the HPO term Abnormal mandible coronoid process
morphology, it might make sense to give a higher weight to the wordsmandible or coronoid, rather
than to thewords abnormal or process. To do so, an option is to exploit the Xmatrix created for the
DS embedding (WELSA), since the tf -idf index reflects the importance of words in documents.
Thus, this second version of Gen. WE was obtained summing the vectors of the words in Rt(ti)
multiplied by the tf–idf index of each word:

WEG2(ti) =
∑

wj∈Rt(ti)

tf -idf(wj , C[ti], C) · v(wj) (19)
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The last strategy is the most elaborated one and is based on Pilehvar’s HPO representation
introduced in Section 3.1, even if some modifications were introduced to avoid the usage of
BabelNet (since it is not open source). Again, the starting point is the list of words contained in
each termRt. The first step is to build a corpus of Wikipedia pages related to each term (Dt(ti))
according to the Algorithm 3 in Appendix A: for each word wj ∈ Rt(ti), the first n pages of
Wikipedia that are found searching for it are collected, among with the first l linked pages for
each one of the n pages.

After this, Dt is used to extend Rt(ti), obtaining R∗t (ti), the sorted list of words of Dt(ti)
that have a lexical specificity higher than a given threshold (see Algorithm 4 in Appendix A).
Lexical specificity [60] is a measure of the importance of a word in a corpus: given a word w,
its frequency in a corpus (Wikipedia in this case) F , its frequency in the sub-corpus (Dt in this
case) f , and the total number of words in corpus and sub-corpus respectively T and t, then the
specificity of w is:

spec(w) = −log10P (X ≥ f) (20)

with X being a hypergeometric distribution of parameters F, T, t. Thus, R∗t (ti) contains in the
first positions thewords ofRt(ti) and, afterwards, lemmatizedwords ofDt(ti) that have a speci-
ficity higher than a given threshold (th = 5), filtered with a medical dictionary (the Hunspell
English medical dictionary, 2017), and ordered according to their specificity. Eventually, the em-
bedding is obtained summing the words in Rt∗, with words that come from Wikipedia multi-
plied by a decay factor λ:

WEG3 =
∑

wj∈R∗t (i)

f(wj) · v(wj) (21)

with:

f(wj) =

{
1 if wj ∈ Rt(i)
e−λ·j if wj /∈ Rt(i)

(22)

Even if the base WE used to calculate the vectors v(wj) was trained on a medical corpus, not
all the words needed were represented: specific HPO concepts as hypoleucinemia or polymin-
imyoclonus have no vectors in the Word2Vec model used. As far as possible, these words were
replaced by synonyms or periphrasis that had the closest possible meaning. This was done only
for the words in Rt, and not for all the words fromWikipedia in R∗t . A list of the original words
together with the proposed alternatives is reported in Tables 10 and 11 in Appendix B. Another
problem relative to the creation ofRt was the presence of words separated by a hyphen, as beta-
cell or atlanto-occipital. In this case, if the couple of wordswas present in theMcDonaldWE, then
it was considered as a unique word in Rt. On the other hand, coupled words not represented
in the WE at hand were split and inserted in Rt as two different words.

4.1.3 Combined embedding

In the work of W. Yin and Schütze [27], several techniques to combine different embeddings
were proposed and tested. One of themost effective onewas based on dimensionality reduction
through SVD, and, also due to its ease of implementation, it is the one thatwas used in thiswork.
Also note that the DA WE of Sarma et al. is a way to combine WEs, but it is complicated to
implement, and thus it was not tested. Given an HPO term ti, the combined WE (WESV D(ti))
is obtained in two steps: first, a DS WE and a Gen. WE are concatenated to obtain a matrix
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M ∈ R|HPO|×(|WEGi|+|WELSA|)in which each row represent an HPO term and each column a
feature of one of the two embeddings:

M =

WEGi(t1) WELSA(t1)
WEGi(t2) WELSA(t2)

. . . . . .

 (23)

The second step is to reduce the dimensionality of this matrix via SVD, similarly to what done
for the DS WE (WELSA), and to use the rows of this new matrixMk as a vector representation
of the HPO terms. Following the same nomenclature of equation 17, the embedding of a term
ti is:

WESV D(ti) = Mk[i, :] (24)

4.2 Machine translation

Once a vector space containing HPO terms has been created, the next step is to map inputs
into this space. In this work 4 different deep learning architectures were investigated. For all
these models, the encoder-decoder architecture of Sutskever et al. [42] was the backbone. The
rest of the chapter is dedicated to explain how they work, trying to justify the process that led
from the first model, that is almost equal to the classical encoder-decoder architecture, to the
last more complex model.

4.2.1 Encoder-Decoder model

The main difference between a normal MT task and the task of spotting synonyms from a
predefined list of terms is that in the first case the output could be any of the several combina-
tions of words of the output vocabulary, while in the second case the possible combinations are
limited to the ones that form an HPO term. The first architecture proposed to achieve this task
is represented in Figure 11. As one can note, it is very similar to the encoder-decoder model
reported in Figure 8: the main idea is to translate the input from the layman language into the
HPO language, and then pick up the HPO term that is more similar to the predicted output.

Figure 11: Encoder decoder model for layman-HPO translation.
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The first step is to make the input text (tinput) readable for the successive layers: this is done
using a Tokenizer class. Each input sentence was turned into a sequence of integers with each
integer being the index of a token in a dictionary that contains all the words in the layman input
corpora. The dictionary is ordered by frequency, i.e. very common words have a low index
while specific words have a high index.

This vector can then be used to feed the actual network. The first layer is an embedding that
transforms the input vector in an embedding matrix, each row representing a word in the original
input. It is worth noting that this embedding layer is completely separated from the precedent
HPO embedding: the later is a vector space that represent HPO concepts, while the former is a
way to represent input words in the most optimal way for their use in the following layers. The
HPO embedding is created once at the beginning of the process and thus it remains the same
during all the process, including the training phase, while this embedding layer is trained with
themodel and its weights are continuously updated during the training phase. Each row of this
embedding matrix output of the embedding layer is then used to feed a LSTM block of a RNN
(the encoder) that analyzes the input sentence and maps it in a vector of fixed dimensionality.
This vector finally feeds another LSTM, (the decoder), that tries to predict the HPO term.

Each block of the decoder LSTM has a vector as output, corresponding to a one-hot encoded
embedding of aword in theHPOdictionary, thus the output of themodel is another embedding
matrixM(tinput) ∈ Rlinp×|HPO| with linp the length of the input sentence. In order to select an
HPO term the rows of the output matrix were concatenated in a unique vector ŴE1·H :

ŴE1·H(tinput) =
[
M(tinput)1,:,M(tinput)2,:, ...,M(tinput)linp,:

]
(25)

BeingM(t)i,: the ith row of the matrixM(t).

At the output ŴE is compared with the vectors representing HPO terms obtained with the
same procedure, i.e. one-hot encoding of the words to obtain M(ti) and concatenation of the
vectors gettingWE1·H(ti) for each HPO term ti. The closest HPO term (using cosine similarity
or Euclidean distance) was then selected as final prediction t̂:

t̂ = arg min
ti∈HPO

(
dist(ŴE1·H(tinput),WE1·H(ti))

)
(26)

Note that using this architecture the HPOWEs explained in Section 4.1 were not used.

4.2.2 Encoder-Dense Model

The precedent model is the classical architecture used for MT tasks, with an additional step
that forces the output sentence to be an HPO term. Since the only vector representation used is
the one-hot encoding, themodel takes no advantage from information about semantic similarity
of HPO terms. Another drawback of the encoder-decoder model is that there are two different
LSTM layers with a big amount of both RAM and CPU/GPU usage for training.
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For this reasons, the idea behind the second proposed model, further on named as LSTM-
D, is to use a single LSTM layer that, as demonstrated in Sutskever’s work, can create a vector
representation of the input layer. Then this vector is directlymapped in theHPO space, without
a LSTM layer that acts as decoder to create a sentence from it.

Figure 12: LSTM-D model for layman-HPO translation.

As reported in Figure 12, the first part of the model is equal to the one of the encoder-decoder
model: a numerical representation of the input sentence feeds an embedding layer that, in turn,
feeds a LSTM. Again, the output of the embedding layer is an embeddingmatrixL ∈ Rlinp×NWE

representing the input sentence, where NWE is the length of the embedding, with each row
representing a word in the input term tinput. Each one of these rows is the input of a different
LSTMblock in the R-NN layer. The output vector of the last LSTMblock then enters in a classical
fully-connected layer (dense layer) that simply maps it from the output space of the LSTM into
the HPO space.

Let j be the HPO space (e.g. j = G1 A,LSA B, etc.), then the output of the dense layer is
a new vector in this space, namely ŴEj(tinput), that theoretically should be the closest to the
vector that represent the correspondingHPO in the same space. For this reason, theHPO vector
closest to the output vector is chosen as synonym of the input sentence, in a similar way to what
done in Equation 26:

t̂ = arg min
ti∈HPO

(
dist(ŴEj(tinput),WEj(ti))

)
(27)

4.2.3 Convolutional-Encoder-Dense Model

Zhou’s C-LSTMmodel aimed to integrate convolutional models (C-NNs) with R-NNs. Since
in his work he was able to improve the performance over LSTM, it could be interesting to test a
similar architecture for layman translation. The proposedmodel, namedC-LSTM-D, is reported
in Figure 13 and, as in the original C-LSTM model, also this one involves two steps:

1. The extraction of features from the input sequence via a convolutional layer.

2. The acquisition of long-range dependencies in the feature maps via a LSTM layer.
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Figure 13: C-LSTM-D model for layman-HPO translation.

Even if the C-LSTM-Dmodel is quite similar to the C-LSTM, it is worth highlighting its mod-
ifications for the specific task of layman-HPO translation.

The input tinput is treated as in the precedent two models, i.e. an embedding layer is used to
create a matrix L ∈ Rlinp×NWE representing the input sentence. A convolutional filter is then
used to extract features from this matrix and amax-pooling block to reduce the dimensionality
of the feature space. Since it was proposed in the original C-LSTMmodel, we added a dropout
layer before the convolutional step.

The output of the max-pooling layer is still a kind of embedding matrix (L′ ∈ Rl′×NWE , with
l′ < linp), but now each row represents the most salient features of the words in the embedded
space. The second step, i.e. the LSTM layer, is then equal to the LSTM-D model: the features
extracted by the convolutional layer are mapped by the LSTM in a single vector that is in turn
mapped in the HPO embedding by a fully-connected layer, obtaining a vector ŴEj(tinput) that
is used to predict an HPO term t̂ using Equation 27.

4.2.4 Encoder-Parallel Model

As it will be shown in Chapter 6, the current HPO embedding works very well in detecting
branches: the WE tends to map HPO terms of the same branch in the same regions of the vec-
tor space created. For this reason, even with a simple algorithm as K-nearest neighbors one can
predict the branch of an HPO termwith very high accuracy. Similarly, C-LSTM-D and LSTM-D
models, that are created in order to map a sentence in this embedding space, can be used as
well to predict the branch of a layman term. The last proposed model, named LSTM-P, is based
on the intuition that it will be able to map input sentences to a specific branch in the ontology.

The model is reported in Figure 14 and it is composed by two parallel nets:

• A model for branch detection assigns a category to each input.

• A model for layman translation assigns a vector in the HPO space to each input.

The idea behind this model it to divide the problem in two sub-problems: first, detect the
branch of the input term, in order to reduce the output space in a specific sub-region of the HPO
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Figure 14: LSTM-P model for layman-HPO translation.

embedding; and second, map the term in that sub-region using a model trained specifically to
work in that space.

The first model (for branch detection) is very similar to C-LSTM-D, except for the last layer:
after the dense layer that maps the output of the LSTM in a vector of the HPO embedding,
another dense layer is used to predict the branches, mapping the predicted vector (ŴEj(tinput)

) in a 26-D one-hot encoded vector (V̂branch(tinput)) representing the different categories (the 4
sub-ontologies Mode of inheritance, Clinical modifier, Clinical course and Frequency were grouped
in a unique category). The main reason to use a model based in C-LSTM-Dwas mainly because
it was very fast to train with respect to other alternatives.

