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Abstract— Localization and Mapping is an essential compo-
nent to enable Autonomous Vehicles navigation, and requires
an accuracy exceeding that of commercial GPS-based systems.
Current odometry and mapping algorithms are able to provide
this accurate information. However, the lack of robustness of
these algorithms against dynamic obstacles and environmental
changes, even for short time periods, forces the generation
of new maps on every session without taking advantage of
previously obtained ones. In this paper we propose the use
of a deep learning architecture to segment movable objects
from 3D LiDAR point clouds in order to obtain longer-lasting
3D maps. This will in turn allow for better, faster and more
accurate re-localization and trajectoy estimation on subsequent
days. We show the effectiveness of our approach in a very
dynamic and cluttered scenario, a supermarket parking lot.
For that, we record several sequences on different days and
compare localization errors with and without our movable
objects segmentation method. Results show that we are able to
accurately re-locate over a filtered map, consistently reducing
trajectory errors between an average of 35.1% with respect
to a non-filtered map version and of 47.9% with respect to a
standalone map created on the current session.

I. INTRODUCTION

Accurate localization is an essential component of au-
tonomous vehicles and intelligent transportation systems, as
it enables the accomplishment of further tasks such as path
planning, safety navigation or obstacle avoidance. Moreover,
estimating a precise position in a map will also allow for
obtaining further environmental information such as traffic
state, accidents, or road closures/works, which would in turn
facilitate the eventual completion of the predefined mission.
The same idea holds in the opposite direction, in which a
correctly located vehicle may augment map information with
its current observations of a scene.

Nowadays, vehicle position can be easily obtained by
different Global Navigation Satellite Systems (GNSS) such
as GPS, Galileo, GLONASS, etc. Although these systems
can provide good results, they have limited precision in urban
scenarios with buildings and other elements that may block
the satellite signals. Other accurate approaches like beacon-
based methods exist, but require prior installation of external
infrastructures and thus are not ready for general usage.

For autonomous vehicles, it is preferable to include local-
ization systems based on their own perceptive sensors, such
as cameras or LiDAR. Although cameras can provide very
rich information and colored textures, they are very sensitive
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1Institut de Robòtica i Informàtica Industrial, CSIC-UPC Llorens i

Artigas 4-6, 08028 Barcelona, Spain vvaquero@iri.upc.edu
2Valeo Schalter und Sensoren GmbH, Hummendorfer Str. 74, 96317

Kronach, Germany. kai.fischer@valeo.com

Fig. 1: We propose to segment movable objects from 3D
LiDAR point clouds to build longer lasting maps that can
assist on trajectory estimation for subsequent days. For that
we employ two deep networks processing respectively a front
and a bird’s eye view projection of the LiDAR input frames.
By retaining mostly static elements on the scene, we are
able to accurately estimate our position and trajectory on
subsequent days by additionally re-localizing on the map.

to changes of illumination and lack of light. Contrary, LiDAR
sensors provide robust and accurate 3D range measurements
independently of the illumination conditions and even at
night, which is why in this article we focus only on the
use of these sensors.

Simultaneous Localization and Mapping (SLAM) has
gained utmost attention within in-vehicle localization al-
gorithms. However, in very dynamic and cluttered urban
environments where vehicles and other elements are con-
stantly moving or can potentially do, SLAM algorithms
encounter difficulties on finding static and stable features
that would allow to re-use the generated map on subsequent
days. Thus, in many applications where the goal is just to
travel predefined routes in a known area, SLAM systems may
introduce unnecessary and redundant computations creating
a new map each time instead of just providing localization.
Our motivation is therefore to find potential moving obstacles
in the source point cloud data, excluding them from the
mapping pipeline and allowing for longer standing repre-
sentations while providing better accuracy.

With the advent of deep learning (DL), in-vehicle percep-
tion systems have strengthen their capacities on vital tasks
for autonomous driving. Moreover, new developments are
expanding the applicability of these techniques beyond opti-
cal cameras and postulating them also as powerful tools for



working with 3D LiDAR data [1], [2], [3], [4], [5]. This fact
also motivates us to leverage DL approaches for segmenting
potential movable objects on 3D LiDAR point clouds.

