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Abstract. In the present contribution we focus on a phase-field approach to ductile frac-
ture applied to large deformation contact problems. Phase-field approaches to fracture
allow for an efficient numerical investigation of complex three-dimensional fracture prob-
lems, as they arise in contact and impact situations. To account for large deformations
the underlying formulation is based on a multiplicative decomposition of the deformation
gradient into an elastic and plastic part. Moreover, we make use of a fourth-order crack
regularization combined with gradient plasticity. Eventually, a demonstrative example
shows the capability of the proposed framework.

1 INTRODUCTION

The numerical investigation of fracture using phase-field approaches has gained increas-
ing attention in the last decade, see Miehe et al. [1] and Kuhn and Müller [2]. In contrast
to the costly and complex computational modeling of sharp cracks, the formulation in this
works is based on the introduction of a diffusive interface, see also Weinberg and Hesch [3]
for a detailed investigation on Allen-Cahn type as well as Cahn-Hilliard type equations.
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Figure 1: Primary fields of inelastic deformable solids coupled with phase field fracture.

The assumption that the material fails locally upon the attainment of a specific fracture
energy as introduced by Francfort and Marigo [4] and Bourdin et al. [5], allows to formu-
late a variational statement for brittle fracture, see e.g. Karma et al. [6]. An extension to
large deformations relying on a multiplicative decomposition of the deformation gradient
into a compressive and a tensile part along with a structure preserving time integration
scheme is given in Hesch and Weinberg [7], whereas adaptations to ductile fracture have
recently proposed in e.g. Aldakheel [8], Miehe et al. [9] and Borden et al. [10]. The formu-
lations introduced therein are able to predict fracture in ductile solids which undergoes
large elastic and/or plastic deformations. In addition, the application of a phase-field
fracture approach to contact and impact problems was recently proposed in Hesch et al.
[11] and Dittmann et al. [12].

The purpose of the present contribution is to introduce a framework for the simulation
of ductile fracture within large deformation contact and impact situations. Therefore,
we combine a nonlinear elastoplastic formulation based on a multiplicative decomposition
of the deformation gradient with a fourth order phase-field formulation and gradient
plasticity. Eventually, we apply the proposed approach along with a frictional mortar
contact formulation and demonstrate the capability on a representative example.

2 GOVERNING EQUATIONS

Let B0 ⊂ R
n with n ∈ {2, 3} be the reference configuration of the body of inter-

est. The proposed multi-field approach to phase-field-type crack propagation in inelastic
deformable solids is described by the following primary fields of the coupled problem:

• The deformation map ϕ which maps at time t ∈ T points X ∈ B0 of the reference
configuration B0 onto points x ∈ Bt of the current configuration Bt

ϕ(X) : B0 × T → R
n with x = ϕ(X, t) (1)

as depicted in Figure 1a. The material deformation gradient is defined by F :=
∇ϕ(X) with J :=det[F ] > 0.

• The crack phase-field s is interpreted as an auxiliary variable that approximates the
sharp crack topology. It defines a regularized crack surface functional Γl(s) that
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converges in the limit lf →0 to the sharp crack surface Γ0

s(X, t) : B0 × T → R, with s ∈ [0, 1] and ṡ ≥ 0 (2)

as indicated in Figure 1b, where the value s(X, t) = 0 refers to the unbroken and
s(X, t) = 1 to the fully broken state of the material. The crack growth creates a
new internal boundary Γcr

0 (t) ⊂ R
n−1 based on energetic criterion. Here, the total

energy within the sharp crack interface Ecr is approximated based on a crack surface
density function γ resulting with a regularized crack interface as

∫

Γcr
0

gc dΓ ≈
∫

B0

gcγ dV with γ(s, ∇s, ∆s) =
1

4lf
s

2 +
lf
2

∇s · ∇s +
l3
f
4

(∆s)2 (3)

gc is the Griffith-type critical energy release rate and lf is the fracture length scale.

• The long-range micro-motion field α denoted as the global hardening variable

α(X, t) : B0 × T → R with α = ᾱ on ∂Bαd
0 and ∇α · N = 0 on ∂Bαn (4)

illustrated in Figure 1c, where the gradient ∇α(X, t) is governed by a plastic length

scale lp that accounts for nonlocal hardening effects. Following the recent work
Miehe et al. [14], the fracture length scale is lf ≤ lp to ensures that the damage
zones of ductile fracture are inside of plastic zones.

• The short range micro-motion field F p denoted as the plastic deformation map

F p(X, t) : B0 × T → R
n×n, det[F p] = 1, (5)

is locally defined and not constrained by boundary conditions, see Figure 1d.