On the contrary, the second model is more similar to the LSTM-D model, but with a big
difference: after the LSTM chain, now there are 26 parallel dense layers, each one specialized
in mapping the input vector in a specific region of the HPO embedding space, according to the
predicted branch. The output of this layer is then a matrix (ŴEj(tinput) ∈ R26×D, with D the
dimension ofWEj), the rows of which are different predictions of the input as if it belonged to
a specific branch. The correct vector is then picked up using the prediction on branches made
by the first model:

ŴEj(tinput) = ŴEj(tinput) · V̂branch(tinput) (28)

Once obtained a prediction on the embedding of tinput, an HPO term t̂ is chosen using again
Equation 27.

The main advantage of this model is that if a layman term belongs to a specific branch, e.g.
Abnormality of the immune system, and this is correctly predicted by the C-LSTM-D network for
branch prediction, then it will be mapped in the HPO embedding space by a dense layer specif-
ically trained to work with those terms. In this way each branch has a fully-connected layer that
maps terms of that branch only in the specific region of space corresponding to them.
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5 Experimental design

As mentioned before (Section 3.3), most of the HPO terms contain one or more synonyms.
In addition, almost all the terms contain a brief description of one or more sentences. As a
consequence, almost 90% of the HPO terms contain either a synonym or a short sentence as a
description, or both. However, a small fraction of HPO will not be represented in the training
set since they contain nothing but a label. After a pre-processing step that will be explained
further on, this collection of synonyms and descriptions was used as input to themodel in order
to train and test them. That is, inputs were on one hand layman terms, but on the other hand
sentences describing the phenotype. Choosing to include as well the description of the terms in
the train and test sets was due mainly for two reasons: first, deep learning models need a huge
amount of data and limiting the training set to the layman terms in HPO only would not be
enough; second, the introduction of describing sentences made the problem more challenging
and ambitious, increasing the range of applicability of the final solution.

More than 16% of the descriptions in HPO are formed by more than one sentence, for this
reason descriptions were split in sentences using a sentence tokenizer, and sentences longer
than 50words (less than 1% of the sentences) were discarded. Note that for the encoder-decoder
model and for the LSTM-Dmodel the length of the input sentence is not a problem: LSTMs can
work with inputs of varying length. On the contrary, CNNs must work with data with fixed
dimensionality. For this reason, all the sentences were padded with a special character to be of
the same length.

The pre-processing algorithm was the same that was used for cleaning the corpus of doc-
uments C (see Section 4.1 and Algorithm 1 Appendix A). Besides the classical pre-processing
steps, i.e. lower all the uppercase letters and eliminate punctuation, some strides specific for
HPO were introduced:

• In HPO ordinal numbers are written with digits, thus they were transformed to strings
(e.g. from Abnormality of the 1st metacarpal to Abnormality of the first metacarpal).

• The presence of couples of numbers separated by a hyphen is quite common, particularly
for toe phenotyphes. In these cases, the two numbers were separated and transformed to
ordinal numbers (e.g. from 2-3 toe syndactyly to second third toe synadactyly).

• Other numbers were commuted to strings only when they were isolated and not part of
a unique word (for example Tessier number 4 facial cleft becomes Tessier number four facial
cleft, but cervical c3 c4 vertebral fusion remains equal since the numbers are part of a word).

• Words separated by a hyphen were considered as a unique word, i.e. the hyphen was not
removed along with the rest of the punctuation.

Note that, when this algorithm was used for theWELSA, stop words were eliminated as well
and hyphens were treated differently: in order to remain consistent with the Gen. WE, words
separated by a hyphen were considered as a unique word only in the case that they belong to a
unique string in the McDonald’s WE, while they were split in two words in the other cases (e.g.
Stroke-like episode becomes strokelike episode, but from Multiple non-erupting secondary teeth one
obtainsmultiple non erupting secondary teeth since non-eruptingwas not an itemof theMcDonald’s
embedding).
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Obviously, it would be impossible to define a set of pre-processing rules that could work for
each particular case in each sentence: the rules stated above work for almost all the cases and
thanks to the huge amount of input data, the exceptions will not influence the results. All the
pre-processing steps were done using the Natural Language Toolkit (NLTK) [61].

After preprocessing, a list of 30,230 layman terms or sentenceswas created. This list contains
terms that represent almost 90% ofHPO terms but, asmentioned before, a small fraction of phe-
notypes is not represented in the train set. Furthermore, 33% of theHPO classes are represented
only by a layman term or a sentence, while 24% of the HPO classes is represented by two lay-
man terms or sentences. The remaining 33% of the classes is represented by 3 or more terms,
with some classes with more than 10 layman terms or sentences and a mean of 2 descriptors
per term. Further details about the train set will be given in Section 6.1.

This workwas focused in testing themodels in combinationwith the 5 embeddings proposed
in Section 4.1. During the first phases of the experiments, the encoder-decoder model appeared
to be very costly in terms of RAM utilization and training time. Since the first results obtained
appeared to be worse in comparison with the other architectures, this model was discarded.
Nevertheless, to define it was a crucial step since the other models are an evolution of this first
one.

As mentioned before, in McDonald’s WE there were 2 models, one of dimension 200 and one
of dimension 400. Both models were tested in order to analyze how the output dimension in-
fluences the results. Theoretically, for WELSA and WESV D the dimension can be any integer
number. In order to be consisten with the Gen. WEs only WEs of dimensions 200 and 400 were
tested. Further on, the dimension of the WE will be referred with letters A and B respectively,
thusWEG1A(ti) will denote a vector of size 200 obtainedwith the first general embedding tech-
nique andWEG1B(ti)will denote a vector of dimension 400 obtainedwith the same embedding
technique.

In addition to the 5 embeddings, also a random WE (WErand(ti)) was created. Each feature
was randomly generated using a different Gaussian mixture model estimated from the corre-
sponding features ofWEG1.

Each model has a different architecture and hence different tunable parameters, however
some are common among the architectures and their influence in the results can be investi-
gated. In particular, the initial embedding layer and the LSTM layer appear in all the models:
different dimensions of these two layers were tested.
Referring to the C-LSTM-D model, after the first experiments it seemed that the model did not
suffer from over-fitting problems, hence the dropout layer was removed.
Details on the parameters are reported in Table 12 in Appendix B.

The development of this project was totally carried out with Python: the code to creates the
models and to pre-process the test can be found in Appendix D . The models are trained with
cross-validation, with 29,625 terms on the training set and 605 on the test set. The model is built
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and trained on Keras [62] with mean squared error as loss function and the Adam optimization
algorithm.
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6 Results

In this chapter, results of the model described in Chapter 4.2 will be analyzed. Furthermore,
the impact of the different WEs introduced in Chapter 4.1 will be studied, considering on one
hand how they affect the performance of the model and, on the other hand, investigating the
vector space created. However, without knowledge on how the training set is distributed in
HPO, the subsequent results could be misunderstood and misinterpreted. For this reason the
first section of this chapter is dedicated to the analysis of the frequency of single words in test
set and HPO. The second section is then focused in analyzing how the WEs proposed worked,
and in the third part the final results of the complete models are reported and studied.

6.1 Statistical description of HPO words distribution

In Chapter 2 HPO was briefly described and two important concepts related to HPO terms
were introduced: the depth of a term defined as the number of hypernyms that the term itself
has; and the branch or category of a term, defined as the direct descendants of the Phenotypic
abnormality node (plus other 4 describing nodes). Moreover, in Chapter 5, it was explained how
the classes in HPOwere used to create a training set for the models. The aim of this section is to
further analyze this training set, considering in particular the distribution of HPO classes and
single words among the branches and the depth in the ontology.

(a) Number of classes per deep (b) Number of classes per branch

Figure 15: Distribution of classes inside HPO.

In Figure 15, one can note the distribution of the terms inside HPO, with respect to the depth
of the terms (15.a) and to the branch (15.b). Note that, for graphical reasons, branches are in-
dicated with an identification number: the corresponding branches for each id are reported
in Table 13 in Appendix B. The blue columns in the branches vs # of classes histogram indicates
phenotype branches, i.e. the branches that are direct descendants of the Phenotypic abnormality
class. As expected, almost all the classes are included in one of these branches. Nevertheless,
the distribution of terms among these branches is not uniform, with some branches with more
than 1,000 terms (e.g Abnormality of the skeletal system corresponding to the 7th column, or Ab-
normality of limbs, corresponding to the 23rd column) and other branches that refer to more
specific abnormalities and hence contain only a few thousand terms or even less, as Growth ab-
normality or Abnormality of the voice, corresponding to columns 12 and 30, respectively. On the
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contrary, the red columns in the same histogram correspond to terms in one of the four de-
scriptor classes (Mode of inheritance, Clinical modifier, Clinical course, Frequency). The number of
terms they provide to the ontology is very limited, but this is not a big issue: since the aim of
this work is to identify phenotypes, it is of greater importance for the other branches to be well
represented, while these categories are less relevant. Finally, there is a third type of column: the
green columns represent terms belonging to more than a branch 1, e.g. column 9 contains terms
that simultaneously belong to Abnormality of the skeletal system and to Abnormality of limbs. Not
every possible combination is reported in the histogram, but only the ones that represent more
than 100 terms. As one could imagine, these categories that partially overlap are somehow con-
nected by semantic similarity, as in Abnormality of the skeletal system-Abnormality of limbs, or in
Abnormality of blood and blood-forming tissues-Abnormality of the immune system.

The first histogram, that counts the number of classes at each depth level in the ontology,
shows that most of the terms are located between a depth of 5 and a depth of 10. These are
usually terms that are quite specific and already identify a phenotype, for example Pulmonary
edema (depth = 8) or Intermittent hyperpnea at rest (depth = 7) as opposed to the term at shal-
lower level of depth, that usually indicates more a family of phenotypes (e.g. Abnormality of
the musculature of the thorax (depth = 3)) rather than a specific phenotype. As the depth level
increases, the specificity of the terms also increases, with phenotypes usually involving very
specific parts of the body like phalanges or small bones of the metacarpals. From a point of
view of the task of this work, the most useful terms are the ones that describe specific pheno-
types and can be found in the middle part of the histogram and in the tail, approximately from
a depth level of 7/8. Consider a real application in which patients (or even clinicians) use an
application based on this work to find an HPO term based on their symptoms: it is legitimate
to think that their will be more interested in finding out the name of the specific phenotype that
affects them, rather than getting a generic description of phenotypes affecting a part of the body
as Abnormality of ...

(a) Number of entries in the training set per term per
depth

(b) % of term with 0 or 1 entries in the training set.

Figure 16: Distribution of entries in the training set inside HPO.

1In the histogram terms in more branches are counted one time for each branch they belong plus one time for the
corresponding multi-branches column.
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The main drawback of any deep learning model is the huge amount of data that is needed
for a successful training phase. The training set created in Chapter 5 is considerable, containing
more than 30,000 entries. However, it is also important how the terms in HPO are represented
by this training set. In Figure 16.a an histogram of the number of entries in the training set with
respect to the number of classes at a specific depth is reported. As it is possible to note most of
the classes have two corresponding items in the training set (the classical situation is in fact that
a term contains at least one synonym and a descriptive sentence), even if this is not a strict rule
and a term can have both more synonyms or describing sentences, or less. In Figure 16.b the
percentage of terms without representation in the training set (red histogram) and with only
one representation (green histogram) is shown. Inside HPO, approximately 10% of the terms
is not represented in the training set: one can note that these terms are grouped in the upper
levels of the ontology and starting from a level of 25 almost all the terms are represented. From
a point of view of the layman translation task, it is important that specific terms located at the
lower levels of the ontology are well represented, while it is less relevant that some terms in the
upper levels are not represented.