To summarize, in this paper we propose the creation of
longer lasting 3D LiDAR maps with state of the art localiza-
tion and mapping algorithms by eliminating from the source
the possible dynamic components of the scene. For that, we
take advantage of deep learning techniques and introduce
the use of a two-stream deep convolutional architecture
which, having respectively as input a front and a bird’s eye
view projections of the 3D LiDAR point cloud, segments
the movable objects from the scene. To demonstrate our
approach, we build 3D maps of a very dynamic environment
such as a parking lot with and without our segmentation
applied and use it to assist for locating ourselves at different
times and days, showing a consistent reduction of the average
trajectory estimation error. Moreover, we show how our
approach can also be employed for building a full map of
an area covered in several days. Our main contributions are:

- We present a deep convolutional dual-view architecture
that having as input 3D LiDAR point clouds is able
to segment potentially moving elements from a driving
scenario, such as vehicles, cyclists or pedestrians.

- We introduce a simple yet effective re-localization ap-
proach for odometry and mapping algorithms based on
feature matching against a previously generated map,
extending for longer time the life of those maps.

- We show that by eliminating the dynamic elements
in a scene, localization for subsequent days improve,
demonstrating that most of the strong features extracted
by current LiDAR odometry and mapping algorithms
may lay on moving elements such as vehicles.

- We perform real experiments recording a parking lot
scenario for several days and different trajectories, ob-
taining consistent quantitative results that support our
approach. Additionally, we show the application of our
method for building maps in a multi-agent manner or
through different days.

II. RELATED WORK
In this section we review the state of the art of Deep Learn-

ing techniques and localization and mapping algorithms, both
applied over 3D LiDAR point clouds.
Deep learning applied on LiDAR point clouds. Although
Convolutional Neural Networks (CNNs) have been success-
fully applied on image-based tasks such as object classi-
fication, detection or semantic segmentation [6], [7], [8]
between others, its potential has not been yet extensively
deployed to analyze 3D LiDAR point clouds. However,
recent approaches are demonstrating the high capacities of
deep neural networks to process LiDAR information on
problems such as vehicle detection [1], [2], [3], [5] or motion
segmentation [4]. In addition, the availability of large-scale
real world datasets [9] as well as synthetic data [10] are
allowing the training of data driven deep models more easily.

Initial straightforward applications over 3D LiDAR data
made use of 3D convolutions [11], more efficient sparse

convolutions [12], or just subdivided the input point cloud
into voxels [3]. Some other very recent approaches directly
use the raw point cloud. In this way, PointNet [13] ap-
plies a set of transformations and multi-layer perceptrons
to generate global point cloud features which are then used
for classification and segmentation tasks. PointNet++ [14]
proposes to recursively apply PointNet on nested areas of the
input point cloud, learning additionally local features with
increasing contextual scales. Frustrum-PointNet [2], explores
larger areas and extracts 3D frustums from bounding boxes
given by a 2D CNN detector over RGB images. However,
all these methods required of high computational power and
include ad-hoc steps that can greatly affect its performance
and stability.

Nowadays the most embraced procedure is to project the
3D LiDAR point cloud to create 2D representations from
which to apply standard image-based 2D convolutions. In
this way, [1] uses a front view projection encoding the range
distance and height of each 3D point and train a deep network
to extract vehicle 3D bounding boxes. Similarly, [15] creates
a front view projection of the polar LiDAR coordinates along
with the reflectivity of each point, to segment vehicles by
predicting the vehicleness confidence of each point. On the
other hand, BirdNet[5], TopNet [16] or RT3D [17] make use
of a bird’s eye view projection of the point cloud, encoding
different features on each cell.

In this paper we devise a dual-branch LiDAR convolu-
tional architecture for filtering all the potentially movable
objects in the scene. One branch processes a front view of
the 3D LiDAR input whereas the other a bird’s eye view
projection, and each of them predicts the probability of the
3D projected points (pixels) to belong to a movable class (e.g.
car, bicycle, pedestrian, etc.) or otherwise non-movable.

Map building and localization. Localization and Mapping
with LiDAR is a very active research topic in the robotics
and automotive community. Early approaches used 2D laser
data and ICP methods to correct the ego-motion distor-
tion. However, when employing more complex 3D LiDARs
with further amounts of information more sophisticated ap-
proaches need to be considered, like including other sensor’s
information such as IMU, wheel encoders or GPS/INS using
for example extended Kalman filters [18], [19].

