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Abstract. Proposed paper deals with the application of plastic response with directional
distortional hardening (DDH) in uncoupled ductile fracture model and comparison of the
results with the same ductile fracture model based on isotropic J2 plasticity. The results
of simulations have proven not negligible role of model of plasticity and the response of
the model with DDH plasticity is closer to reality then the one of the model with isotropic
plasticity.

1 INTRODUCTION

Ductile fracture plays not negligible role in industry. For example safety evaluation of
vehicles in case of crash, design and optimization of forming processes, limit analysis of
steel structures, etc. may be based on computational models of ductile fracture. Ductile
fracture is understood as an integrity loss of bodies due to process of material damag-
ing with significant dissipation of strain energy in conditions of monotonic loading. In
finite element calculations ductile fracture is usually performed using constitutive models
based on progressive damage following plastic straining. Phenomenological material mod-
els describing ductile damage in continuum mechanics mostly act as extension of plastic
response models. However damage can be represented as directional, scalar damage pa-
rameter is introduced in most application. Damage increment is based on plastic strain
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increment. Plastic strain increment is usually scaled such a way, that at point of plas-
tic instability (necking) the integral value of damage reaches unity. The dependence of
scale factor on actual stress and/or strain state introduces the dependence of damage on
loading path. From the point of view of interpretation of real process inside material the
ductile damage material models anticipate the damage to occur on the basis of two differ-
ent mechanisms: 1) Initiation, growing and connecting of micro–cavities that dominates
in domains with tri-axial tensional stress. Load carrying cross section is reduced during
damage process and finally leads to failure. Based on representative volume with cav-
ity some micro mechanical continuum models were derived (Rice and Tracey, 1969, etc),
that proved exactly the dominant role of stress triaxiality for this damage mechanism
occurrence. Stress triaxiality is dimensionless parameter based on stress components that
expresses contribution of hydrostatic tension in actual stress state. However models based
purely on this damage concept exhibit unrealistic response in domains at which pressure
and/or shear stress are dominant. 2) Occurence of localized shear strain in plane of max-
imal shear stress that holds an angle 45◦ with first principal plane. Lode angle is another
dimensionless stress component parameter, that expresses contribution of shear stress in
actual stress state. Based on the interconnection between constitutive models of plastic
response and constitutive models of ductile damage two basic categories of ductile damage
constitutive models can be distinguished: Uncoupled ductile damage models and coupled
ductile damage models. Uncoupled models, simply said, separate plastic response and
ductile damage. Parameters of plasticity are not influenced by damage. Coupled models
modify plastic response in dependence on damage. Coupled models are generally more
complex and they are expected to be closer to reality. On the other hand their complexity
causes significant calibration costs in comparison to uncoupled models. Easier calibration
process is an essential advantage of uncoupled material models. The calibration of plastic
response and calibration of ductile damage can be separated. The calibration is distinctly
easier if the uncoupled material model is used.

Most used constitutive models of plastic response of metallic materials in engineering
computational mechanics are based on Von Mises plastic condition with either isotropic,
either kinematic hardening and associative plastic flow rule. In our previous work we
have found uncoupled models based on Von Mises plasticity with isotropic hardening
acceptable, except for the response of parts with higher stress concentration [1].

This paper deals with the application of model of plastic response with directional
distortional hardening (DDH), that allows to control both position and shape of plastic
surface in ductile fracture model described above and comparison of the results with
the same ductile fracture model based on Von Mises plasticity with isotropic hardening.
Calibration experiments using both smooth and notched round bars, small-punch test,
and NT tension-torsion specimens made of steel 08CH18N10T had been performed in the
past and referred in [1].

2 DUCTILE DAMAGE MODEL

Material models discussed in this paper are based on incremental model of plastic
response with Von Mises condition of plasticity and isotropic hardening (further VMI) or
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on incremental model of plastic response with directional distortional hardening (further
DDH), and phenomenological model of ductile damage according to Bai–Wierzbicki.