The fact that more specific concepts appear to be over represented in terms of descriptions
and synonyms inside HPO can be noted also looking at the trends of the two histograms: the
number of entries per term appears to growwith the depth, while the percentage of terms with
just one entry tends to decrease as depth increases. It is worth spending some words about
the apparently singularity around level 24 where the number of entries per term reaches its
minimum and the percentage of terms with one entry has a peak. Of the 207 terms located at a
depth of 24, 150 are terms related with the epiphysis (i.e. the ends of long bones). Most of these
terms contain no description and only a synonym that talks about end part rather than epiphysis
explaining the peak in the second histogram. However, excluding these phenotypes regarding
a particular finger abnormality, the trends are confirmed.

Figure 17: Distribution of words per term at level of depth

Aside from the number of synonyms or sentences that an HPO term has, it is important to
evaluate the morphological information that these synonyms bring. It is different to correctly
identify a synonym that is very similar to the corresponding HPO term and to identify a syn-
onym that uses totally different words. For example, the HPO term Increased circulating chylomi-
cron concentration has three synonyms, two of them (Increased chylomicrons and Increased circu-
lating chylomicron levels) do not provide much additional information to the term: it could be
said that they only shuffle the words of the original label. On the contrary, the third synonym
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( Hyperchylomicronemia) is totally different from the original one. In figure 17, three histograms
are shown, displaying:

• In red, the number of words in the HPO dictionary per depth level (normalized by the
number of HPO terms).

• In green, the number ofwords in the training set dictionary perHPO term, i.e. the number
of words in the dictionary of the synonyms and sentences with respect to the number of
HPO classes at that depth.

• In blue, the number of words in the training set that do not belong to the dictionary of
HPO classes, i.e. the new words that synonyms and sentences contribute. If A is the set
of words in HPO dictionary and B the set of words in the training dictionary at a certain
depth, then this third set is C = B − (A ∩B) (see Figure 18)

Figure 18: Example of words distribution at level 1.

The number of words in each of the three histograms remains more or less constant among
levels: the peak at the lower levels is due to the fact that these are very specific terms, with
long sentences that define them (as Symphalangism of the proximal phalanx of the 2nd finger with
the 2nd metacarpal). Note that at a depth of 24, the morphological variation is limited, due to the
repetition of terms as epiphysis or finger.

The same statistics, i.e. the distribution of layman terms and sentences per term and the
number of words per term, can be calculated also according to the branches. However, inside
a branch there is more variety than inside a depth level, i.e. even if terms of the same branch
are related by a kind of semantic relationship, they are very different among them in terms
of specificity, number and type of words and so on. For these reasons, the same histograms of
Figures 16 and 17 but calculated per branch instead of per depth are less informative. The results
are more uniform along categories and branches are not significantly different. Furthermore,
except for the four descriptive branches that will be unified in a unique category in further
analysis, no branch is more relevant than others from a point of view of the layman translation
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task.2

6.2 Embeddings results

The evaluation of an embedding is not an easy task. There is no way to determine the most
suitable vector representation of a word or a concept . Since each method has its pros and cons,
and the evaluation of the effectiveness of a WE must be done considering the task at hand.

(a)WEG1 A

(b)WELSA A

(c)WERand A

Figure 19: WEs representation in a lower dimension space (stratified by branch).

Intuitively, a WE should map semantically related concepts in vectors close in the WE space;
for example two concepts as Vascular calcification and Vascular tortuosity should be represented

2A visual representation about the distribution of words and layman terms inside each branch is reported in the
histograms in Appendix C, Figure 31 and Figure 32.
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(a)WEG1 A

(b) WELSA A

(c) WERand A

Figure 20: WEs representation in a lower dimension space (stratified by depth level).

by two vectors very close, while a third concept e.g. Short metatarsal, should be mapped in a
completely different region of the space. However, this objective is not straightforward: for the
specific case of HPO, there should be more then 13,000 vectors in R200 or in R400. A visual val-
idation of the WEs is shown in Figures 19 and 20. Using the Hypertools [63] toolbox for data
reduction and visualization, some terms were plotted in a 2D using PCA dimension reduction
[64] to reduce data from R200 to R50 and then using t-SNE algorithm to visualize them in 2D
[65]. In particular in Figure 19, 5 branches were selected (Abnormality of the genitourinary system,
Abnormality of the respiratory system, Abnormal cellular phenotype, Abnormality of the skeletal sys-
tem and Abnormality of head or neck) and for each branch 10 phenotypes were randomly picked
up. Each term was represented in three different spaces: WEg1A,WELSA A and WErand to
have a reference. Figure 20 was obtained with the same procedure, but the terms were selected
from different depth levels. These graphical representations are limited: figures display a 3D
representation of vectors in R200 and hence they can not capture the complexity of the space.
However, even if they are simplified representations, some observation can be carried out. In
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Figure 19.a , the branches appear to form clusters in the space. The green points, correspond-
ing to Abnormal cellular phenotype branch, for example, are separated from the other points and
clustered in the North region. The same is valid for the purple points (representing Abnormal-
ity of the skeletal system) that occupy the East region. The fact that terms of the same category
tend to cluster is also evident in Figure 19.b, even if in this case the trend is less evident. It
is interesting to notice that the points corresponding to Abnormal cellular phenotype, a branch
that is semantically distinct from the other four, appear to be separated from the other points
in both cases. Finally, the random WE appears as expected: points are scattered in the space
without structure. Figure 20 is less informative. At first glance, in both embeddings (Fig. 20.a
and 20.b) it seems thatmore generic terms, i.e. terms at a lower depth (corresponding to red and
blue points), tend to concentrate in a region of space different from the one of the other points.
However, there are points that do not respect this rule and the differences between these two
embeddings and the random one are less pronounced.

The intuition that terms in HPO tend to create clusters inside the WE space according to the
branches they belong can be tested using the k-NN algorithm. The basic idea of this classifica-
tion algorithm is classifying an element in a feature space according to the most common class
among its k nearest neighbors in the feature space [66]. In this case, 1,000 HPO classes were
randomly selected and, for each one, a prediction of the branch was carried out based on the
branches of the k = 15 nearest terms in the WE space. Since many terms belong to more than
one branch, the classification was considered correct if at least one of the branches was correctly
classified. Numerical results reported in Table 1.a confirm the hypothesis: all WE correctly clas-
sify the terms in almost 90% of the cases .

WE Correct classification [%]

A B

g1 89.7 89.0
g2 90.4 90.9
g3 87.7 88.5
lsa 87.7 90.9
svd 89.5 89.1
rand 22.2 22.1

(a) Branch prediction

WE Correct classification [%]

A B

g1 55.5 56.3
g2 56.3 57.0
g3 52.9 52.0
lsa 59.6 62.0
svd 55.9 56.3
rand 30.2 29.2

(b) Depth prediction

Table 1: Percentage of terms correctly classified with K-NN.

The same experiment was performed also to try to classify a term according to its depth. As
before, k-NN was used to detect the depth of 1,000 random classes. In this case, a prediction
was considered correct in a range of ±1 around the correct depth (e.g. if the correct level was
5, then a correct prediction could be in the interval [4-6]). Results in Table 1.b are consistent
with the visual intuition from Fig. 20: the embeddings can not represent depth as well as they
represent branches.

Another property that should be checked to evaluate an embedding in the specific case of
HPO is that it should keep the relationship among terms unchanged, i.e. terms with a high
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Figure 21: Similarity between HPO terms and the closest vector in the corresponding WE.

similarity in the ontology should be mapped close in the WE and the other way around, pairs
of vectors close or far from each other in the WE should represent couples of terms with a high
or low similarity in HPO. Figure 21 shows a boxplot representing each one of theWEs proposed
in Chapter 4.1. The boxes are calculated picking up random HPO classes and calculating the
similarity between them and the HPO term that corresponds to the closest vector in the embed-
ding, i.e. given an embeddingWEj and n terms ti, i = 1, .., n, each box is obtained calculating:

si = sim
(
ti, arg min

τ∈HPO
dist(WEj(ti),WEj(τ)

)
i = 1, .., n (29)

Intuitively, close points in the vector spaces should represent close concepts in HPO, thus the
similarities calculated between random pairs of points close among them should tend to one.
Mean and standard deviation of the similarity among the WEs are reported in Table 14 in Ap-
pendix B. Again, results shows that all the embeddings have a mean similarity between 0.76
and 0.82, indicating that the relationships among terms is in that way preserved. Furthermore,
results are alignedwith the ones in Table 1, with twoWEs (WEg2 andWElsa) that appear to per-
form slightly better than the others, and with the WEs in R400 that in general work marginally
better. However, the standard deviation is high for all the WEs as it is the number of outliers,
indicating that, even if these feature spaces can work in general, they are still rudimentary and
they can not represent all the terms correctly. The last observation is thatWEg3, that theoreti-
cally should be the best one among the Gen. WE since it was createdwithmorewords related to
the single concepts, in practice is the one that works the worst. The highest standard deviation
of this embedding shows how the list of words used to create it is more a source of noise rather
than an improvement of the representation.

Another way to evaluate the embeddings is to map the layman terms directly in this space
and try to predict the corresponding HPO class. Given a layman term tinput, it is possible to get
its representation in one of the embedding spaces (WEj(tinput)) applying the same steps that
were applied at the HPO terms to get the corresponding WE. Hence the closest vector in the
WE space can be chosen as synonym the input:

t̂ = arg min
τ∈HPO

dist(WEj(tinput),WEj(τ)) (30)
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In Table 2 some numerical results are reported. The prediction of a layman is evaluated in
terms of similarity between the predicted HPO class t̂ and the correct one tc. The similarity
of a pair of terms varies between 0 and 1, and it is not the same if t̂ is different from tc but
very similar, or if it is completely different. For these reasons, predictions were divided in three
cases: a prediction was considered correct if the similarity sim(t̂, tc) was equal to 1, while it was
consideredwrong if sim(t̂, tc) ≤ 0.7. In the case 1 ≤ sim(t̂, tc) < 0.7 the prediction was defined
near. To get an idea of the level of similarity between terms consider for example that two terms
as t1 =Sparse scalp hair and t2=Slow-growing scalp hair have a similarity sim(t1, t2) = 0.82, hence
they would be classified as near, while the similarity between t2 and t3 =Difficulty adjusting
from dark to light is sim(t2, t3) = 0.29, and hence this classification would be considered wrong.
Furthermore, the rank of the correct term in the sorted list of most similar vectors in WEs space
was calculated. For each embedding, the median of the ranks is reported. Finally, the last
column of the table reports the percentage of layman terms for which the predicted HPO term
was in the same branch of the correct HPO term, regardless of the correctness of the prediction.

Correct [%] Near [%] Wrong [%] Median rank Correct branches [%]

WE A B A B A B A B A B

g1 20.8 21.2 62.9 64.5 37.1 35.5 17.0 16.0 89.8 89.6
g2 27.2 27.8 73.1 74.2 26.9 25.8 6.0 5.0 90.8 90.7
g3 12.5 13.1 54.5 56.2 45.5 43.8 63.0 51.0 90.3 90.5

rand 0.0 0.0 1.5 1.0 98.5 99.0 6920.0 6871.0 18.2 17.0

Table 2: Results of the WEs used to predict layman terms.

Note that, unlike the Gen. WEs, in the embeddingWElsa each vector was a representation of
the whole HPO class considered as a document. That means that each synonym in this embed-
ding has the same representation of the corresponding term, making this test of little relevance
to evaluate it. For this reason in Table 2, only the Gen. WEs were tested (plus the random one
as reference). Furthermore, this test was carried out only on the layman terms in the training
set, and not on the sentences. In fact, all the proposedWEs are thought to represent concepts of
few words (between 2 and 4 according to histogram in Figure 17). The Gen. WEs in particular
were created as sum of vectors: it would bemeaningless to embed sentences of dozens of words
using these techniques.

Numerical results of this test confirmwhat has been discussed so far: in comparison with the
random WE, WEs appear to be able to represent the ontology in a vector space; WEg2 is the
embedding that has best results, while WEg3 is the worst. In all three cases, the branches are
correctly spotted in almost all the terms.