The subsequent constitutive approach to phase-field ductile fracture focuses on the set

C := {∇ϕ, F p, α, ∇α, s, ∇s, ∆s} , (6)

2.1 Evolution of the Regularized Crack Surface Topology

Following the recent work of Miehe et al. [9], the rate of the work needed to create a dif-
fusive fracture topology is driven by constitutive functions, postulating a global evolution
equation of regularized crack surface

Ėcr =
∫

B0

gc δsγ̂(s, ∇s, ∆s) ṡ dV =
∫

B0

[
H − R

]
ṡ dV (7)

Here, H is the crack driving force defined in (27) and R = ηf ṡ is a viscous crack resistance,
where ηf ≥ 0 is a material parameter which characterize viscosity of the crack propagation.
The functional derivative of the crack density function is defined as

δsγ̂(s, ∇s, ∆s) := ∂sγ̂ − Div[∂∇sγ̂] + ∆[∂∆sγ̂] . (8)
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Then equation (7) gives the crack phase field evolution as a generalized Ginzburg-Landau-
type structure

ηf ṡ = H − gc
[ 1

2lf
s − lf∆s +

l3
f
2

∆∆s

]
, (9)

along with the Neumann-type boundary conditions

∇(l2
f ∆s − s) · N = 0 on ∂Bsn

0 and ∆s · N = 0 on ∂Bsn
0 , (10)

where the expression ∆∆s = Div[Div[∇2
s]] is the Bi-Laplacian of the crack phase field.

Based on thermodynamical arguments, we demand irreversible crack evolution Ėcr ≥ 0,
as discussed in the work of Miehe et al. [1, 9]. This global irreversibility constraint of
crack evolution is satisfied by ensuring a positive evolution of the crack phase field as

ṡ =
1

ηf

〈
H − gc

[ 1

2lf
s − lf∆s +

l3
f
2

∆∆s

] 〉
≥ 0 , (11)

where �x� := (x + |x|)/2 is the McAuley bracket.

2.2 Coupling Gradient Plasticity to Gradient Damage Mechanics

In large strain context, the deformation gradient is given by a multiplicative decomposi-
tion into elastic and plastic parts F = F eF p. Then, an elastic deformation measure is the
contra-variant Eulerian elastic Finger tensor be = F e(F e)T that provides the definition

be = F (Cp)−1F T with Cp = (F p)TF p . (12)

The kinematic basis for a decoupling of the constitutive response into volumetric elastic
and isochoric elastic-plastic contributions is

be = J2/3b̄
e

(13)

which defines the volumetric and isochoric parts

J = det[F ] = det[F eF p] = det[F e] = Je and b̄
e

= J−2/3F (Cp)−1F T . (14)

The storage energy function Ψ̂ is assumed to depend on the array C of constitutive state
variables introduced in (6) as

Ψ̂(C) = Ψ̂e(be; s) + Ψ̂p(α, ∇α) . (15)

Here, the phase field s enters the constitutive functions as a generalized internal variable.
However, it is considered as a geometric property that models a regularized crack surface.
The elastic contributions are given by

Ψ̂e = gvol(s)Ψ̂
e
vol(J) + gdev(s)Ψ̂e

dev(b̄
e
)

=
κ

2
gvol(s)(J − 1)2 +

µ

2
gdev(s)(tr[b̄

e
] − 3)

(16)
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in terms of the volumetric and isochoric degradation functions defined as

gvol(s) =





g(s) J > 1

1 J ≤ 1
and gdev(s) = g(s), (17)

where g(s) = ag((1−s)3 − (1−s)2)−2(1−s)3 +3(1−s)2 with ag ≥ 0. Next, we introduce
the constitutive relation related to the Kirchhoff stress as

τ = 2
∂ �Ψe

∂be be = τ vol + τ dev (18)

with the volumetric and isochoric stress parts defined as

τ vol = κgvol(s)(J
2 − J)I and τ dev = µgdev(s)dev[b̄

e
]. (19)

The plastic contribution is decomposed into local and gradient parts. For the modeling
of length scale effects in isotropic gradient plasticity, we focus on the equivalent plastic
strain α and its gradient ∇α. It is assumed to have the form

�Ψp(α, ∇α) =

α�

0

�y(α̃) dα̃ + y0
l2
p

2
�∇α�2, (20)

where lp ≥ 0 is a plastic length scale related to a strain-gradient hardening effect. �y(α)
is an isotropic local hardening function obtained form homogeneous experiments. We use
in what follows the saturation-type function