2.1 Plastic response models

Both plastic response models DDH and VMI are based on yield condition and flow
rule. Yield condition of DDH, resp. VMI is expressed as

fDDH = (S− α) : H : (S− α)− k2 = 0 , resp. fVMI = S : S− k2 = 0 · (1)

The deviatoric part S

S = σ + pI (2)

of stress tensor, σ is used in yield conditions as the independence of plastic flow onset on
hydrostatic pressure is generally accepted for metallic material. Hydrostatic stress, p, is
defined by

p = −1

3
tr (σ) · (3)

Geometric interpretation of yield condition is usually provided in the space of principal
deviatoric stresses (three–dimensional space at which the point [S1, S2, S3] represents the
deviatoric stress principal components S1, S2, and S3). It is in evidence, that VMI yield
condition represents the surface of sphere with center at origin of principal deviatoric
stress space and radius of k. DDH yield condition employs the deviatoric back–stress α
determining the location of yield surface, k determines the size of yield surface. Fourth
order tensor H represents the distortion of yield surface. Let’s note, that if H equal unity,
DDH becomes Von Mises with kinematic hardening. Associative flow rule in form

ε̇p = λ
∂f

∂σ
(4)

has been adopted in both DDH and VMI models. Detailed description of VMI plastic
response model is well known. In this work native implementation provided within Simu-
lia/Abaqus FE code has been used. Theoretical description of DDH can be found in [3].
The implementation according to [2] in form of so called ”alpha model” has been provided
by our colleagues as user subroutine under Simulia/Abaqus FE code.

2.2 Ductile damage model

Ductile damage model in this work follows the damage mechanics concept with cumu-
lative scalar damage parameter

ω =

∫ t

0

˙̄εpldt

ε̄f (η, ξ)
· (5)

Plastic strain intensity rate, ˙̄εpl, is defined as
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˙̄εpl =

√
2

3
ε̇pl : ε̇pl · (6)

Fracture locus ε̄f (η, ξ) expresses the dependence of equivalent plastic strain at the in-
stant of onset of fracture on stress state represented by dimensionless parameters–stress
triaxiality, η, resp. Lode parameter, ξ. These parameters are defined using second, J2,
resp. third, J3, invariant of deviatoric stress

J2 =
1

2
S : S =

1

2

(
S2
1 + S2

2 + S2
3

)
, resp. J3 = detS = S1S2S3 , (7)

and, Von Mises stress, q,

q =
√

3J2 · (8)

Then stress triaxiality, resp. Lode parameter is defined as

η = −p

q
, resp. ξ =

27

2

J3
q3

· (9)

If we kept constant both stress triaxiality, η0, and Lode parameter, ξ0, during whole
loading, then fracture occured at instant tcrit, when accumulated equivalent plastic strain,
ε̄pl equal ε̄f0 = ε̄f (η0, ξ0)

ε̄pl =

∫ tcrit

0

˙̄εpldt = ε̄f (η0, ξ0) , (10)

and critical damage, ωcrit, at fracture onset has to be, according to (5)

ωcrit =
1

ε̄f (η0, ξ0)

∫ tcrit

0

˙̄εpldt = 1 · (11)

Assuming the damage to be proportional, we utilize (5) to express the damage caused by
plastic straining during the loading history from beginning up to time t with both stress
triaxiality and Lode parameter varying. Fracture onset occurs when damage reaches
critical value

ω = ωcrit = 1 · (12)

Fracture locus suggested by Bai and Wierzbicki in [4] has form

ε̄f (η, ξ) =

[
1

2

(
D1e

−D2η +D5e
−D6η

)
−D3e

−D4η

]
ξ2 + (13)

+
1

2

(
D1e

−D2η −D5e
−D6η

)
ξ +D3e

−D4η.

