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Abstract. Even in the simple linear elastic range, the material behavior is not deter-
ministic, but fluctuates randomly around some expectation values. The knowledge about
this characteristic is obviously trivial from an experimentalist’s point of view. However,
it is not considered in the vast majority of material models in which “only” deterministic
behavior is taken into account.

One very promising approach to the inclusion of stochastic effects in modeling of ma-
terials is provided by the Karhunen-Loève expansion. It has been used, for example,
in the stochastic finite element method, where it yields results of the desired kind, but
unfortunately at drastically increased numerical costs.

This contribution aims to propose a new ansatz that is based on a stochastic series
expansion, but at the Gauß point level. Appropriate energy relaxation allows to derive
the distribution of a synthesized stress measure, together with explicit formulas for the
expectation and variance. The total procedure only needs negligibly more computation
effort than a simple elastic calculation. We also present an outlook on how the original
approach in [7] can be applied to inelastic materials

1 INTRODUCTION

The real behavior of materials is influenced by many different aspects. Examples
are grain size and grain size distributions, dislocations, segregations, crystal orientation,
defects, inclusions, and many more. Since these phenomena cannot be predicted for en-
gineering materials, they have to regarded as random. Thus, the respective material

1

296



Nagel J., Junker P.

behavior, which is realized e.g. in terms of stress/strain diagrams, shows stochastic fluc-
tuations. For a material prediction with increased accuracy, material models are desired
which account for the stochastic properties of materials: a simulation yielding the expec-
tation value of important quantities as elastic constants and stresses along with an error
estimate or, to be more precise, along with with the variance would be of major interest.

There exist different strategies to include stochastic information to material modeling.
A prominent example is the use of the so-called Chaos Polynomial Expansion and the
derived Karhunen-Loève expansion. It has been successfully applied in sensitivity analysis
[2], nonlinear random vibration [10] the analysis of human faces [9] and selection and
ordering [5]. The key idea is to approximate the stochastic quantities like elastic constants
by a broken series expansion while the stochastic dependence is expressed in terms of a
stochastic vector ξ = (ξ1, . . . , ξkmax) with kmax the maximum number of terms considered.
The space-dependent stochastic elastic tensor is thus approximated by

E(x, ξ) = E0(x) +
kmax∑
k=1

ξk Ek(x) (1)

with the spatial coordinate x and the expectation value E[E(x, ξ)] = E0(x) [6]. For scalar
random fields, the coefficients in the series are obtained from an eigenvalue decomposi-
tion of the covariance operator, see [13] and [1]. An analogous series expansion for the
displacements u yields the stochastic finite element method (see e.g. [4, 11, 3]). Here,
the expected value u0 together with the series terms uk are the unknowns in a coupled
algebraic equation system. It is obvious that the calculation of both the eigenfunctions
Ek and the vector of unknown displacements (u0,u1, ...,ukmax) is of high numerical effort
compared to the simple elastic simulation. Of course, the benefit of the increased com-
putation time is a stochastic displacement field from which the strains and thus stresses
may be derived. The level of accuracy is increased with increasing length of the series
expansion, i.e. with higher values for kmax resulting in higher computational costs.

In this contribution, we recall a novel approach for the calculation of stochastic infor-
mation for the elastic constants and stresses at the Gauß point level, which was presented
in [7]. In this approach, also a stochastic series expansion as in (1) is applied. How-
ever, since there is no mathematical theory for the the general expansion of tensor-valued
fields, we start with a general representation as in (1), where we assume that the ξk are
independent random variables with

E[ξ] = E[ξ3] = 0, E[ξ2] = 1, (2)

and the coefficients Ek(x) satisfy the symmetry conditions Eijkl = Eklij = Ejikl = Eijlk

and such that the expectation and variance

E[E(x, ξ)] = E0(x) and Var(E(x, ξ)) =
kmax∑
k=1

Ek(x) : Ek(x) (3)

are stationary, i.e., they do not depend on the location. This allows to model a wide range
of random distributions and is not restricted to Gaussians like in the case of the stochastic
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finite elements. Furthermore, it turns out that in the new approach we may choose kmax

very large without a substantial increase in the numerical cost. We present the derivation
based on [7] and recall several numerical results which compare the analytical solution
with Monte Carlo calculations.