Some early approaches take motivation from visual SLAM
methods [20] and create intensity images using the laser
returns from which to extract and match distinctive features
between frames to infer the ego motion [21], [22]. However,
in these methods based in matching visual or geometric
features the localization and trajectory is usually recovered
by a batch optimization post-process, which make them
unsuitable for real time localization.

The introduction of LOAM algorithm [23] supposed a
great advance in terms of accuracy –achieving top position
on the KITTI Odometry benchmark– as well as real-time
performance. It proposes to divide the complex SLAM
problem in two algorithms, where one estimates odometry
at a high frequency but low fidelity whereas the other runs
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Fig. 2: We model FBE as a refined encoder-decoder architecture. As the inputs are quite big (500 × 600) we apply five
contractive and five expansive levels. To get richer features at each level, we insert customized fire modules that capture
local and context information from the previous feature maps. These modules first reduce the number of feature channels
and apply two parallel sets of convolutional filters on them to finally concatenate the results, obtaining local and context
aware features. Intermediate losses are computed in this network, merging predictions at different resolutions.

at lower frequencies for fine matching and registration of the
point cloud. From this approach, incremental improvements
have been done. LeGO-LOAM [24], proposed a lightweight,
real-time pose estimation method that has into account the
presence of a ground plane in its segmentation and opti-
mization steps to obtain distinctive planar and edge features
for the next optimization method. We base on this approach
to build our maps as it provides a real-time and accurate
representation as well as is more robust using real raw
LiDAR data.

Other contemporary approaches propose to infer the ve-
hicle position by matching segments from the point cloud
belonging to partial or full objects as well as sections of
larger structures [25]. In this way they obtain a good balance
between local descriptors, which may suffer from ambiguity
without context information, and global features, which are
viewpoint dependent. The method extract several features
from the segmented clusters and try to match those seg-
ments over the ones existing in a map. Further incremental
approaches employ a data driven feature encoder to extract
compact and discriminative features from the segments [26],
which can be used for creating a compact map representation
due to its high reconstruction capacities and for accurate
location over an existing map, as long as it does not contain
much movable elements.

In this way, the ability to create longer standing maps
overcoming challenging issues such as map scalability and
updatability or management of dynamic elements, is still
a pending task for SLAM algorithms [27], [28] In the
presented work, we directly segment the input information
with a deep learning pipeline prior to build any map. Thus,
we avoid from the beginning the inclusion of possible
outliers and known-dynamic elements, so therefore do not
give chances to further extract any feature from them. By
doing so, we demonstrate in Section IV that more accurate
localization is possible on a constantly changing environment
over a map created days before.

III. APPROACH

The main objective of this paper is to demonstrate how,
by pre-filtering possibly moving objects from the scene,

we are able to accurately locate during longer periods of
time in standard 3D maps such as the ones generated with
common SLAM or LiDAR odometry and mapping (LOAM)
algorithms. Our approach has two main modules, which are
detailed in this section: A) deep-learning based segmentation
of movable objects in 3D LiDAR point clouds; B) accurate
re-localization at different days over a map built from a
cluttered dynamic scenario using standard LeGO-LOAM
algorithm. This can also be employed to build a full map
over several days or in a multi agent way.

A. Movable Objects Segmentation

For this task, our only input is a 3D LiDAR point cloud
P = {q1, · · · , qQ}, where each point qk ∈ R4 is represented
by its Euclidean coordinates and the returned reflectivity. Our
objective is to classify each of these 3D points as belonging
to a {movable, or non-movable} class, where we consider
as movable all the Kitti [9] annotated classes, i.e. ‘Vehicle’,
‘Van’, ‘Truck’,‘Cyclist’,‘Pedestrian’, ‘Tram’ and ‘Misc’.