Another aspect that could be interesting to investigate is the effectiveness of these embeddings
encoding the depth of the input terms. In Figure 22 the base-10 logarithmof themedian rank per
depth level is reported. As expected, except for some cases,WEg2 (Fig. 22, blue histogram) has
the lower value at each level. However, the most interesting thing to note is the similar trend
that all three WEs have: at lower levels the embeddings appear to work very well, while the
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median rank explodes as the terms become more specific (i.e. the depth increases). A possible
explanation of this fact is that as the terms become more specific, the vocabulary to describe it
is also more complex and the embedding base of the three Gen. WEs can not describe these
words as well as the more generic ones at lower levels.

6.3 Machine translation results

As reported in Table 12, Appendix B, there are plenty of tunable parameters for each model.
Furthermore, each model should be tested with each proposed WE, reaching a high number
of possible combinations. Just considering the number of parameters that have been chosen
for tuning (that are only a part of the total number of parameters), the total number of models
that should be tested is N = numb. of models × number of WEs × dimensions WEs ×
dimensions input WE × dimensions LSTM = 3× 6× 2× 2× 2 = 144, i.e. each model has 48
possible combinations. The number of trainable parameters varies as a function of the model,
from a minimum of ∼ 7M tunable parameters to a maximum of 24M. In particular, LSTM-P is
composed by two parallel models, and hence the number of parameters is almost twofold with
respect to the other two models. Accurate dimensions of the three models are reported in Table
15 in Appendix B, along with the time needed to train the models3.

This huge number of trainable parameters has an impact on the time needed to train the
models, but the characteristic that influenced the training time the most was the presence of a
convolutional layer. R-NN are very slow to train, one explanation can be found in the depen-
dencies of each time step of the R-NN on the previous steps that limits the possibility to make
calculations in parallel across timesteps and batches [67]. Furthermore, usually GPUs are built
with a special focus on convolution and C-NN rather than R-NN, due to the fact that computer
vision and deep learning techniques mostly employ CNN. To conclude, the convolutional layer,
even if it implies additional parameters, decreases the input size of the LSTM layer, reducing
the training time 4/5 times.

3Time to train depends on several factors: the GPU, if someone else was using the CPU in parallel, the models,
etc. Reported times are only an approximation based on empirical observations.

Figure 22: Median rank (in logarithmic scale) at different depth levels for the three Gen.
WEs.
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The total time needed to cross-validate all the 144 combinations of models was of approxi-
mately 60 days, with a CPU completely dedicated to these calculations 24 hours per day. Ob-
viously, it would be impossible to obtain all these data by the conclusion of this project. For
this reason, the complete combination of tunable parameters was tested only for the fastest C-
LSTM-D model, while the other two models have only partial results.

The notation used to refer to a specific model will be the one proposed in Table 16, i.e. :

MODEL(WEj , Embedding layer dim., LSTM dim.) (31)

6.3.1 C-LSTM-D model results

Particular attention is given to the analysis of the C-LSTM-D model results, since they are
the most complete ones. The analysis of the outcomes is carried out through observations of
branches, depth levels, and similarity, used as main metrics to evaluate the results. All the nu-
merical results are reported in Table 17, Appendix B. The definition of correct, near andwrong
is the same as before. Even if all the information, including branches and depth classification, is
contained in this table, it could be useful to report some additional statistics, in order to better
visualize the behaviors of the different models.

Figure 23: Percentage of correct classification for branches (green) and depth levels (red) per
model. (C-LSTM-D) (Ids of the models are reported in Table 16, Appendix B)

In Figure 23, the percentage of terms correctly classified according to their branch or level
of depth is reported. The models are identified by a numerical id, according to Table 16 in
Appendix B. In order to be consistentwith the results of theWEs, in the cases of terms belonging
tomore than a branch, a predictionwas considered correct if at least one predicted categorywas
correctly classified. Similarly for depth, the predictionwas considered correctwithin an interval
of ±1 around the correct depth level. For branches classification, results are similar to the one
obtained with the WEs. However, it is interesting to note that the differences between WEg2
and WEg1 are more flattened, i.e. there is not as much difference as there was using only the
embeddings. On the contrary,WEg3 performsworsewith respect to the other embeddings. The
best models are the numbers 52 and 35, corresponding to C-LSTM-D(WElsa B ,400,400) and C-
LSTM-D(WEsvd A,600,600). Nevertheless, differences are very limited among different models.
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On the contrary, predictions on the depth level are different from the ones obtained with the
usage of only theWEs: if before it was demonstrated that only using theWEswas not enough to
represent terms according to their specificity, now the introduction of a neural model improves
performances drastically, reaching almost 80% of correctly classified samples for various mod-
els. Again, the best models are the ones based on the DS embedding and the combined WE.

The random embedding based models are probably the most informative ones: for both
branch and depth classification all the models reach percentages around 50%. Considering
that these values are twice the ones obtained using only WEs, the improved performance and
effectiveness of the C-LSTM-D model is confirmed. To sum up, the model appears to be able to
identify with good precision both the categories and the specificity (i.e. the depth) of the input
terms.

Figure 24: Predicted similarity per model. (ids used to represent the models are the ones of
Table 16)

Figure 24 contains a boxplot of the similarities between predicted HPO classes and corre-
sponding correct HPO classes. Even if variations among the different models are marginal,
some comments can be done, especially on the fluctuations detectable between embeddings.
Looking at the results in Table 17, one can note that the first Gen. WE performs in general bet-
ter than the other two. It is unexpected, especially considering that all the tests on the WEs
suggested that it is the second Gen. embedding the one that better represents HPO. A possible
explanation could be that the vectors inWEg2 are closer among them since they are calculated
with a weighted sum, and the model prefers to work with more spaced vectors. Results of the
DSWE and of the combined one are comparable to the ones ofWEg1, even if the dispersion ap-
pears to be lower, especially for theWElsamodels: for example the best model in terms of mean
similarity based on LSA (C-LSTM-D(WElsa B, 600, 600)) has a standard deviation 5% below the
one of the best Gen. embeddings one (C-LSTM-D(WEg1A, 400, 600)). However, the scatter of
the similarity prediction appears to be the biggest issue of the C-LSTM-D model. Finally, the
combined embedding WEsvd outperforms both Gen. and DS embeddings, confirming the it
can capture the strengths of the two WEs.

An interesting issue is the dimensionality of the output space: surprisingly, the Gen. WEs
based models work better when the output space is R200 instead of R400, contradicting the re-
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sults in Table 2, Section 6.2. On the contrary, when the output space is based on LSA, the model
performs better in R400 rather than in R200. This last result is more logical: since LSA is ob-
tained via a SVD dimension reduction, the embedding in R200 is a compressed version of R400,
and hence it should convey less information. Finally, the combined embedding is aligned with
the Gen. WEs, i.e. models in R200 work better than models in R400.

The last parameters that should be analyzed, the dimensions of the embedding and of the
LSTM layers, do influence the results: if one considers the number of terms correctly classified,
the number of near classification or the median of the predicted similarity, for almost all the
embeddings the best combination appears to be C-LSTM-D(WEj , 600, 600). That means that
using wider layers may have a positive influence on the models, without over-fitting the input
data.

All the combinations were tested using two different statistical tests:

• TheMann–Whitney U test, a non-parametric test with null hypothesis H0 (p > α) stating
that a randomly selected value from one population has the same probability to be less
than or greater than a randomly selected value from the second population [68].

• The Kruskal–Wallis test, a non-parametric test with null hypothesis H0 (p > α) stating
that the medians of two or more populations are equal [69].

Vectors containing predicted similarities from two models were used to test if the two com-
binations can be considered different or not. For both tests, all the experiments rejected the
null hypothesis when one of the two models included the random embedding, confirming that
a structured HPO embedding actually has an influence in the results. The dimensionality of
the output space also has a statistically influence in the results, even if not in all the cases. In
general, it was noted that for higher input embedding and LSTM dimensionality, the HPOWE
does not influence the outcomes, while if there were lower, the influence was more evident: for
example considers lines 1 and 2 in Table 3 against line 3.

Models compared p value p value
(Mann–Whitney U, α = 0.05) (Kruskal-Wallis, α = 0.05)

(WEg1A 600 600) vs (WEg1B 600 600) 0.075 0.15
(WElsaA 600 500) vs (WElsaB 600 500) 0.99 0.0011
(WEg1A 400 400) vs (WEg1B 400 400) 8.14e-05 0.00016
(WEg1A 400 600) vs (WElsaB 600 600) 0.227 0.453
(WEg1A 600 600) vs (WEg3B 600 600) 1.2e-74 2.5e-74

Table 3: Results of Mann-Whitney U test and Kruskal-Wallis test for different models.

To conclude, irrespective of theHPO embedding or the combination of parameters, in general
therewere no statistically significant differences between themodels that betterworked in terms
on median similarity or percentage of correctness (consider for example line 4 on Table 3 were
two high performancesmodelswere compared). On the contrary, and this is themost important
factor, the distributions and the medians are different among models that perform well and
models that do not ( an example is in the last line of Table 3).
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I also analyzed if there are terms that are alwaysmisclassified, independently from themodel.
For example there are 195 terms that are always misclassified: considering that the mean of
misclassified terms for the models (excluding randommodels) is 2536, it corresponds to 7.7% of
the errors. This percentage quadrupleswhen one considers aswrong the termswith a predicted
similarity sim(t̂, tc) ≤ 0.5, reaching 27.4% of misclassified term for all the models. That means
that there is a set of terms that is always misclassified with a big error on the prediction. These
terms are often synonyms morphologically unrrelated to the corresponding HPO classes, and
with few similar terms in the training set (e.g Wasting syndrome for Cachexia, or Fainting spell
for Syncope). Probably, with a bigger training set that includes these expressions, these errors
would have a smaller impact.

The effects of the different tunable parameters have been extensively analyzed in the prece-
dent pages; however, the behavior of the C-LSTM-D model with respect to depth and branches
is still to investigate. For this reason, model C-LSTM-D(WEg1A, 600, 400) will be used to study
its performance. This model was chosen since it was one of the top models, but not the best
ones(Correct predictions: 47.74%; Near predictions: 80.55%; Median similarity: 0.966; Correct
branch predictions: 89.06%; Correct depth predictions: 74.24%).

(a) Predicted similarity per depth level.

(b) Predicted depth level per depth level.

Figure 25: Results per deep for the testing model.
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Figure 25.a contains a graph of the similarity between the predicted output and the correct
one at different depth levels; Figure 25.b instead represents the depth level of the predicted
output per levels of depth (of the correct output). Each violin represents 100 random samples.
Some levels that did not contain enough points weremerged together (the last 10/15 levels were
grouped in 5 groups).

On the contrary to what was observed in the case of the WEs, that worked well for unspecific
terms andworsewith increasing depth(see Fig. 22), thismodel performs better as the specificity
of the terms increases. One can note that the median similarity (indicated with a blue dash)
tends to increase with increasing depth, starting from a minimum of 0.88 for the upper levels
and saturating at the maximum value of 1 after level 15. Furthermore, also the dispersion and
the outliers, that are some of the biggest limitations of the model, appear to be concentrated on
the upper levels of HPO, and they diminish on deeper levels. Since the HPO embedding spaces
alone behaved in the opposite way, it is presumable that these results are due to the action of the
model. Furthermore, comparing this image with the one obtained with a random WE (Figure
33.d in Appendix C), it appears evident that an ordered embedding space is crucial for a correct
translation and the model alone is not able to spot the correct HPO class, whether general or
specific. Nevertheless, from a point of view of the main objective of this work, i.e. a machine to
help patients identify their phenotypes, this behavior is promising. It is expected that the more
specific a term is, the most probable is that a patient does not know it: for this reason it is more
important that the model works better with more specific terms, rather than with general ones.

Note that, as reported in the examples of Figures 33.a, b, c in Appendix C, this appears to be
a general behavior, mutual to all the C-LSTM-D models .