200 µm

Figure 1: Microstructure in steel. Result of a scanning electron microscopy after [12].

2 THE STOCHASTIC MATERIAL POINT BEHAVIOR

An example for a typical microstructure is presented in Figure 1. Here, steel is investi-
gated by scanning electron microscopy showing very nicely the random areas of different
gray level. Each area with constant gray level possesses a constant orientation of the
crystallographic lattice and is referred to as grain. Due to orientation, segregation, lo-
cal defects and others, see also the introduction, the material properties are subjected
to stochastic fluctuations even in the elastic regime. Since the same “chaotic” picture
is present for different sampling points in a construction part, the local spatial behavior
is stochastic even in a homogenized way, i.e. in terms of effective elastic constants and
stresses for the entire microstructural domain.

To model this stochastic behavior in a numerically efficient and physically very reason-
able manner, basically two homogenized and effective quantities have to be specified

1. a stochastic measure for the elastic constants denoted by Ē = Ē(ξ) and

2. a stochastic measure for the strains denoted by ε = ε(ξ)

Combining these two measures results in a homogenized and effective but also stochastic
measure for the stress

σ = σ(ξ) = Ē(ξ) : ε(ξ) (4)

A subsequent calculation of the expectation and variance of the elastic constants and the
stress is then quite feasible.

The previously defined goal is achieved in two steps. In a first step, a stochastic series
expansion as described in the previous section is employed to the elastic constants. A
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Figure 2: Material point in a finite element setting which is expanded by the microstructural coordinate
χ to account for the discretized domains in a real microstructure as shown in 1. Figure 2 after [7].

relaxation of an associated energy yields the desired effective but stochastic measure for
the elastic constants. In a second step, a stochastic series expansion is also employed to
the strains. Relaxation of the modified energy yield the unknown coefficients of the series
expansion for the strains and thus the desired stochastic measure for the effective strains.

2.1 First step: stochastic measure for the effective elastic constants

The material point is defined as the ensemble of grains (or more generally: domains) as
exemplary showed in Figure 1. To merge the local behavior in each domain to an effective
behavior at the material point level, we introduce a “microstructural coordinate” χ on
the domain level, see Figure 2. Here, the domains are presented in a discretized way using
the index i. For each discretized microstructural coordinate χi – referring to one discrete
domain in the real material – varying stochastic elastic constants are present yielding to
varying stochastic strains in each domain χi.

The elastic constants are expressed in terms of a stochastic series for each domain by

Ei = E(χi, ξ) = E0,i +
kmax∑
k=1

ξk Ek,i (5)

with the assumptions on ξ and Ek,i as outlined in Section 1. For the strains in each
domain, we do not make any assumption at this stage nor do we approximate them by a
series expansion but leave them completely general. Then, the Helmholtz free energy of
each domain is given by

Ψ(χi, ξ) = Ψi =
1

2
εi : Ei : εi. (6)

which allows for formulating the associated relaxation problem as

Ψ = inf
εi

{
1

n

n∑
i=1

Ψi

∣∣∣∣∣
1

n

n∑
i=1

εi = ε

}
. (7)
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The parameter n accounts for the number of domains in each material point ensemble.
The unknown strains in each domain are computed by the minimization problem

L =
1

2n

n∑
i=1

εi :

(
I+

kmax∑
k=1

ξk Ek,i

)
: εi + σ :