Material parameters D1, D2, D3, D4, D5, and D6 have to be determined on the base
of experiments. This ductile damage model has been used to extend both VMI and
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DDH plastic response model. These extensions are further referred as VMI based Bai–
Wierzbicki ductile fracture model (VMIBW), resp. DDH based Bai–Wierzbicki ductile
fracture model (DDHBW).

Artificial degradation on the base of Hillerborg’s fracture energy is implemented in both
VMIBW and DDHBW in order to guarantee sufficient smoothness of fracture process
simulation. Instead of immediate removing the stress gradual loss of material stiffness in
term of Young modulus, E, driven by parameter of degradation D ∈ 〈0; 1〉, is employed
in material point of FE model since damage reached it’s critical value

E∗ = (1−D)E · (14)

3 CALIBRATION

As both VMIBW and DDHBW are uncoupled ductile damage models, the plastic
response has been calibrated separately using the same test performed on smooth round
bar. Further the calibration of fracture locus will be discussed. Tensile experiments with
both smooth and notched round bars using four different notch radii, tension-torsion
experiments using NT specimen with five different proportional loading paths, and small
punch test have been utilized to calibrate fracture loci for both VMIBW and DDHBW
models. Calibration experiments are briefly listed in table 3. Each row in the table

Table 1: Complete portfolio of experiments, that have been used to calibrate both VMIBW and
DDHBW.

Smooth, resp. notched round bars, tension
Label R d N ∆Lf Remark

[mm] [mm] [mm]
R0 ∞ 12 5 14 Smooth bar
R15 15 12 2 8.1 Notched bar
R7 7 12 2 6.6 Notched bar
R4 4 12 5 5.7 Notched bar

NT specimens, proportional tension–torsion
Label p cal. N ∆Lfor∆ϕf Remark

[mm] quantity [mm], or [1]
NT3 0.000000000 ∆ϕ 2 0.6637 Pure torsion
NT4 0.000152425 ∆ϕ 2 0.6744 Tension–torsion
NT5 0.000304851 ∆ϕ 2 0.5681 Tension–torsion
NT6 0.001278454 ∆L 2 0.8181 Tension–torsion
NT7 ∞ ∆L 2 0.6027 Pure tension

Small punch test
Label Dpunch t N ∆uf Remark

[mm] [mm] [mm]
SP 2.5 0.5 5 2.05
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represents single calibration case. N for all cases means the number of specimens that
had been tested within the case. For smooth/notched round bars R means the radius
of the notch, d is the diameter of bar cross-section at notch tip. For NT specimens p
describes the loading path as the ratio between the extension ∆L and torsion ∆ϕ

p =
∆L

∆ϕ
· (15)

Proportional loading had been performed, so p is kept constant during loading. For small
punch test Dpunch is the diameter of spherical punch, t is thickness of the penny–like
specimen. The calibration is based on critical extensions, critical torsions, or critical

Figure 1: Portfolio of calibration cases.

displacements. For smooth/notched round bars the extension has been measured using
extensometer (the fracture of all valid specimens has to occure within the base of ex-
tensometer). Critical extension ∆Lf has been determined as average value of extension
at fracture onset of all valid specimens. For NT specimens both the extension and the
relative torsion has been measured for each specimen. The calibration quantity has been
chosen as ∆L or as ∆ϕ with respect to dominating deformation. Then corresponding crit-
ical value ∆Lf or ∆ϕf has been determined as average value of calibration quantity at
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fracture onset of all valid specimens as well. For small punch test the punch displacement
∆u has been measured. Critical displacement ∆uf has been determined as average value
of punch displacements at fracture onset of all valid specimens. Corresponding tensile
forces and/or torques have been measured at the same time, so the experimental loading
curves can be used to evaluate results of calibration.