On the other side, Figure 25.b confirms results of the depth histogram in Figure 23: the C-
LSTM-D model is able to predict the depth level properly and, even when the prediction is
wrong, it is still close to the correct value.

Figure 26: Predicted similarity per branch for the testing model.(The numerical id between 0
and 19 corresponds to the branches of Table 13 in Appendix B. The other branches are
grouped together in the column corresponding to the id -1 since they were not enough

populated to be represented in the boxplot (i.e. they had less than 100 entries). Similarly, id -2
corresponds to multiple branches that appear in the ontology with less than 100 elements.)
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Figure 26 contains boxplots of the similarity between predicted and correct HPO classes strat-
ified per branch. Since categories are not correlated as the levels of depth, it is more difficult
to recognize trends among branches. Certainly, it appear evident that some branches, as the
number 9 (Abnormality of the skeletal system, Abnormality of limbs) or the number 2 (Abnormality
of head or neck, Abnormality of the skeletal system) have very good results, while other branches, as
the number 8 (Abnormality of the integument), do not. It is interesting to note that, the behaviors
of the branches transcend the single combination of parameters and is characteristic of all the
model (some example in Figures 34.a,b,c in Appendix C).

Figure 27: Predicted similarity vs corresponding rank in the sorted list of closer vectors in
WEg1A

Finally, in the scatter plot in Figure 27 there is represented the predicted similarity of some
layman terms as opposed to the rank of the correct term in the sorted list of most similar vectors
inWEg1A space. Since the model works better with specific terms and the WE does not, points
corresponding to more specific HPO classes are concentrated in the upper-right corner. Apart
from this, there is no correlation between the classes or the layman terms that the embedding
can not represent appropriately (and hence have a high rank) and the layman terms that the
model can not translate.

6.3.2 LSTM-D and LSTM-P models results

As mentioned before, for reasons of time and available resources, for the other two models,
it was not possible to carry out an analysis as deep as the one done for the C-LSTM-D model.
However, a consistent number of combinations of parameters have been tested anyway, and
outcomes are coherent with the precedent ones. Results of the LSTM-D model are reported in
Table 19 Appendix B, while results of the LSTM-P model are reported in Table 21.

In figure 28, a boxplot representing the performances of the LSTM-Dmodel is reported. Each
parameter combination is identified by a numerical id reported in Table 18, Appendix C. Nu-
merical results are reported in Table 19, Appendix B. LSTM-Dmodel in general performs better
than the C-LSTM-D model. Just considering theWErand based models this trend is confirmed:
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Figure 28: Predicted similarity per model.

C-LSTM-D(WErand B , 600, 500) for example has a median similarity of 0.587, while the corre-
sponding LSTM-D(WErand B , 600, 500) has a median of 0.727. Considering better performing
combinations this difference is maintained: C-LSTM-D(WEsvd A, 600, 600) correctly classifies
48.53% of the terms, while LSTM-D(WEsvd A, 600, 600) correctly classifies 51.45% of the entries.
Statistical tests support this hypothesis (see Table 4).

Models compared p value p value
(Mann–Whitney U, α = 0.05) (Kruskal-Wallis, α = 0.05)

C-LSTM-D(WEsvd A, 600, 600)
vs 9.21e-0.5 1.5e-04

LSTM-D(WEsvd A, 600, 600)

Table 4: Results of Mann-Whitney U test and Kruskal-Wallis test for different models.

Also the percentage of branches and depth levels correctly classified confirm that the LSTM-
Dmodel is better: looking at Figure 37.a in Appendix C, one can note that the values are similar
to the ones in Figure 23 but slightly higher. In particular, the WErand based models performs
over 60% for branches classification.

All the consideration exposed in Section 7.3.1 remain valid for LSTM-D models. First of all,
the HPO embedding spaces behave similarly. For example WEg1 is the best Gen. WEs, and
vectors in R200 perform better, except for the DS embedding. Furthermore, the different com-
binations of parameters affect the outcomes in the same way, supporting all the precedent hy-
potheses about the influence of the parameters on the outcomes.

Figure 29 contains two histograms indicating the percentage of correctly classified terms per
depth for two models (LSTM-D(WEg1A, 400, 600) in green and C-LSTM-D(WEg1A, 400, 600)
in red). The models behave similarly: LSTM-D performs slightly better in the upper levels (as
seen before this model performs better in general), but the trend is identical. At lower levels
the percentage of correctly classified layman terms is lower, improving linearly as the terms
become more specific. As reported in some examples in Figure 35 in Appendix C, this behavior
is characteristic of all the combination of parameters of the LSTM-D model. Furthermore, the



p. 60 Master Thesis

Figure 29: Comparison between two models of the percentage of correct classified terms per
depth .

boxplots of the similarity per branches (Fig. 35.b,c) are very similar to C-LSTM-D ones (Figure
26), confirming that the models behave similarly.

To explain that the C-LSTM-D model and the LSTM-D model have very similar results,I
would refer to the structure of the convolutional model. The scope of the convolutional layer
is to extract features from the embedding matrix that represent the input sentence. As a con-
sequence, the LSTM layer is fed with smaller vectors with respect to the ones that enter in the
LSTM layer of the LSTM-D model. For this reason, from one side the training time is reduced,
but on the other side, apparently some information contained in the embedding matrix is lost
during the features extraction.

For what deal the errors across different models, it must be noted that 45% of that terms
misclassified with a similarity between predicted and correct term less then 0.5 in all the C-
LSTM-D models, were misclassified with the same error on prediction also in all the LSTM-D
models

Figure 30: Predicted similarity per model (LSTM-P).

LSTM-P required more training time, and hence it was less investigated. Results in terms of
predicted similarity for different parameter combinations are reported in Figure 30, while the
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complete numerical results are reported in Table 21, Appendix B and histograms over branch
and depth classification are reported in Figure 37.b, Appendix C. Analysis of the behavior of
singlemodels is shown in Figure 36. As it could be expected, LSTM-P behaves as the C-LSTM-D
model. However, numerical results show no improvements in performances. The introduction
of parallel dense layers has degraded the performances as compared to the simple LSTM-D
model, obtaining similar results as C-LSTM-D, but with a model that is 5 times slower. A pos-
sible explanation is that not all the branches are equally represented in the training set: consid-
ering that each dense block in the parallel layer is trained with the terms of the corresponding
branch alone, it could be that some of these blocks are not enough trained to reach good results.
If this hypothesis is true, a richer training set representing all the categories will improve the
performance of this model, probably surpassing LSTM-D .
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7 Costs and environmental impact

Costs required to carry out this project can be divided in 3 categories:

• Personnel costs: these costs refers to the main workforce costs. In particular, it must be
considered: the full time work of a graduated engineer during the whole duration of the
project (4.5 months). This cost is estimated considering the remuneration of a Group 2
UPC researcher 4; the costs of the two supervisor, estimated considering the possible pays
for specialized advisors, is of 90 €/h. Personnel cost are reported in Table 5.

• Materials: The materials used during this project included a personal laptop (Asus tp
300L, 499.99€) plus a computer from the University for the calculations (Motherboard:
ASUS PRIME B250-PLUS 249.99 €; GPU: NVIDIA TITAN Xp, 1,999€ and EVGA GeForce
GTX 1070, 559€). Since the hardware was used only for a small period of time compared
to their total lifespan (which here it is assumed to be 3 years), the costs were amortized
for the period of usage. Material costs are reported in Table 6.

• Energy costs: the energy used was estimated to be 0.2 kWh for the laptop (including the
desktop) and 0.8 kWh for the other computer. Furthermore, it must be considered the
energy of the office light ( mean consumption of 16 neon bulbs 0.48 kWh). Energy costs
are reported in Table 7.

All these costs are summarized in Tables 8. The total budget needed to complete the project
is estimated to be 14,965 €. As expected, since there was no need of particular hardware, most
of the costs comes from salaries and personnel costs.

Employee Gross salary Working time Cost
[€/month] [h/months] [€/month]

Main engineer 1,935.90 full time 1,935.90
Supervisor 1 90 [€/h] 10 900
Supervisor 2 90 [€/h] 4 360

Total 3,195.9

Table 5: Table of Personel costs

Item Purchase price Life time Cost
[€] [years] [€/month]

Laptop 499.99 3 13.89
Motherboard 249.99 3 6.94

GPU1 1,999 3 55.53
GPU2 559 3 15.53

Total 91.89

Table 6: Table of material costs

4Data from www.upc.edu/ca/la-upc/la-institucio/fets-i-xifres/pressupost_upc_2018_final-1.pdf

https://www.upc.edu/ca/la-upc/la-institucio/fets-i-xifres/pressupost_upc_2018_final-1.pdf
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Item Energy Usage Cost
[kWh] [h/day] [€/month]

Personal laptop 0.2 8 3.7
Computer for calculations 0.8 16 29.57

Office light 0.48 4 4.43

Total 37.7

Table 7: Table of energy costs (Energy cost 0.11 €/kWh, 21 days/month)

Item Monthly costs Cost per projects
[€/month] [€]

Personnel costs 3,195.9 14,381.55
Material costs 91.89 413.5
Energy costs 37.7 169.95

Total 14,965

Table 8: Table of total costs

Besides the costs and the usefulness of the results of the project, it is important to evaluate
the impact that this work could have on the environment. Since all the work was done using
only a laptop and an additional computer, the environmental impact that the project could have
comes only from the energy consumption. According to recent analysis ofWWF, only 50%of the
energy produced in Spain comes from renewable resources, while the other 50 % has an impact
in terms of CO2 and other pollutants emissions, since it is produced with nuclear sources or
with coal [70]. As a consequence, one can estimate environmental impact as summarized in
Table 9. For the calculations, it was considered that the total amount of energy used for the
project was of 16.3 kWh/day, hence 1540.35 kWh for the whole project.

Type of emission Amount per kWh Total

Carbon dioxide (CO2) 0.06 kg/kWh 92.42 kg
Sulfure dioxide (SO2) 0.107 g/kWh 164,82 g
Nitrogen oxide (NOx) 0.083 g/kWh 127.85 g

Intermediate and low level waste 0,00259 cm3 /kWh 3.99 cm3
High level waste 0,317 mg/kWh 488.29 mg

Table 9: Environmental impact estimation
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Conclusions

In this work novel methods for predicting specific phenotypes from generic text have been
described. The main objective was to investigate the most used Natural Language Processing
techniques in order to develop a machine translation tool for an automatic translation between
layman and HPO terms. All the proposed methods relied on the same idea: firstly, a vector
space representing HPO terms was created using different word embedding techniques; then,
deep learning architectures as convolutional neural networks and LSTM recurrent neural net-
work were used to encode layman terms in that space. The closest vector in this space was
finally chosen as synonym of the input term.

Five different embedding techniqueswere tested: the first three, namedGeneral embeddings,
were based on Word2Vec models using different techniques to combine its vectors; another
approachwas based on Latent Semantic Analysis andwas namedDomain Specific Embedding;
the last techniques, the Combined embedding, was createdmerging a Generic Embeddingwith
the Domain Specific one.

Besides the embedding techniques, three models have been analyzed thorougly. LSTM-D
was based on a LSTM recurrent neural network and a fully-connected layer to encode layman
terms in the embedding space. The secondmodel (C-LSTM-D) introduced a convolutional layer
to extract salient features and reduce training times. Finally, the last model (LSTM-P) tries to
exploit the tendency of the proposed embedding space to clusterHPO categories using different
fully-connected layers in parallel.

The different types of embeddings and different models have been tested with cross valida-
tion, using performance metrics defined specifically for the HPO domain, such as categories or
similarity among classes. Even if results present differences among models and embeddings,
most of the models had satisfactory performances. Best results were achievedwith the LSTM-D
model with the Combined embedding, being able to exactly identify the correct phenotype in
validation in more than half of the cases, with a mean similarity between predicted and correct
HPO term close to 0.9.