[
ε− 1

n

n∑
i=1

εi

]
→ min

εi,σ
(8)

in which for simplicity we rescaled the elastic constants such that E0,i = I. For more
details we refer to [7]. The Lagrange parameter σ accounts to the constraint that the
mean of all strains in the individual grains equals the (given) homogenized strain of the
material point ensemble ε. This Lagrange parameter is indeed the stress measure we
are looking for. Solving the Lagrange equations yields the homogenized energy Ψ =
1/n

∑n
i=1 Ψi = 1/2ε : Ē : ε with the effective, stochastic elastic constant

Ē = Ē(ξ) =


 1

n

n∑
i=1

[
I+

kmax∑
k=1

ξkEk,i

]−1



−1

(9)

which is the harmonic mean of the individual elastic constants in the respective domains.
The expectation value for the harmonic mean is highly inaccessible. Thus, we approximate
it with a Taylor series of order two. This yields

Ē ≈ I+
1

n

n∑
i=1

kmax∑
k=1

ξkEk,i −
1

n

n∑
i=1

(
kmax∑
k=1

ξkEk,i

)2

+
1

n2

(
n∑

i=1

kmax∑
k=1

ξkEk,i

)2

. (10)

2.2 Second step: stochastic measure for the effective strains

The purpose of this second step is the search of an appropriate stochastic measure of
the effective strains, i.e. we are seeking for a formulation for ε = ε(ξ). To this end, we
employ the same stochastic series expansion to the strains in each domain εi which we
also used for the elastic constants. This means

εi = ε(χi, ξ) = ε0,i +
kmax∑
k=1

ξk εk,i (11)

with the unknown expectation values in each domain ε0,i and series coefficients εk,i. To
compute them, we employ a second relaxation approach for the homogenized energy, more
precisely

ΨE = inf
ε0,i,εk,i

{
1

n

n∑
i=1

ΨE
i

∣∣∣∣∣
1

n

n∑
i=1

ε0,i = ε0

}
(12)

The superscript refers to the expectation value of the respective quantities. This procedure
is similar to the derivation of the stochastic finite elements and is required to find the
(deterministic) series coefficients. More details are given in [7].
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The expected homogenized Helmholtz free energy is given by

ΨE =
1

n

n∑
i=1

ΨE
i =

1

n

n∑
i=1

(
1

2

kmax∑
k=0

εk,i : I : εk,i + ε0,i :
kmax∑
k=1

Ek,i : εk,i

)
, (13)

see [7]. Again, the elastic constants are rescaled to yield Ei,0 = I. The associated mini-
mization problem reads

∂L
∂ε0,i

= 0 =
1

n

(
I : ε0,i +

kmax∑
k=1

Ek,i : εk,i

)
− 1

n
σ̂ (14)

∂L
∂εk,i

= 0 =
1

n
(I : εk,i + ε0,i : Ek,i) (15)

∂L
∂σ̂

= 0 = ε0 −
1

n

n∑
i=1

ε0,i. (16)

with a new Lagrange parameter σ̂ which, however, is very closely related to σ. Solving
the minimization conditions for the unknown coefficients in the series expansion results
finally in the desired formulation for the effective stochastic strain of the homogenized
microstructure as

ε = ε(ξ) =
1

n

n∑
i=1

εi =
1

n

n∑
i=1

(
I−

kmax∑
k=1

ξkEk,i

)
: ε0. (17)

2.3 Result: stochastic measure of the stress

Combing the results of the previous two subsections result in the desired stochastic
measure for the stress of the homogenized material point as

σ = σ(ξ) = Ē(ξ) : ε(ξ)

=


I+ 1

n

n∑
i=1

kmax∑
k=1

ξkEk,i −
1

n

n∑
i=1

(
kmax∑
k=1

ξkEk,i

)2

+
1

n2

(
n∑

i=1

kmax∑
k=1

ξkEk,i

)2



:
1

n

n∑
i=1

(
I−

kmax∑
k=1

ξkEk,i

)
: ε0 (18)