Calibration of fracture locus means to determine parameters D1, D2, D3, D4, D5, and
D6 of fracture locus (13) providing good approximation of fracture of single specimens.
This is usually performed as minimization of target function representing the deviation of
FE calculation results and corresponding experiments in average sense over all calibration
cases. In this work target function Fω defined in sense of deviations between critical
damage ωi estimation and it’s exact value ωcrit = 1 for ith calibration case, averaged over
all calibration cases

Fω = m

√√√√ 1

N

N∑
i=1

|1− ωi|m · (16)

ωi estimation is evaluated by integration up to critical extension, resp. critical torsion,
resp. critical displacement

ωi =

∫ ∆Lf,i

0

dε̄pl
ε̄f (η, ξ)

, (17)

where ∆Lf,i = ∆Lf,i, resp. ∆Lf,i = ∆ϕf,i, resp. ∆Lf,i = ∆uf,i. Let’s denote, that initial
values of D1, D2, D3, D4, D5, and D6 for minimization of target Fω have been determined
using more conservative approach based on averaging both stress triaxiality and Lode
parameter up to critical extension, resp. critical torsion, resp. critical displacement
Weighted average values of stress triaxiality for ith calibration case ηav,i is calculated
according to

ηav =
1

ε̄f,i

∫ ε̄f,i

0

ηi (ε̄pl) dε̄pl , (18)

lode parameter weighted average is expressed as

ξav =
1

ε̄f,i

∫ ε̄f,i

0

ξi (ε̄pl) dε̄pl · (19)

The point [ηav,i, ξav,i, ε̄f,i] can be determined by this approach for each individual cali-
bration case. Fracture locus should pass these points, so target function

Fav =
m

√√√√ 1

N

N∑
i=1

∣∣ε̄f,i − ε̄f
(
ηav,i, θ̄av,i

)∣∣m (20)

can be used. The main disadvantage of this approach is wide range of stress triaxiality
η and Lode parameter ξ for some specimen types resulting in non-negligible error due to
the averaging of these quantities. On figure 3 single calibration cases are located at stress
triaxiality–Lode angle space in sense of average values.
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4 RESULTS AND DISCUSSION

Finite element calculation of both VMI and DDH elastic plastic response of all cali-
bration cases have been done. Axisymmetry, resp. cyclic symmetry has been employed
in smooth/notched round bars and small punch test FE models, resp. NT FE models to
speed up the analyses. Then calibration of fracture loci have been performed. Calibrated
parameters are provided in table 4, fracture loci of both VMIBW and DDHBW are plot-
ted in figure reffig:Flocus Finite elements calculations of both VMIBW and DDHBW

Table 2: Fracture locus parameters for both VMIBW and DDHBW.

model D1 D2 D3 D4 D5 D6

VMIBW 1.14620935 0.92336854 0.52982388 1.3923699 1.84258408 0.62297372
DDHBW 1.24892547 0.77904199 0.6579249 1.4036429 1.61503802 0.7210034

Figure 2: Fracture locus for both VMIBW and DDHBW models

elastic plastic ductile fracture response of selected specimens smooth/notched round bar
(including R1, R2, that had not been used in calibration) have been done using calibrated
fracture loci. The comparison of loading curves ∆L − F is provided on figures 3, 4, and
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5. All these plot show, that DDHBW agreement with experimental data is better than
the VMIBW one.
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Figure 3: Comparison of experimental loading curves with computed using both VMIBW and DDHBW.
Specimens R0, R15.
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Figure 4: Comparison of experimental loading curves with computed using both VMIBW and DDHBW.
Specimens R7, R4.

5 CONCLUSIONS

- The results of performed simulations of ductile fracture have proven not negligible
role of model of plasticity on the results.

- The results of models with DDHBW elastic plastic ductile fracture model is closer
to reality then the results of the model with VMIBW elastic plastic ductile fracture
model calibrated with the same portfolio of specimens.
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Figure 5: Comparison of experimental loading curves with computed using both VMIBW and DDHBW.
Specimens R2, R1 had not been used in calibration.

- Using of DDHBW uncoupled ductile fracture model may be an alternative approach
to more expensive coupling damage with plasticity if improvement of prediction is
needed.

- Further, analyses of more cases, testing of alternative fracture locus formulation
with DDH is planed.
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