In the future the model can be improved exploring new configurations as well as input and
output spaces. Furthermore, only a limited part of the tunable parameters has been taken into
consideration: amore detailedwork on the influence of each parameter on the outcomes should
be of central attention to improve model performance. Eventually, training and testing were
carried out only with terms and sentences inside HPO. This is a limiting aspect: firstly from
the point of view of the amount of data; and secondly, for the fact that synonyms inside HPO
could not represent laymen vocabulary effectively. Future efforts should be focused on extend-
ing the available training set with terms from other sources (Wikipedia, patients’ forum, social
networks, etc.).
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Supplementary material

Appendix A: Algorithms

List of algorithms used.

Input: text t, boolean lsa, list ’coupled words’
text = lower(text);
for word w ∈ t do

if is ordinal number(w) then
w = ordinal to string(w);

end
if is cardinal number(w) then

w = cardinal to string(w);
end
if w = ”d[d] ∗ [−]d[d] ∗ ” then

w1,w1 = separe w on ’-’;
w = ordinal to string(w1)+’ ’+ordinal to string(w2);

end
if punctuation ( 6= ’-’) ∈ w then

w = clean punctuation(w);
end
if lsa then

if w ∈ stop words then
eliminate w;

end
if ’-’∈ w then

if w /∈ coupled word then
separe w on ’-’;

end
else

eliminate ’-’ ;
end

end
end

end
Algorithm 1: Pre-process a text t

(Boolean input lsa indicate if the algorithm is used for pre-processing
an input of a model or a text for theWELSA)
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Input: HPO term ti, ’coupled words’ list
Rt(ti) = empty list;
for w ∈ ti do

w = lower(w);
if ’-’∈ w then

if w /∈ coupled word then
separe w on ’-’;

end
end
if w ∈ stop words then

eliminate w;
end
if punctuation (6= ’-’) ∈ w then

w = clean punctuation(w);
end
Rt ← w;

end
Algorithm 2: Extract Rt list

Input: HPO term ti, Rt(ti), n, l
pages = empty list;
Wiki = Wikipedia corpus;
for w ∈ Rt(i) do

pgcurrent←Wiki first n pages related to w;
pages← pgcurrent;
for pp ∈ pgcurrent do

pages← first l links in pp;
end

end
Dt(ti) = concatenate (pages)

Algorithm 3: Extract Wikipedia related pages
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Input: HPO term ti, Dt(ti), medical dictionary MD
R∗t = empty list;
for w ∈ Dt(ti) do

if w ∈MD then
F = frequency of w in Wiki;
f = frequency of w in Dt(ti);
T = # of words in Wiki;
t = # of words in Dt(ti).;
X = hypergeometric dist.(T,t,F);
specw = logP (X ≥ f);
if specw > th then

R∗t ← w (according to specw)
end

end
end

Algorithm 4: Extract HPO related words
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Appendix B: Tables

Original term Alternative

hyperasparaginemia high blood asparagine level
acromelia shortening acromelic

hypocystinemia low blood cystine level
hyperthreoninuria high urine threonine level
hyperisoleucinemia high blood isoleucine level

acromelia shortening acromelic
aphalangy aphalangia

hyposerinemia low blood serine level
hyperbetaalaninemia high blood beta-alanine level
diastomatomyelia longitudinal split spinal cord
polyminimyoclonus small amplitude myoclonus

aphalangy aphalangia
tympanii tympani
plalelet platelet
amyelia absent spinal cord

hypoleucinemia low blood leucine level
quelprud post auricular cartilaginous
afebril afebrile

diaminoaciduria diamino aciduria
bilambdoid vilateral lambdoid
tympanii tympani

bronchomegaly abnormal bronchi widening
phosphohydroxylysinuria high urine phosphohydroxylysine level
tracheobronchmegaly abnormal trachea bronchi
hypomanganesemia low blood manganese level

nonopposable non opposable
undermodelled under modelled
incyclophoria inward cyclophoria
atheroeruptive athero eruptive

hypoglutamatemia low blood glutamate level
hypercystinemia high blood cystine level

hypoplastia hipoplasia
hydroxyphenylpyruvic hydroxyphenylpyruvate

microthorax micro thorax
lacticaciduria high urine lactic acid level
platonychia abnormal flat nail
underfolded under folded
polycalycosis poly calices

Table 10: Words not represented in McDonalds’ WE and proposed alternatives (I)



Automatic translation between layman and HPO terms p. 77

Original term Alternative

triplomyelia triplication spinal cord
keratocytosis keratocytes
mediosternal medio sternal
circumungual around nails

hyperchloriduria increased urinary chloride
dysarthic dysarthria

underfolded under folded
neryous nervous

undermodelled under modelled
acrobrachycephaly acro brachycephaly
methylglutaric methylglutaconic

spillus spilus
overtubulated over tubulated
kienboeck lunatomalacia
hypetropia hypertropia

hyperglutaminuria high glutamine level
hypochloriduria low urine chloride level

brachytelomesophalangy brachymesophalangy
hypoammonemia low blood ammonia level
supraauricular supra auricular
isothenuria isosthenuria
serpentinum serpiginosum

hypothreoninemia low blood threonine level
hyperhistidinemia high blood histidine level

Table 11: Words not represented in McDonalds’ WE and proposed alternatives (II)

Parameter LSTM-D model C-LSTM-D model LSTM-P model

HPOWE space all WE all WE all WE
HPOWE dim. 200/400 200/400 200/400

Embedding layer dim. 400/600 400/600 400/600
LSTM dim. 400/500/600 400/600 400/600

Dense layer activation func. linear linear linear+sigmoid
Number of conv. filters 0 600 400

Filters size - 5 5
Conv. activation func. - relu relu

Max pooling - 15 15
Dropout - 0 -
Batch size 64 64 64

Training epochs 25 25 25

Table 12: Parameters per model. Bold rows indicate tunable parameters. (Parameters not in
this table are the Keras default ones).
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id branch

0 Abnormality of the genitourinary system
1 Abnormality of head or neck
2 Abnormality of head or neck, Abnormality of the skeletal system
3 Abnormality of the ear
4 Abnormality of the eye
5 Abnormality of the nervous system
6 Abnormality of the endocrine system
7 Abnormality of the skeletal system
8 Abnormality of the integument
9 Abnormality of the skeletal system, Abnormality of limbs
10 Abnormality of the musculature
11 Abnormality of the digestive system
12 Growth abnormality
13 Abnormality of the cardiovascular system
14 Abnormality of blood and blood-forming tissues
15 Abnormality of metabolism/homeostasis
16 Abnormality of head or neck, Abnormality of the integument
17 Abnormality of the respiratory system
18 Abnormality of blood and blood-forming tissues, Abnormality of the immune system
19 Abnormality of the genitourinary system, Abnormality of metabolism/homeostasis
20 Abnormality of the immune system
21 Clinical course
22 Neoplasm
23 Abnormality of limbs
24 Abnormality of connective tissue
25 Mode of inheritance
26 Abnormal cellular phenotype
27 Constitutional symptom
28 Abnormality of the breast
29 Clinical modifier
30 Abnormality of the voice
31 Abnormality of prenatal development or birth
32 Abnormality of the thoracic cavity
33 Frequency

Table 13: List of branches and corresponding identification numbers.
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WE A B

g1 0.794 ± 0.178 0.801 ± 0.178
g2 0.814 ± 0.166 0.817 ± 0.169
g3 0.766 ± 0.200 0.772 ± 0.197
lsa 0.801± 0.180 0.820 ± 0.167
svd 0.797± 0.174 0.804 ± 0.174
rand 0.355± 0.104 0.352 ± 0.099

Table 14: Mean similarity (± std) of the boxes in figure 21

Mod. Min. param Max. param. Time to train [min]
(LSTM = 400, inp WE=400) ( LSTM = 600, inp WE=600)

LSTM-D 6.7902× 104 11.2654× 104 [30-40]
C-LSTM-D 8.3108× 104 13.066× 104 [5-10]
LSTM-P 21.223126× 104 23.828326× 104 [35-50]

Table 15: Number of parameters per model
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Id Model
(WEj ,WE inp.,LSTM)

1 g1A 400 400
2 g1A 400 500
3 g1A 400 600
4 g1A 600 400
5 g1A 600 500
6 g1A 600 600
7 g1B 400 400
8 g1B 400 500
9 g1B 400 600
10 g1B 600 400
11 g1B 600 500
12 g1B 600 600
13 g2A 400 400
14 g2A 400 600
15 g2A 600 400
16 g2A 600 500
17 g2A 600 600
18 g2B 400 400
19 g2B 400 600
20 g2B 600 400
21 g2B 600 600
22 g3A 400 400
23 g3A 400 600
24 g3A 600 400
25 g3A 600 500
26 g3A 600 600
27 g3B 600 400
28 g3B 600 500
29 g3B 600 600

(a)

Id Model
(WEj ,WE inp.,LSTM)

30 lsaA 400 400
31 lsaA 400 600
32 lsaA 600 400
33 lsaA 600 500
34 lsaA 600 600
35 lsaB 400 400
36 lsaB 400 600
37 lsaB 600 400
38 lsaB 600 500
39 lsaB 600 600
40 randA 400 400
41 randA 400 600
42 randA 600 400
43 randA 600 600
44 randB 400 400
45 randB 400 600
46 randB 600 400
47 randB 600 500
48 randB 600 600
49 svdA 400 400
50 svdA 400 600
51 svdA 600 400
52 svdA 600 600
53 svdB 400 400
54 svdB 400 600
55 svdB 600 400
56 svdB 600 500
57 svdB 600 600

(b)

Table 16: List of C-LSTM-D models and corresponding id numbers.
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Model Corr.[%] Near[%] Wrong[%] Median sim. Mean sim. Corr. br.[%] Corr. deep[%]
(WEj ,WE inp.,LSTM) (± std)

g1A 400 400 46.71 80.21 19.79 0.963 0.851 ± 0.212 90.42 76.28
g1A 400 500 47.26 80.67 19.33 0.965 0.853 ± 0.212 90.42 76.64
g1A 400 600 47.88 80.8 19.2 0.967 0.854 ± 0.211 90.65 77.04
g1A 600 400 47.34 80.52 19.48 0.965 0.854 ± 0.211 90.51 76.42
g1A 600 500 47.54 80.73 19.27 0.966 0.854 ± 0.211 90.56 76.52
g1A 600 600 47.74 80.55 19.45 0.966 0.853 ± 0.211 90.49 76.8
g1B 400 400 45.03 78.51 21.49 0.953 0.839 ± 0.222 89.06 74.24
g1B 400 500 45.61 78.97 21.03 0.957 0.843 ± 0.219 89.68 74.8
g1B 400 600 47.77 80.69 19.31 0.966 0.854 ± 0.211 90.63 76.88
g1B 600 400 45.48 79.13 20.87 0.957 0.843 ± 0.218 89.73 75.2
g1B 600 500 45.7 79.04 20.96 0.957 0.843 ± 0.22 89.39 74.96
g1B 600 600 47.13 79.69 20.31 0.964 0.848 ± 0.218 89.82 75.74
g2A 400 400 39.69 80.33 19.67 0.931 0.845 ± 0.206 90.36 73.04
g2A 400 600 40.64 80.63 19.37 0.936 0.847 ± 0.205 90.65 73.64
g2A 600 400 40.84 80.92 19.08 0.937 0.848 ± 0.205 90.64 73.64
g2A 600 500 41.12 80.85 19.15 0.937 0.848 ± 0.205 90.56 73.63
g2A 600 600 41.08 81.21 18.79 0.938 0.85 ± 0.203 90.98 73.46
g2B 400 400 38.16 78.98 21.02 0.927 0.836 ± 0.213 89.5 72.12
g2B 400 600 39.6 79.98 20.02 0.932 0.843 ± 0.208 90.36 72.67
g2B 600 400 38.4 79.45 20.55 0.929 0.838 ± 0.211 89.74 71.75
g2B 600 600 39.92 80.21 19.79 0.933 0.843 ± 0.209 90.11 72.93
g3A 400 400 32.73 76.26 23.74 0.893 0.816 ± 0.215 88.76 70.4
g3A 400 600 34.6 76.94 23.06 0.902 0.823 ± 0.213 89.64 71.25
g3A 600 400 32.98 76.8 23.2 0.897 0.819 ± 0.214 88.97 70.45
g3A 600 500 34.06 76.56 23.44 0.901 0.82 ± 0.215 89.15 71.05
g3A 600 600 35.33 77.01 22.99 0.904 0.822 ± 0.215 89.38 71.73
g3B 600 400 33.29 76.68 23.32 0.898 0.819 ± 0.213 89.31 70.69
g3B 600 500 34.15 77.12 22.88 0.902 0.821 ± 0.214 89.31 71.42
g3B 600 600 35.26 77.24 22.76 0.907 0.824 ± 0.214 89.48 71.57
lsaA 400 400 44.77 80.31 19.69 0.951 0.846 ± 0.209 90.26 76.84
lsaA 400 600 44.43 80.31 19.69 0.949 0.846 ± 0.209 90.36 77.09
lsaA 600 400 44.75 80.26 19.74 0.951 0.847 ± 0.208 90.22 76.85
lsaA 600 500 44.83 80.17 19.83 0.952 0.846 ± 0.211 90.04 76.96
lsaA 600 600 44.41 80.07 19.93 0.95 0.845 ± 0.211 90.09 76.93
lsaB 400 400 46.33 82.37 17.63 0.962 0.858 ± 0.203 91.08 78.14
lsaB 400 600 46.02 81.89 18.11 0.959 0.855 ± 0.203 90.71 78.02
lsaB 600 400 46.26 82.28 17.72 0.962 0.857 ± 0.202 90.96 78.3
lsaB 600 500 46.28 82.19 17.81 0.961 0.856 ± 0.204 90.85 78.14
lsaB 600 600 46.88 82.34 17.66 0.963 0.858 ± 0.202 90.7 78.3