We formulate the task as a binary semantic segmentation
one, in which we perform a per-point classification predic-
tion. To solve it, we take advantage of the recent success
of deep convolutional neural networks and propose to model
two segmentation functions FFR and FBE (see Fig. 2), each
one respectively committed over a front view IFR and a
bird’s-eye view IBE 2D projections of the 3D LiDAR data.
Therefore we want to learn the F mappings such that:

FFR : (IFR,YFR)→ ŶFR

FBE : (IBE ,YBE)→ ŶBE

(1)

where YFR and YBE are two ground truth masks that
indicate whether or not each 3D projected point belongs to
a movable object and ŶFR and ŶBE will be the predicted
probability maps on each projection plane. Next, we present
the main components of the stated deep segmentation ap-
proach, such as the projections and ground truth created from
the 3D point cloud, the convolutional architectures involved
and the training process to model our objective functions.
Front View Projection. The input Front view, IFR, is
obtained similarly than in [15]. We arrange the 3D point
cloud P according to the Velodyne HDL-64 geometry into a



2D array such that IFR ∈ RH×W×C . The Euclidean points
(x, y, z) are transformed to spherical coordinates, where the
elevation angle θ represent the H = 64 horizontal lasers
of the Velodyne sensor. We filter the point cloud in the
corresponding camera Field of View (FoV) that contains
the KITTI annotations (φ ∈ [−40.5, 40.5]) and discretize it
according to the sensor manufacturer using an azimuth step
of ∆φ = 0.18 degrees, which map to a width of W = 448
pixels. In the third dimension of our IFR front view map we
store the corresponding range values ρ, and reflectivity r, so
therefore obtaining C = 2 channels.

Bird’s Eye View Projection. The bird’s eye (zenithal) view
IBE is obtained over an area of 60 × 50 meters in front of
the LiDAR sensor after carefully observing that roughly 95%
of the annotated vehicles in Kitti are within these margins.
Inspired by [5], [16], we generate a 2D grid with a resolution
of 0.1 meters and project the cropped point cloud on it. We
consequently obtain a bird’s eye view IBE ∈ RH′×W ′×C′

,
where H ′ = 600, W ′ = 500, and C ′ = 6, accounting for
six different features: 1) a binary occupancy term with zero
value if no points are projected in the cell and one otherwise;
2) an absolute occupancy term, counting the total number
of points in the cell; 3) the mean reflectivity value of the
points on the cell; and 4, 5, and 6) the mean, minimum and
maximum height values of the points projected on the cell.

Ground Truth Generation. The movable elements ground
truth for the front YFR and bird’s eye YBE projections is
generated by using the 3D-oriented bounding boxes from the
KITTI Tracking dataset. We transform these bounding boxes
from the camera to the LiDAR frame and label the 3D points
that fall inside each box of all the annotated movable classes.

Network Architectures. We propose for both projection
domains contractive-expansive architectures which allows for
a good embedding of features. Additionally, we include
skip connections and concatenate feature maps between
contractive and expansive parts to build stronger features
that will help the learning process by back-propagating purer
gradients from the upper parts to the lower layers.

1) Front view Architecture: We employ for the front view
segmentation task the deconvolutional architecture proposed
in [15]. As key design, it imposes a stride ratio of 1:2 in the
first convolutional layer to obtain more tractable intermediate
feature maps, reducing the input size imbalance of IFR

from [64 vs 448] to [64 vs 224]. From there, it performs
two more resolution decreases in the contractive part of the
network, which are later recovered on the expansive sector.
Additionally, in this network we also carefully design the
initial filter sizes according to the observed shape of the
most predominant movable object in this view (vehicles),
so imposing a filter of 7x15 with a big initial receptive field.

2) Bird’s Eye View Architecture: Within this view we
encounter a new challenge which is that, averaging within
the training set with the chosen grid resolution of 0.1 meters,
movable objects occupy less than the 8% of the grid-cells per
frame. Segmenting these small areas is still a challenging
problem for deep neural networks, and force us to design

the specialized architecture shown in Fig. 2 to manage the
trade-off between accuracy, number of parameters and speed.

To keep the number of network parameters small while
still providing high accuracy, we employ in our architecture
a customized version of the well-established convolutional
‘fire modules’ [29], [30], [31], which can be seen in the
top area of Fig. 2. Within these modules, we initially use a
convolution layer to reduce the number of feature maps and
later on we parallelly apply two new convolutional layers
with different filter sizes. Results are finally concatenated
to obtain robust features with local and large context-aware
information, while using a low number of parameters. In
our architecture we include these ‘fire modules’ after each
change of resolution of the feature maps.