�y(α) = y0 + (y∞ − y0)(1 − exp[−ηα]) + hα (21)

widely used in metal plasticity, in terms of the four material parameters y0 > 0, y∞ ≥ y0,
η > 0 and h ≥ 0, where the initial yield stress y0 determines the threshold of the effective
elastic response. Next, we define the dissipation energy locally as the difference of the
external stress power and the evolution of the energy storage, by the standard Clausius-
Planck inequality

D = τ : d −
d

dt
�Ψe ≥ 0, (22)

where the rate of the deformation tensor d is the symmetric part of the spatial velocity
gradient l = Ḟ F −1. Moreover, the rate of change of the energy storage reads

d

dt
�Ψe =

∂ �Ψe

∂be : ḃe +
∂ �Ψe

∂s
ṡ, (23)

the evolution of the elastic storage energy function can be expressed in terms of the
material time derivative

ḃ
e

= lbe + belT + F (Ċ
p
)−1F T, Ċ

p
= (Ḟ

p
)TF p + (F p)TḞ

p
. (24)

5

560



M. Dittmann, C. Hesch, J. Schulte, F. Aldakheel and M. Franke

In case of isotropy, the skew-symmetric part of the spatial velocity gradient vanishes, i.e.
l = d, and ∂beΨ̂e commutes with be such that the first term in (23) can be written as

∂Ψ̂e

∂be : ḃe =

[
∂Ψ̂e

∂be be
]

: d +

[
be ∂Ψ̂e

∂be

]
: d +

[
∂Ψ̂e

∂be be
]

: [F (Ċ
p
)−1F T(be)−1]

=

[
2

∂Ψ̂e

∂be be
]

: [d − dp],

(25)

where dp = −1
2F (Ċ

p
)−1F T(be)−1 is the Eulerian plastic rate of deformation tensor. With

the Kirchoff stress we obtain the dissipation in the more explicit form

D = τ : dp + Hṡ. (26)

Therein, the former terms represent the plastic part of dissipation and the latter term is
the fracture part of dissipation. Here, we introduced per definition the energetic driving
force for the fracture phase-field H as

H = −∂sΨ̂e. (27)

Regarding to the plastic material behavior, we postulate a von Mises type plastic yield
function as

Φ̂p(τ , rp) = �τ dev� −

√
2

3
rp (28)

in terms of the dissipative resistance force rp dual to the hardening variable α defined by
the variational derivative of Ψ̂p by α as

rp := δαΨ̂p = ∂αΨ̂p − Div[∂∇αΨ̂p] (29)

reflecting the characteristics of the gradient-extended plasticity model under considera-
tion. A plastic Lagrange multiplier λp can introduced to enforce the Karush-Kuhn-Tucker
conditions

λp ≥ 0, Φ̂p ≤ 0, λpΦ̂p = 0. (30)

An extended dissipation potential can now be defined for the constrained optimization
problem based on the concept of maximum dissipation

V̂ (Ċ) = sup︸︷︷︸
τ ,rp

sup︸︷︷︸
λp

[
τ : dp − rpα̇ − λpΦ̂p(τ , rp)

]
, (31)

where the Lagrange parameter λp control the non-smooth evolution of the plasticity. This
allows us to define the associated plastic evolution equations as follows

dp = λp ∂Φ̂p

∂τ
= λpn and α̇ = −λp ∂Φ̂p

∂rp , (32)
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along with the loading-unloading condition introduced in (30). The evolution of the
plastic deformation can be reformulated as

(Ċ
p
)−1 = −2λpF −1nbeF −T (33)

To calculate the Lagrange multiplier, a penalty regularization can be utilized as follows

λp =
3

2ηp

〈
Φ̂p(τ , rp)

〉
≥ 0, (34)

such that we obtain

V̂ (Ċ) = sup︸︷︷︸
τ ,rp

[
τ : dp − rpα̇ −

3

4ηp

〈
Φ̂p(τ , rp)

〉2
]

. (35)

This approach can be interpreted physically as a viscous regularization function. ηp is an
additional material parameter which characterize viscosity of the plastic deformation.