The stochastic information in terms of expectation and variance can now be calculated
for both the elastic constants and the strains. For the elastic constants they read

E[Ē] = E0,1 − E1/2
0,1 : V : E1/2

0,1 +
1

n
E1/2

0,1 : C : E1/2
0,1 (19)

and

Var(E−1/2
0,1 : Ē : E−1/2

0,1 ) =
1

n
C+

1

n
C(2) + o

(
1

n

)
, (20)
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respectively, where here we give the general formula without assuming E0,1 = I anymore.
For the stress, they are calculated as

E[σ] = E1/2
0,1 : (I− V) : E1/2

0,1 : ε0. (21)

and

Var(E−1/2
0,1 : σ : E−1/2

0,1 ) =
1

n
ε0 : Ĉ(2) : ε0 +

1

n
ε0 : ĈV : ε0 + o

(
1

n

)
. (22)

Note that here the variance is calculated as a fourth order tensor as in (3). The following
abbreviations have been used

V = E[X1 : X1], (23)

C =
1

n

n∑
i,j=1

E[Xi : Xj], (24)

Ĉ =
1

n

n∑
i,j=1

E[Xi · Xj], (25)

ĈV =
1

n

n∑
i,j=1

E[Xi : V · V : Xj] (26)

and

C(2) =
1

n

n∑
i,j=1

(E[X2
i : X2

j ]− V : V) (27)

Ĉ(2) =
1

n

n∑
i,j=1

E[X2
i · X2

j ]− V · V) (28)

with

Xi = E−1/2
0,1 : (Ei − E0,1) : E−1/2

0,1 . (29)

Details can be found in [7]. We emphasize two important consequences of our approach:
firstly, the variances and covariances as in (23) to (28) can be estimated from data. Once
they are known, one does not need to calculate the coefficients Ek,i in the expansion of
the random field. Secondly, this formulation of the results is independent of the number
kmax of terms in the expansion. The expansion (1) is important for our derivation of the
results, but kmax may be supposed to be very high, thereby allowing for a more general
distribution of the random field. Together with the first point, that there is no need to
compute the coefficients in the expansion, this implies the results have a much higher
precision.
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Figure 3: Mean of the stochastic simulation for 20,000 random variables (dots) vs. the analytical values
proposed by our model (lines) for Case 1 and varying α. The number of domains is n = 30. After [7],
Figure 6.

3 NUMERICAL RESULTS

To illustrate our results collected in Section 2.3, we discuss two numerical examples for
the case of a one-dimensional stochastic field, which are recalled from [7].

We model two different distributions of Ei, a Gaussian with square-exponential covari-
ance, and a finitely dependent linear combination of uniformly varying random variables.

Case 1: The ξk are independent standard Gaussian and the covariance is given by
C(χi, χj) = Σ2 exp(−α|i − j|2). This is a two-parameter family with variance Σ and α
corresponding to the strength of the correlations.

Case 2: The ξk are independent and uniform distributed on [−
√
3,
√
3]. Each Ei

is a homogeneous linear combination of three ξk, such that Ei and Ej are independent
whenever |i− j| ≥ 2 and Var(Ei) = Σ2.

In both cases we use an expectation value of E0 = 200′000 [MPa] and a strain of
ε0 = 1 × 10−4 [-] and let the standard deviation Σ vary between 2,000 and 50,000. For
Case 1, we additionally vary α = {0.001, 0.01, 0.1} and we let n = 30. The expectation

E[Ē] and E[σ] and the standard deviation Std(Ē) =
√
Var(Ē) and Std(σ) =

√
Var(σ)

are calculated for the effective Young’s modulus and the stress, respectively, evaluated
according to the formulas above. These analytic results are compared with the empirical
estimated from a Monte Carlo simulation with 20,000 iterations in Figures 3 and 4.