Training the Networks. We train both networks to segment
the front and bird’s eye views in a supervised manner using
a class weighted cross entropy loss function [15], defined as:

LWCE(In,Yn) = −
H,W,L∑
h,w,l

ω(Y n
h,w)Id[Y n

h,w
]log(F(In, Y n)h,w,l),

(2)
where In is the n-th training projection sample and Yn is
the corresponding ground truth map. We compute a class
imbalance weighting function ω as the inverse ratio between
the vehicle and background classes from the training set
samples. Id is an index function that selects the predicted
probability associated to the expected ground truth class.

In order to guide the network to a correct result faster,
we implement a multi-scale solution for the segmentation
problem by introducing intermediate predictions and losses
at different resolutions, which insert valuable gradients at
middle levels. Hence, we compute the final loss L indepen-
dently for the front and bird’s eye networks as:

L(In,Yn) =

M∑
m=1

λmLWCE(Inm,Y
n
m) (3)

where λm are regularization weights for each resolution loss
and m is the resolution step at which the loss function is
computed. We compute 3 partial losses for the front view
projection network, and 5 for the bird’s eye view one.

We train our networks using the KITTI Tracking dataset
from which we obtained the ground truth of movable objects.
To preserve the geometry properties of the driving scene we
augment the dataset with horizontal flips in the front view
and vertical ones in the bird’s eye view with a 50% chance.
For the training procedure, we initialize the architectures
with He’s method [32] and use Adam optimization with
parameters β1 = 0.9 and β2 = 0.999. We train each network
independently on a single Nvidia 1080Ti GPU using a batch
size of 10 during 400, 000 iterations. We start with a learning
rate of 10−3, which is halved every 50, 000 iterations after
the first 150, 000. Attending to the ratio between classes on
each domain, we set the regularizator ω to 25 in the front
view and to 1000 in the bird’s eye view network. The multi-
resolution loss regularizers λr are set to 1, assigning equal
importance to each resolution.



Filtering Movable Objects. To filter out the points that
belong to movable objects in the 3D input LiDAR point
cloud, we first obtain the segmentation prediction from the
two deep models and fuse the obtained predictions back in
the 3D Euclidean space. Next we cluster points from both
predictions and validate them according to a minimum size
of at least 50 points per cluster. We also discard clusters
according to its mean probability predicted, where we weight
the contribution of the bird’s eye samples to be twice as
the front view ones (0.2 vs 0.1 respectively) as this last
have shown noisier results, and set a threshold of 0.13 to
approve resulting clusters. Once we have the final clusters
of the predictions, we filter the original input LiDAR data by
eliminating all points in a radio of 10 cms from a predicted
one, so that restricting the effect of possible projection errors.

B. Vehicle Localization
To locate inside an already built map our system uses just

Velodyne LIDAR data and, if available, information from
low-cost car GPS. Although the latter is very imprecise and
has a very low refresh rate, it is a standard equipment nowa-
days in most vehicle, so we can use it to estimate a coarse
initial position which is afterwards refined by using our re-
localization algorithm. Next, we first present the creation of
the ground truth map at day zero against which we aim
to locate on the subsequent days, and then we detail our
localization approach, which consist on obtaining an coarse
initial guess followed by the final accurate localization.
Ground Truth Map Building. For building the ground truth
map from which to validate our approach, we employ DGPS-
synchronized LiDAR scans that are feed to the state of
the art LeGO-LOAM algorithm in charge of composing the
final map representation. LeGO-LOAM also extracts edge
and surface features from the generated map by analyzing
the local surface properties of certain areas in the point
cloud. Edge features are extracted from rough local regions,
whereas surface ones are collected from smooth surfaces.

In order to obtain more distinctive features from the map,
the LeGO-LOAM algorithm does not account for features
within a minimum distance from others considered as strong.
This fact have a big counterpart; as movable objects like
vehicles have a very prominent surface structure, there are
therefore more likely to be chosen as strong features over
other relevant static features of the environment. In this way,
by pre-filtering the point cloud we enforce the selection of
distinctive strong features just from static elements instead
of from movable objects, thus allowing better inter-day re-
localization. A comparison of the extracted features from
the full and the filtered point cloud respectively can be
observed in Fig. 3 Additionally, we also remove the ground-
floor features determined by LeGO-LOAM to obtain a more
compact and distinctive representation of scene.