The time integration of the plastic evolution equations is performed by a backward
Euler scheme that leads to the construction of a return-mapping algorithm (see e.g. Simo
and Hughes [13]) which is outlined in the following. For each time interval [tn, tn+1] we
assume the state at time tn and the time step size ∆t = tn+1 − tn are known. Furthermore
we assume a trial state based on a purely elastic deformation and obtain the following
trial variables

be
tr = F n+1(C

p)−1
n F T

n+1 ,

τ dev,tr = µgdev(s)dev[b̄
e
tr] ,

ntr =
τ dev,tr

�τ dev,tr�
,

Φ̂p
tr = �τ dev,tr� −

√
2

3
rp

n ,

(36)

where (•)n, (•)n+1 and (•)tr denote the value of a given physical quantity for the respective
state. A simplified time integration of (33) with the backward Euler scheme leads to

(Cp
n+1)

−1 = (Cp
n)−1 −

2

3
∆tλp

n+1tr[be
tr]F

−1
n+1ntrF

−T
n+1 (37)

supplemented by

αn+1 = αn +

√
2

3
∆tλp

n+1. (38)

If Φ̂p
tr ≤ 0, then the process is purely elastic and the elastic trial state is the solution,

i.e λp
n+1 = 0. If, on the other hand Φ̂p

tr > 0, then the trial state is not admissible and a
plastic correction is needed.

λp
n+1 =

3

2ηp

〈
Φ̂p

n+1

〉
=

3

2ηp

〈
�τ dev,n+1� −

√
2

3
rp

n+1

〉
(39)

Because of the simplifications regarding the time integration of Cp in (37), the incom-
pressibility of the plastic deformation is not preserved. As a correction, we apply the
return-map update only onto the deviatoric part of Cp and make additionally use of the
constraint det(b̄

e
n+1) = 1, see Borden et al. [10] for more details.
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2.3 Contact formulation

Assuming that multiple bodies i are in contact, the boundary of the mechanical field
is subdivided into Dirichlet, Neumann and contact boundaries

∂B
(i),ϕ
0 ∪ ∂B

(i),σ
0 ∪ ∂B

(i),c
0 = ∂B

(i)
0 . (40)

Note that the actual contact surface ∂B
(i),c
0 does not interfere with the phase-field or

hardening-field boundary, which is in contrast to, e.g. a thermal boundary of a thermo-
mechanical problem which establishes an energy transfer across the contact zone, see e.g.
Dittmann et al. [15]. Taking the local linear momentum balance across the contact in-
terface into account, the contact contributions to the total virtual work of a two body
contact problem can be written as

Gc =
∫

∂B
(1),c
0

t(1) · (δϕ(1) − δϕ(2)) dA, (41)

where t(1) denote the Piola tractions related to the surface ∂B
(1),c
0 . Next, we decompose

the contact tractions in normal and tangential components as

t(1) = tNν + tT, tT · ν = 0, tT = tT,αaα. (42)

Here, ν denotes the current outward normal vector on ∂B
(1),c
0 and aα, α ∈ [1, 2] the

contravariant tangential basis vectors. For convenience, we introduce the gap functions
in normal and tangential directions

gN = ν · (ϕ(1) − ϕ(2)), gT = (I − ν ⊗ ν) · (ϕ(1) − ϕ(2)). (43)

The normal contact conditions are given in the form of Karush Kuhn-Tucker (KKT)
conditions via

gN ≤ 0, tN ≥ 0, tNgN = 0, (44)

which are the classical complementary condition for contact problems. Furthermore, we
postulate that the frictional response is prescribed by Coulomb’s friction law, given as
follows

φ̂c := �tT� − µ|tN| ≤ 0, ζ̇ ≥ 0, φ̂cζ̇ = 0, L tT = ǫT

(
ġT − ζ̇

tT

�tT�

)
. (45)

The last equation makes use of the Lie derivative L tT = ṫT,αaα of the frictional tractions
and aligns them to the tangential velocity ġT with respect to the tangential penalty
parameter ǫT. Note that the penalization of the stick condition implies an additive split
of the tangential gap into a reversible (elastic) part ge

T and an irreversible (inelastic)
part gs

T. Moreover, µ denotes the coefficient of friction and ζ̇ a consistency parameter in
analogy to the plastic multiplier in plasticity, where ζ̇ = 0 represents stick and ζ̇ > 0 slip.

8
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To demonstrate thermodynamical consistency, we introduce a local energy density
function Ψc := Ψc(ϕ) and substitute again δϕ = ϕ̇. The global power balance across the
interface reads now

�

∂B
(1),c
0

Ψ̇c dV =
�

∂B
(1),c
0

tNġN + tT · (ġe
T + ġs

T) dV. (46)

Enforcing (44) exactly and assuming that the elastic part of the tangential gap is small
enough to be neglected, the global frictional dissipation is given by

Dc =
�

∂B
(1),c
0

tT · ġs
T dV. (47)

Along with the dissipation of energy due to plastic deformation Dp and fracture Df , the
total dissipation is given by D = Dp + Df + Dc. This total dissipation D represents the
amount of energy transferred into the thermal field, which we did not consider here.