randA 400 400 20.27 42.25 57.75 0.484 0.605 ± 0.303 51.99 49.5
randA 400 600 21.5 44.36 55.64 0.531 0.619 ± 0.303 53.58 50.92
randA 600 400 20.22 42.4 57.6 0.485 0.599 ± 0.31 51.44 47.14
randA 600 600 22.15 45.46 54.54 0.557 0.624 ± 0.306 55.42 49.66
randB 400 400 19.85 41.31 58.69 0.484 0.603 ± 0.3 56.11 48.5
randB 400 600 21.8 45.69 54.31 0.568 0.625 ± 0.305 55.44 49.71
randB 600 400 20.9 43.93 56.07 0.523 0.615 ± 0.303 52.28 50.65
randB 600 500 21.67 46.45 53.55 0.587 0.631 ± 0.302 55.68 49.68
randB 600 600 22.5 46.88 53.12 0.586 0.631 ± 0.305 55.67 51.13
svdA 400 400 47.53 80.83 19.17 0.965 0.854 ± 0.211 90.55 77.11
svdA 400 600 47.93 80.76 19.24 0.967 0.854 ± 0.211 90.62 76.51
svdA 600 400 47.99 80.96 19.04 0.967 0.855 ± 0.211 90.51 76.78
svdA 600 600 48.53 81.26 18.74 0.971 0.858 ± 0.208 91.13 77.12
svdB 400 400 47.17 80.6 19.4 0.965 0.853 ± 0.211 90.44 76.79
svdB 400 600 48.14 80.95 19.05 0.969 0.855 ± 0.21 90.7 77.55
svdB 600 400 47.37 80.96 19.04 0.965 0.855 ± 0.208 90.83 77.24
svdB 600 500 47.69 80.79 19.21 0.966 0.855 ± 0.21 90.51 77.18
svdB 600 600 48.29 81.3 18.7 0.97 0.857 ± 0.208 90.86 77.49

Table 17: Results for C-LSTM-D model.
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Id Model
(WEj ,WE inp.,LSTM)

1 g1A 400 400
2 g1A 400 600
3 g1A 600 400
4 g1A 600 500
5 g1A 600 600
6 g1B 400 400
7 g1B 400 600
8 g1B 600 400
9 g1B 600 500
10 g1B 600 600
11 g2A 400 400
12 g2A 400 600
13 g2A 600 600
14 g2B 600 500
15 g2B 600 600

(a)

Id Model
(WEj ,WE inp.,LSTM)

16 g3A 400 400
17 g3A 400 600
18 g3B 600 500
19 lsaA 400 600
20 lsaA 600 600
21 lsaB 400 600
22 lsaB 600 500
23 lsaB 600 600
24 randA 600 500
25 randB 600 500
26 svdA 400 600
27 svdA 600 600
28 svdB 600 500
29 svdB 600 600

(b)

Table 18: List of LSTM-D models and corresponding id numbers.
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Model Corr.[%] Near[%] Wrong[%] Median sim. Mean sim. Corr. br.[%] Corr. deep[%]
(WEj ,WE inp.,LSTM) (± std)

g1A 400 400 49.54 80.4 19.6 0.978 0.854 ± 0.215 90.12 76.78
g1A 400 600 50.25 80.77 19.23 1.0 0.858 ± 0.213 90.13 77.26
g1A 600 400 49.81 80.72 19.28 0.983 0.856 ± 0.215 89.88 77.3
g1A 600 500 50.28 80.74 19.26 1.0 0.857 ± 0.214 90.1 77.24
g1A 600 600 50.83 81.11 18.89 1.0 0.86 ± 0.212 90.43 77.57
g1B 400 400 47.71 79.61 20.39 0.966 0.847 ± 0.22 89.23 75.53
g1B 400 600 49.34 80.4 19.6 0.976 0.854 ± 0.217 89.87 76.55
g1B 600 400 49.09 80.11 19.89 0.975 0.851 ± 0.219 89.63 76.21
g1B 600 500 49.77 80.54 19.46 0.982 0.853 ± 0.218 89.58 76.72
g1B 600 600 50.29 80.64 19.36 1.0 0.857 ± 0.216 90.14 76.98
g2A 400 400 40.8 79.85 20.15 0.938 0.842 ± 0.215 89.54 73.04
g2A 400 600 42.4 79.98 20.02 0.947 0.845 ± 0.214 89.72 73.89
g2A 600 600 43.42 80.44 19.56 0.951 0.848 ± 0.213 89.84 74.18
g2B 600 500 41.65 79.55 20.45 0.943 0.842 ± 0.217 89.19 73.37
g2B 600 600 42.73 80.01 19.99 0.949 0.845 ± 0.216 89.39 73.43
g3A 400 400 32.33 75.97 24.03 0.895 0.814 ± 0.218 88.49 70.31
g3A 400 600 33.65 76.2 23.8 0.9 0.818 ± 0.218 88.69 70.85
g3B 600 500 35.69 77.78 22.22 0.91 0.826 ± 0.214 89.41 71.91
lsaA 400 600 46.54 80.12 19.88 0.962 0.849 ± 0.212 90.02 76.59
lsaA 600 600 47.06 80.69 19.31 0.964 0.851 ± 0.211 90.28 77.23
lsaB 400 600 49.65 82.91 17.09 0.981 0.864 ± 0.205 90.92 79.29
lsaB 600 500 49.48 82.6 17.4 0.978 0.862 ± 0.208 90.45 79.1
lsaB 600 600 49.91 82.83 17.17 0.986 0.864 ± 0.205 91.01 79.53

randA 600 500 23.71 50.63 49.37 0.714 0.666 ± 0.294 64.95 53.62
randB 600 500 21.05 51.2 48.8 0.727 0.659 ± 0.298 64.35 52.3
svdA 400 600 50.27 80.7 19.3 1.0 0.857 ± 0.215 90.31 77.32
svdA 600 600 51.45 81.83 18.17 1.0 0.862 ± 0.211 90.6 77.83
svdB 600 500 50.72 81.16 18.84 1.0 0.86 ± 0.212 90.4 78.22
svdB 600 600 51.28 81.56 18.44 1.0 0.862 ± 0.211 90.67 77.76

Table 19: Results for LSTM-D model.
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Id Model
(WEj ,WE inp.,LSTM)

1 g1A 400 400
2 g1A 400 500
3 g1A 400 600
4 g1A 600 500
5 g1A 600 600
6 g1B 400 400
7 g1B 400 600
8 g1B 600 500
9 g1B 600 600
10 g2A 400 400
11 g2A 600 600

(a)

Id Model
(WEj ,WE inp.,LSTM)

12 g2B 600 500
13 g2B 600 600
14 g3A 400 600
15 g3B 600 500
16 lsaA 400 400
17 lsaB 600 600
18 randB 600 500
19 svdA 400 600
20 svdA 600 600
21 svdB 400 600
22 svdB 600 600

(b)

Table 20: List of LSTM-P models and corresponding id numbers.

Model Corr.[%] Near[%] Wrong[%] Median sim. Mean sim. Corr. br.[%] Corr. deep[%]
(WEj ,WE inp.,LSTM) (± std)

g1A 400 400 47.21 78.83 21.17 0.964 0.849 ± 0.214 90.13 76.31
g1A 400 500 46.91 78.42 21.58 0.963 0.846 ± 0.215 90.02 75.95
g1A 400 600 47.16 79.07 20.93 0.964 0.848 ± 0.214 90.18 75.99
g1A 600 500 47.18 79.07 20.93 0.963 0.848 ± 0.214 90.04 76.21
g1A 600 600 47.57 78.88 21.12 0.965 0.848 ± 0.216 90.01 76.85
g1B 400 400 47.47 78.69 21.31 0.965 0.846 ± 0.219 89.69 76.37
g1B 400 600 47.24 78.74 21.26 0.965 0.847 ± 0.218 89.7 76.4
g1B 600 500 47.51 79.01 20.99 0.965 0.847 ± 0.217 89.72 76.35
g1B 600 600 47.72 79.24 20.76 0.966 0.85 ± 0.215 90.19 76.2
g2A 400 400 40.77 78.55 21.45 0.934 0.839 ± 0.213 89.87 72.93
g2A 600 600 40.74 78.28 21.72 0.934 0.838 ± 0.214 89.57 72.69
g2B 600 500 40.97 79.16 20.84 0.939 0.841 ± 0.212 89.81 73.36
g2B 600 600 41.03 78.71 21.29 0.938 0.84 ± 0.214 89.6 72.66
g3A 400 600 33.3 74.55 25.45 0.894 0.811 ± 0.22 88.54 70.43
g3B 600 500 35.78 75.71 24.29 0.907 0.821 ± 0.217 89.09 72.14
lsaA 400 400 44.45 78.74 21.26 0.949 0.842 ± 0.211 90.02 75.53
lsaB 600 600 46.03 80.79 19.21 0.962 0.854 ± 0.206 90.71 76.98
randB 600 500 29.3 61.05 38.95 0.858 0.735 ± 0.275 76.35 60.77
svdA 400 600 47.23 79.01 20.99 0.964 0.848 ± 0.215 90.1 76.3
svdA 600 600 47.19 79.25 20.75 0.965 0.849 ± 0.214 90.05 76.35
svdB 400 600 47.4 78.95 21.05 0.965 0.848 ± 0.215 90.12 76.26
svdB 600 600 47.5 80.01 19.99 0.965 0.851 ± 0.213 90.29 76.96

Table 21: Results for LSTM-P model.
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Appendix C: Additional images

(a) Number of entries in the training set per term per
branch

(b)% of term with 0 or 1 entries in the training set.

Figure 31: Distribution of entries in the training set inside HPO.