Finally, our resulting ground truth map (GT-Map) consists
of LeGO-LOAM features extracted from each filtered frame
along with the own frame transformation from the DGPS.
Initial Pose Estimation. To initially accelerate the current
localization process over a previously existing map, we can

(a) Features extracted from full point cloud

(b) Features extracted from filtered point cloud

Fig. 3: Comparison of the extracted features (blue) from
the full point cloud and the one with removed movable
objects respectively. By providing an unfiltered point cloud
the feature extraction mechanism selects a vast amount of
points from dynamic objects which can be compensated by
applying our proposed movable object detection algorithm.

use any rough prior information. In our experimentation, we
use a commercial GPS available nowadays as standard on-
vehicle equipment. Notice that we use it only to speed up
the initial localization, but it is not strictly necessary.

As GPS solely provides coarse information about the
position, we additionally need to estimate the initial ori-
entation. In order to do that, we extract a subset of our
ground truth map around the GPS coordinates and perform
feature matching against our current observed frame using
ICP. Feature points used for the current frame are extracted
and selected in the same way as described in the map
building process. To optimize the ICP process and get an
initial orientation estimation, we firstly perform a coarse
matching prediction by applying ICP over different rotations
of the current frame features on steps of 45 degrees. For each
rotation, we get a fitting score, which describes the remaining
sum of squared differences from the feature points of the
current frame to their corresponding nearest neighbours in
the ground truth map. Our initial orientation guess is selected
as the one with a fitting score lower than 0.4.

Finally, the transformation to our initial pose estimation
can be expressed as Tinit = TGPS · TICP · TRot, where
TGPS would be initial rough position estimate given by
the commercial GPS, TRot is the best fitting initial rotation
found for the ICP, and TICP refers to the final refined
transformation obtained by the ICP algorithm that optimizes
the feature matching best. Notice here that TGPS and TRot

are just used to speed up the matching process, and that any
other prior coarse pose estimation could be employed here.



Fig. 4: Progression of the absolute error of re-locating
Sequence 3 in Map 1 for the three regarded methods in com-
parison to the ground truth data including each corresponding
Mean Absolute Errors (MAE) as dotted line.

Continuous Re-Localization Once the initial pose estima-
tion is performed, we keep employing LeGO-LOAM to
continuously calculate further transformations based on our
segmented LiDAR scans. At the same time, we perform re-
localization, trying to match our current position against the
pre-existing generated map (GT-Map). For this continuous
re-localization steps, we follow a similar process than above
and employ the extracted features from the current scan with
ICP to correct possible drifts caused by the current trajectory
obtained with the LeGO-LOAM algorithm.

In comparison to the initial pose estimation, these re-
localization transformations are simpler to calculate, as they
only depend on the current estimated position and the
correction given by the ICP over the GT-Map. Therefore,
Treloc = TICP · Tc, where Tc stands for the current pose
estimated. The threshold for the ICP fitting score in the
course of this re-localization step is lowered to 0.3 in order
to estimate the transformation more robustly.

IV. EXPERIMENTS

To show the effectiveness of the proposed approach, we
have recorded 7 different sequences of a cluttered and
dynamic urban environment, i.e. a supermarket parking lot,
on different days and at diverse hours. In this section we
first detail the data acquisition process for the experiments.
Next, we show our re-localization capacities in this highly
unsteady scenario using as GT-Map a recorded sequence
from a different day that would be useless if not for our
approach, as it would not last more than the session for
which it was created. We show additional applications of our
approach for building a map through different days, which
can also extrapolates to multi-agent map building tasks.