To determine the Coulomb frictional traction a return map strategy together with the
Euler backward scheme is applied. In particular on the basis of a trial state for the
frictional tractions (for more details see Hesch et al. [11]) the slip function given by (45)1
is evaluated and the frictional tractions are computed with

tT,n+1 =





ttrial
T,n+1, if φ̂c,n+1 ≤ 0,

µ|tN,n,n+1|
ttrial
T,n+1

�ttrial
T,n+1

�
, elseif φ̂c,n+1 > 0.

(48)

For the spatial discretization of the contact boundaries the variational consistent mortar
method is applied. See Hesch et al. [11] for more details on the mortar method.

2.4 Weak formulation

The resulting variational formulation and the constitutive contact laws for the cou-
pled phase-field approach to ductile fracture are summarized in Table 1. Note that the
Macaulay bracket for the crack phase field in (11) and the plastic multiplier in (34) are
evaluated by inserting the local variables χp in (50) and χf in (51).

3 NUMERICAL EXAMPLE

Finally, we present a demonstrative example for the considered ductile fracture and
contact formulation, cf. Hesch et al. [11] and Dittmann [12]. In particular, we consider
a deformable block to be in contact with an elastic plate, see Figure 2 for the initial
configuration. The plate is clamped on the right hand side, whereas the upper surface
of the block is moved downwards with a constant increment size of ∆u = 0.15 × 10−3m.
Moreover, the plate of size 0.3m × 0.2m × 0.02m is discretized by 13 × 19 × 2 quadratic
B-spline based finite elements and block is of size 0.04m × 0.04m × 0.04m is discretized
by 5 × 5 × 5 quadratic B-spline elements. The center point of the block is placed 0.265m
away form the clamping in longitudinal direction. For both bodies, we assume that the

9
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Table 1: Variational formulation of the coupled contact problem

1) Mechanical field

∑

i

∫

B
(i)
0

P (i) : ∇δϕ(i) − δϕ(i) · B(i) dV −
∑

i

∫

∂B
(i),T

0

δϕ(i) · T̄
(i)

dA

+

∫

∂B
(1),c

0

(tNδgN + tT · δgT) dA = 0

(49)

2) Hardening Field

∫

B
(i)
0

ηpδα(i)α̇(i) + χpδα(i)

(
ŷ(i) −

√
3

2
�τ

(i)
dev�

)
+ χpy0l2

p∇δα(i) · ∇α(i) dV = 0 (50)

3) Phase-field

∫

B
(i)
0

ηf δs(i)
ṡ

(i) − χfδs
(i)

(
H(i) −

gc

2lf
s

(i)
)

+ χfgclf∇δs(i) · ∇s
(i) +

χfgcl
3
f

2
∆δs(i) ∆s

(i) dV = 0

(51)
4) Interface conditions

• Normal contact
gN ≥ 0, tN ≤ 0, tNgN = 0 (52)

• Tangential contact

φ̂c = �tT� − µc|tN| ≤ 0, ζ̇ ≥ 0, φ̂cζ̇ = 0, ġT = ζ̇
tT

�tT�
(53)

constitutive behavior is governed by the Neo-Hookean material law defined in (16). The
material parameters of the plate correspond to an aluminum-like material and take the
values µ = 26.455GPa and κ = 72.917GPa supplemented by an initial yield stress of
y0 = 95MPa and an ultimate yield stress of y∞ = 110MPa. The parameters of the block
are given by µ = 35MPa and κ = 333MPa, which correspond to a synthetic substance
with Young’s modulus of E = 100MPa and a Poisson ratio of ν = 0.45. In addition, the
phase-field parameters of the plate are specified as gc = 150kJ/m2, l = 15.79 × 10−3m
and ag = 2, whereas the saturation exponent for hardening is chosen as η = 25.4.

Eventually, the phase-field as well as hardening field is depicted in Figure 3. As ex-
pected, the plate will ripped out of the clamping and plastic deformation occurs in this
region of the plate.

4 CONCLUSIONS

In this paper, mortar contact formulations are adapted to the field of coupled gradi-
ent plasticity and gradient damage mechanics. The underlying formulation based on a
multiplicative elastoplastic decomposition of the deformation gradient allows for the nu-

10
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Figure 2: Bending contact fracture problem: Reference configuration.

merical treatment of large deformation problems, whereas a phase-field approach enables
the prediction of complex three-dimensional fracture patterns in ductile solids. The re-
sulting numerical framework is able to investigate ductile crack propagation within large
deformation contact and impact problems. Eventually, the capability of the approach is
demonstrated via a representative example.

Figure 3: Bending contact fracture problem: Phase-field (left) and hardening field (right) after 113
quasi-static time steps.
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