Figure 32: Distribution of words per term in branches.
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(a) C-LSTM-D(WEg1A, 400, 600)

(b) C-LSTM-D(WElsaB , 600, 600)

(c) C-LSTM-D(WEsvdA, 600, 600)

(d) C-LSTM-D(WErandA, 600, 600)

Figure 33: Predicted similarity per depth level.
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(a) C-LSTM-D(WEg1A, 400, 600)

(b) C-LSTM-D(WElsaB , 600, 600)

(c) C-LSTM-D(WEsvdA, 600, 600)

(d) C-LSTM-D(WErandA, 600, 600)

Figure 34: Predicted similarity per branches.
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(a) LSTM-D(WEg1A, 400, 600)-Similarity per deep

(b) LSTM-D(WEg1A, 400, 600)-Similarity per branch

(c) LSTM-D(WEsvdA, 600, 600)-Similarity per deep

(d) LSTM-D(WEsvdA, 600, 600)-Similarity per branch

Figure 35: Predicted similarity per deep or branch for LSTM-D models.
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(a) LSTM-P(WEg1A, 600, 600)-Similarity per deep

(b) LSTM-P(WEg1A, 600, 600)-Similarity per branch

(c) LSTM-P(WElsaB , 600, 600)-Similarity per deep

(d) LSTM-P(WElsaB , 600, 600)-Similarity per branch

Figure 36: Predicted similarity per deep or branch for LSTM-P models.
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(a) LSTM-D

(b) LSTM-P

Figure 37: Percentage of correct classification for branches (green) and deep levels (red) per
model.
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Appendix D: Python code

1 def create_model_LSTMP (WE_dim, len_WE ,N = 400 , syn_vocab_size = 13365 , syn_max_len =
62) :

2

3 # I t c r e a t e s a t e x t c l a s s i f i e r model :
4 # INPUT−−> WE −−> LSTM −−> NN dense −−> OUTPUT
5 # The parameter in input are :
6 # − len_WE = dimension of the i n i t i l a WE
7 # − N = output dimension of LSTM blocks
8 # − syn_vocab_size = # of words in the input d i c t i onary
9 # − syn_max_len = max len for an input phrases

10

11 model = Sequent ia l ( )
12 model . add (Embedding ( syn_vocab_size , len_WE , input_length=syn_max_len , mask_zero=

True ) )
13 model . add (LSTM(N) )
14 model . add (Dense (WE_dim, a c t i v a t i on= ’ l i n e a r ’ ) )
15 model . compile ( opt imizer= ’adam ’ , l o s s= ’mean_squared_error ’ )
16 re turn modellanguage=Python

Listing 1: Create a LSTM-D model

1 def create_model_CLSTMP (WE_dim, len_WE , num_filt , D, P , N,K = 0 . 1 , syn_vocab_size =
13365 , syn_max_len = 62 , pd = ’ va l id ’ ) :

2

3 # Creates a convolut iona l t e s t c l a s s i f i e r model :
4 # INPUT−−>WE−−>dropout−−>Convolutional layer−−>max pool.−−>LSTM−−>NN

dense−−> OUTPUT
5 # The parameter in input are :
6 # − len_WE = dimension of the i n i t i l a WE
7 # − num_fi l t = number of f i l t e r in conco lu t iona l l ayer
8 # − D = dimension f i l t e r s
9 # − P = parameter fo r the max pooling

10 # − N = output dimension of LSTM blocks
11 # − syn_vocab_size = # of words in the input d i c t i onary
12 # − K = dropout parameter ( i f 0 no dropout i s applied )
13 # − syn_max_len = max len for an input phrases
14 # − pd = padding for convolut iona l l ayer
15

16 model = Sequent ia l ( )
17 model . add (Embedding ( syn_vocab_size , len_WE , input_length=syn_max_len ) )
18 i f K != 0 :
19 model . add ( Dropout (K) )
20 model . add (Conv1D( num_filt , D, a c t i v a t i on= ’ re lu ’ , padding = pd) )
21 model . add (MaxPooling1D ( pool_s ize=P) )
22 model . add (LSTM(N) )
23 model . add (Dense (WE_dim, a c t i v a t i on= ’ l i n e a r ’ ) )
24 model . compile ( opt imizer= ’adam ’ , l o s s= ’mean_squared_error ’ )
25 re turn model

Listing 2: Create a C-LSTM-D model
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1 def create_model_LSTMP (WE_dim, len_WE ,N, n_branches = 26 , syn_vocab_size = 13365 ,
syn_max_len = 62) :

2

3 # i t c r e a t e s a t e x t c l a s s i f i e r model tha t takes two inputs , the term to
t r a n s l a t e and i t s category .

4 # Severa l Dense l aye r s are put in pa r a l l e l , each one works fo r a category :
5 # INPUT 2
6 # NN dense |
7 # NN dense V
8 # INPUT −−> WE −−> LSTM −−> NN dense−−> choose one −−> OUTPUT
9 # . . .

10 # NN dense
11 # The parameter in input are :
12 # − len_WE = dimension of the i n i t i l a WE
13 # − N = output dimension of LSTM blocks
14 # − N_branches = number of c a t ego r i e s ( i . e . number of dense l aye r s )
15 # − syn_vocab_size = # of words in the input d i c t i onary
16 # − syn_max_len = max len for an input phrases
17

18 inp_lay = Input ( shape = ( syn_max_len , ) )
19 inp_branch = Input ( shape=( n_branches , ) )
20 emb = Embedding ( syn_vocab_size , len_WE , input_length=syn_max_len , mask_zero=True

) ( inp_lay )
21 lstm = LSTM(N) (emb)
22 pa r a l l e l _ l a y e r = [ ]
23 fo r i in range ( n_branches ) :
24 dense = Dense (WE_dim, a c t i v a t i on= ’ l i n e a r ’ ) ( lstm )
25 dense = Reshape ( ( 1 ,WE_dim) ) ( dense )
26 pa r a l l e l _ l a y e r . append ( dense )
27 out_dense = concatenate ( pa r a l l e l _ l ay e r , ax i s= 1)
28 se l ec t ed_out = dot ( [ inp_branch , out_dense ] , axes =1)
29 model = Model ( [ inp_lay , inp_branch ] , s e l e c t ed_out )
30 model . compile ( opt imizer= ’adam ’ , l o s s= ’mean_squared_error ’ )
31 re turn model

Listing 3: Create a LSTM-P model
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1 def c l e an_d i c t ( dic , stop=False , inp=Fa lse ) :
2

3

4 # c lean the terms in dic by :
5 # − lower a l l l e t t e r s
6 # − convert numbers in l e t t e r
7 # − separa te words divided by a −
8 # − e l imina te punctuation and other non pr in t ab l e cha ra c t e r s
9 # − i f Stop = True , e l imina te s stopwords

10 # − i f inp = true i t a l so separated coupled words (w1−w2) tha t are not in
the l i s t coupled terms and i t j o i n the one tha t are

11

12 cleaned = [ ]
13 # prepare regex fo r char f i l t e r i n g
14 r e_pr in t = re . compile ( ’ [^%s ] ’ % re . escape ( s t r i ng . p r in t ab l e ) )
15

16 remove = s t r i ng . punctuation
17 remove = remove . rep lace ( "−" , " " ) # don ’ t remove hyphens
18 t ab l e = s t r . maketrans ( remove , ’ ’ ∗ len ( remove ) )
19 f o r l i n e in dic :
20

21 # normalize unicode cha rac t e r s
22 l i n e = normalize ( ’NFD’ , l i n e ) . encode ( ’ a s c i i ’ , ’ ignore ’ )
23 l i n e = l i n e . decode ( ’UTF−8 ’ )
24

25 # convert to lowercase
26 l i n e = l i n e . lower ( )
27

28 # t r a n s l a t e ord ina l number ( e . g : 1 s t −−> f i r s t )
29 r e _ r e su l t s = re . f i n d a l l ( ’ (\d+( s t|nd|rd|th ) ) ’ , l i n e )
30 i f r e _ r e su l t s :
31 f o r en i t r e _ r e su l t , s u f f i x in r e _ r e su l t s :
32 num = in t ( e n i t r e _ r e s u l t [ : −2 ] )
33 tmp = num2words (num, ordina l=True )
34 tmp += ’ ’
35 l i n e = l i n e . rep lace ( en i t r e _ r e su l t , tmp)
36

37 # convert numb−numb couples numbers to s t r i ng ( e . g . : 2−3 −−> two three )
38 r e _ r e su l t s = re . f i n d a l l ( "\d[\d]∗[−]\d[\d]∗ " , l i n e ) # " [ −+ ] ? [ . ] ? [\d ]+ ( ? : , \d\d\

d) ∗\d ∗ ( ? : [ eE][−+]?\d+) ? "
39 i f r e _ r e su l t s :
40 f o r e n i t r e _ r e s u l t in r e _ r e su l t s :
41 r e _ r e su l t s 2 = re . f i n d a l l ( ’\d[\d]∗ ’ , e n i t r e _ r e s u l t )
42 string_tmp = ’ ’
43 fo r num in r e _ r e su l t s 2 :
44 tmp = num2words ( f l o a t (num) , ord ina l=True )
45 tmp += ’ ’
46 string_tmp += tmp
47 l i n e = re . sub ( en i t r e _ r e su l t , string_tmp , l i n e )
48

49 # convert a l other numbers to s t r i ng
50 r e _ r e su l t s = re . f i n d a l l ( " [ −+] ? [ . ] ? [\d ]+ ( ? : , \d\d\d) ∗ [ \ . ] ?\d ∗ ( ? : [ eE][−+]?\d+)

? " , l i n e )
51 i f r e _ r e su l t s :
52 r e _ r e su l t s = sor ted ( r e_ r e su l t s , key=len )
53 f o r e n i t r e _ r e s u l t in reversed ( r e _ r e su l t s ) :
54 t ry :
55 num = f l o a t ( e n i t r e _ r e s u l t )
56 tmp = num2words (num)
57 tmp = ’ ’ + tmp + ’ ’
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58 except :
59 tmp = ’ ’
60 #tmp = tmp[ :−1]
61 l i n e = l i n e . rep lace ( en i t r e _ r e su l t , tmp)
62

63 # e l imina te mult ip le space
64 l i n e = re . sub ( ’ + ’ , ’ ’ , l i n e )
65

66 # tokenize on white space
67 l i n e = l i n e . s p l i t ( )
68

69 # remove stop words i f necessary :
70 i f stop :
71 from nl tk . corpus import stopwords
72 stop_words = se t ( stopwords . words ( ’ eng l i sh ’ ) )
73 stop_words . remove ( ’ a l l ’ ) # ’ a l l ’ in t h i s case i s not a stop word
74 l i n e = [word for word in l i n e i f word not in stop_words ]
75

76 # remove punctuation from each token ( rep lace with a space )
77 l i n e = [word . t r a n s l a t e ( t ab l e ) fo r word in l i n e ]
78

79 # remove non−pr in t ab l e chars form each token
80 l i n e = [ r e_pr in t . sub ( ’ ’ , w) fo r w in l i n e ]
81

82 # remove with spaces
83 l i n e = ’ ’ . j o i n ( l i n e )
84 l i n e = re . sub ( ’ + ’ , ’ ’ , l i n e )
85 l i n e = l i n e . s p l i t ( )
86

87 # look for coupled terms
88 i f inp :
89 l ine_tmp = l i n e . copy ( )
90 fo r w in l i n e :
91 i f ’− ’ in w:
92 i f w not in coupled_terms :
93 # the coupled words form two separated words
94 w_clean = re . sub ( ’− ’ , ’ ’ ,w)
95 w_tok = nl tk . word_tokenize ( w_clean )
96 l ine_tmp . remove (w)
97 l ine_tmp += w_tok
98

99 e l s e :
100 # the coupled words form one s ing l e word
101 w_clean = re . sub ( ’− ’ , ’ ’ ,w)
102 w_tok = nl tk . word_tokenize ( w_clean )
103 l ine_tmp . remove (w)
104 l ine_tmp += w_tok
105

106 l i n e = line_tmp
107

108 # s to r e as s t r i ng
109 tmp = ’ ’ . j o i n ( l i n e )
110 tmp = re . sub ( ’ + ’ , ’ ’ , tmp)
111 cleaned . append ( tmp)
112

113 re turn array ( cleaned )

Listing 4: Implementation of Algorithm 1 for pre-processing
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