A. Data acquisition
The data used for evaluating our experiments was captured

and recorded with a Test car by Valeo which is equipped
with multiple sensors. The relevant hardware concerning
our experiments is a Velodyne LiDAR HDL-64E S3, a
differential GPS by IMAR and the serial production car GPS.
The 7 sequences were recorded on a parking lot of a local
shopping mall in Kronach (Germany) at different days and

(a) Drift using Reloc. Full (b) Better with Reloc. Filtered

Fig. 5: Qualitative results comparing the performances of
‘Reloc. Full’ and ‘Reloc. Filtered’ on the Map Extension
experiment. In red we display the estimated trajectories along
the days and in blue the ground truth. For ‘Reloc. Full’
the resulting map shows blurry and doubled map contents
caused by drift from the ground truth due to incorrect feature
matching which are clearly compensated by our approach.

times to ensure diverse constellation of the parking cars.
Sequence 1 was recorded early in the morning aiming to
obtain an almost empty parking lot. Sequence 2 and 3 were
recorded on another day with the area being slightly crowded.
Sequence 4 to 7 were recorded on different hours of another
day with a very crowded parking lot. Our dataset therefore
consists of 7 sequences recorded at three different days with
diverse constitution of the parking lot.
B. Re-localization in dynamic environments

To validate our method we built two GT-Maps as described
in III-B using sequences 1 (GT-Map 1) and 3 (GT-Map 2).
In this regard sequences 2 to 7 are used for re-localization
over GT-Map 1 and sequences 1 and 4 to 7 over GT-Map 2,
ensuring inter-day experiments with different environmental
constitution. Moreover, for each sequence we build two GT-
Map variants, a Full one including all objects, and a Filtered
one with removed movable elements.

In our experiments, we apply three different methods:
- LeGO-Loam: in which subsequent frames are pro-

cessed in an unfiltered map solely based on the pose
estimation calculated by LeGO-LOAM.

- Reloc. Full: in which we perform in parallel pose
estimation by LeGO-LOAM and re-localization over an
unfiltered map using the full unfiltered current frames.

- Ours (Reloc. Filtered): in which we perform in parallel
pose estimation by LeGO-LOAM and re-localization
over a pre-filtered map using the filtered current frames.

For each method, performances in consideration of local-
ization in a dynamic pre-build map are validated based on
three different metrics:

- First relocation (1str): defined as the frame number of
the initial pose estimation.

- Number of relocations (#r): number of frames at
which the particular algorithm was able to relocate.

- Mean Absolute Error (MAE): in meters, the averaged
absolute error of the estimated positions over the whole
sequence compared to ground truth poses of the DGPS.



TABLE I: Re-Localization results comparing LeGO-LOAM, Reloc. Full and Ours (Reloc. Filtered)

GT-Map Curr. Seq LeGO-LOAM Reloc. Full Ours (Reloc. Filtered) MAE Improvements (%)

1str MAE (m) #r 1str MAE (m) #r 1str MAE (m) To Reloc.Full To LeGO-LOAM

1

2 3 1.73 7 3 1.29 288 8 0.84 34.42 % 51.07 %
3 2 2.93 20 2 2.38 257 2 0.99 58.30 % 66.13 %
4 197 2.09 0 275 6.38 108 8 1.08 83.05 % 48.23 %
5 273 3.65 0 274 3.74 78 233 1.98 47.03 % 45.76 %
6 567 5.94 0 279 4.14 5 281 3.91 5.56 % 34.25 %
7 33 3.59 0 27 4.05 49 26 1.01 75.05 % 71.84 %

2

1 2 2.80 503 2 0.74 548 2 0.70 5.02 % 75.03 %
4 67 2.26 14 66 1.88 101 56 1.73 7.91 % 23.40 %
5 273 2.78 54 289 2.73 112 269 2.12 22.32 % 24.32 %
6 168 4.73 9 168 4.61 26 165 2.39 48.29 % 49.51 %
7 1 1.93 53 1 1.20 135 1 1.21 -0.79 % 37.37 %

Table I shows the re-localization performances of the
considered methods and sequences applied on the respective
maps. Additionally, we show in Fig. 4 the absolute error
obtained with the three algorithms for re-localization along
sequence 3 using the GT-Map from sequence 1 (almost
empty parking map) in comparison to the ground truth data.

At the lights of the results we can observe that filtering
movable objects from the point clouds greatly improves
the performance of re-localization in dynamic environments.
Compared to the unfiltered re-localization (Reloc. Full, in
Table I) we reduced the MAE value a 16.5% using GT-Map
1 and up to 50.57% using GT-Map 2 averaging over the
respective sequences. Additionally our approach consistently
scores highest in number of localized frames and mostly
gets faster initial localization compared to the unfiltered
approaches.