Several conclusions can be drawn from our results:

1. Our analytical formulas show excellent agreement with the numerical simulations;
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Figure 4: Mean of the stochastic simulation for 20,000 random variables (dots) vs. the analytical values
proposed by our model (lines) for Case 2. The number of domains is n = 30. After [7], Figure 8.

in particular for small values of the variance.

2. The Gaussian distribution in Case 1, which a priori does not satisfy the ellipticity
constraint, also performs well in the numerical comparison.

3. The stochastic stress cannot be calculated simply by E ε0; it decreases quite strongly
for all model parameters (n, Σ, α); our equation captures this aspect correctly.

4. The standard deviation of the stress is large for high standard deviations Σ of
the Young’s modulus (close to 10%); it also cannot be concluded solely from the
standard deviation Σ without our equations.

We emphasize that our equations can be evaluated basically without any computational
effort. In contrast, 20,000 stochastic simulations are necessary in order to receive the same
behavior just by averaging the realizations of the stochastic behavior. The effect is even
more pronounced for a finite element simulation. Furthermore, the presented model is
also much faster than a stochastic finite element framework due to the increased number
of nodal unknowns in the latter method. The excellent agreement between simulation
and evaluation of our equations, which captures the averaged stochastic behavior very
well, proves that our assumptions are very reasonable and even the broken Taylor series
produces only negligible errors.
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4 OUTLOOK

It is possible to extend the method to the modeling of inelastic materials. We give
here a very brief outlook on how this yields a formula for the expected stress measure
and refer to the forthcoming paper [8] for the derivation. The strains can be decomposed
into the elastic and inelastic parts as εi = εei + εpi , and applying the relaxation method
in Sections 2.1 and 2.2 to the elastic parts results in

ε− εp =

[
I−

kmax∑
k=1

ξkE−1
0 : Ek,i

]
: (ε0 − εp0) (30)

and σ = Ē : (ε − εp) with Ē as in (10). It remains to obtain a formula for the inelastic
strains, which can be done by employing the Hamilton principle in its form for absent
gradients of εp reading

L = Ψ̇E +∆E + cons → stat
ε̇p0 ,ε̇

p
k

, (31)

where ∆ = rε̇p : ε̇p is a dissipation function homogeneous of order two. This results in
the differential equation

ε̇p0 = r−1dev
[
E1/2

0,1 : (I− V) : E1/2
0,1 : (ε0 − εp0)

]
(32)

for εp0. Solving this equation allows then to compute the expected stress as in formula
(21). Figure 5 shows a comparison of this analytic formula with the estimation obtained
from a Monte-Carlo simulation.
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Ε ���

�400

�200

200
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Figure 5: Mean of the stochastic simulation for 2,000 random variables (dots) vs. the analytical values
proposed by our model (lines) in the viscous material for Case 1. The number of domains is n = 30.
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5 CONCLUSIONS

The inclusion of stochastic information in modeling of materials is highly appreciated
since construction parts are increasingly being designed at the edge of the sustainability.
The stochastic fluctuations of material properties have a strong impact on the respective
material behavior during operation. In this contribution, we propose a novel approach
that is based on a stochastic field at the material point which is physically motivated. In
a first step, we applied a stochastic expansion to the elastic constants and performed a
homogenization over the material point. This results in a stress measure, which includes
a stochastic effective elastic constant that depends on the harmonic mean of the elastic
constants in each domain. In a second step, we employed the same stochastic expan-
sion as for the elastic constants for the strains at the microlevel. The relaxation of the
expected Helmholtz free energy yielded then the stochastic coefficients of the strain ex-
pansion. Double contraction of the stochastic elastic constants and the stochastic strains
gives the appropriate stress measure. Using these formulas for the stress measure, we
were able to calculate the expectation and variance. For this computation, only the
knowledge of covariances of the elastic constants needs to be given so that the stress as
well as its expectation and variance can be calculated in a closed form. For an imple-
mentation into a finite element routine, only “modified” elastic constants have to be used.
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