Since GPS data is used solely for localization until the
initial pose estimation is obtained, there are bigger MAE
values when this initial localization takes place late. The
consequences of this effect can be observed in Table I when
re-locating at sequences 5 or 6 over both maps. Observe how
over these sequences the first relocation occurs rather late,
and therefore the MAE error is higher. This impact is mainly
caused by partially nonexistent sequence and map overlap
so therefore re-localization cannot be applied. The contrary
effect can also be noticed in sequence 7 applied over GT-
Map 2, where unfiltered re-localization ranks higher in MAE
than our approach. In this occasion, similar constellation of
vehicles were present in the parking, so for the two baseline
algorithms the first re-localization is performed fast.

Another factor affecting the shown results are partially
erroneous re-localizations essentially happening in curves
where a slight deviation in orientation estimation has a huge
impact on the subsequent trajectory calculation. Assuming
no further re-localizations occur after an erroneous re-
localization there will be a huge drift in the ensuing
poses which is reflected in the results of the unfiltered re-
localization whose MAE is partially exceeding the ones of
the standard LOAM approach. Comparing to the results of
our approach this perturbation can be mostly eliminated,
since in the filtered environment more distinctive, static fea-
tures are selected to guarantee more robust pose estimations.

C. Multi day map extension

Apart from experiments on re-localization in dynamic
environments we can prove the adaptability of the proposed
algorithm to the application of a mapping process during
several days. Here we are able to show that filtering movable
objects from the processed data drastically improves the
ability to build correspondences between maps from different
days and consequently, the quality of the final map. In our
experiments we choose sections of sequences from three
different days which are partially overlapping to compose
a final mapping of the entire parking lot.

Starting with a segment of sequence 1 we are building
the map solely using the LeGO-LOAM algorithm with loop
closure to accomplish a detailed mapping result. Next we are
processing a section of sequence 3 and do re-localization in
the previous built map based on the extracted features. In
contrast to the previous experiments where we were doing
a re-localization pose estimation separately for every frame
here we are using the found correspondences to the previous
map to do a graph optimization based on the inbuilt loop
closure method of LeGO-LOAM in order to continuously
update and refine the complete map. The previous step is
repeated with a section of sequence 7 applied on the currently
created map, so the final outcome is a merged map built upon
sequences of three different days.

In this context we can prove the strength of our approach
which, by filtering out movable objects, is able to establish
more robust connections to previous days maps and more
often, therefore obtaining a cleaner and more accurate final
representation. A comparison of the quality of the resulting
maps, with and without including movable objects can be
observed in figure Fig. 5. Looking at the unfiltered map more
blurry regions and doubled elements can be observed which
are on the other hand compensated in our solution.

To get a quantitative measurement of these experiments
we are comparing the composed trajectories of the map
extension to the corresponding ground truth data. Here we
use ICP to align the individual trajectories to the ground
truth one, where we are using the resulting fitness score as
validation metric. In this investigations it is more important to
have correct transformations in between the respective partial
sequences rather than achieving a minimum pose-to-pose



distance at every time step from the start like in the previous
experiment. Therefore we calculate the remaining sum of
squared distances after align the composed trajectories to the
ground truth. In this regard, we observe that by filtering out
movable objects we are able to decrease the trajectory fitting
score from 0.26 to 0.13, which represents an improvement
of 50% compared to the unfiltered approach.

V. CONCLUSION

In this work we proposed a robust LiDAR-based re-
localization algorithm for autonomous driving tasks in highly
dynamic environments. By filtering possible movable objects
based on a convolutional dual-view architecture, we can
achieve a more robust, distinctive and static representation
of the current environment, which can be used for further
processing tasks such as path planning, map updating or re-
localization. We proved that by filtering movable objects,
the accuracy of re-localization inside a pre-built map can
be increased by an average percentage of 35.1% compared
to re-localization using the full point clouds and by 47.9%
compared to a state-of-the-art lidar odometry and mapping
algorithm. Furthermore we showed the adaptability of our
approach by applying it to a multi-day map building task,
where the accuracy of the final filtered map after applying
our method exceeds the ones using full point clouds by 50%.
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