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Abstract. The aim is to determine the optimized semi-finished workpiece geometry to
its given target geometry after a forming process. Hereby, a novel approach for inverse
form finding, a type of a shape optimization, is applied to a notch stamping process. As a
special feature, h-adaptive mesh refinement is considered within the iteratively performed
forming simulation.

1 INTRODUCTION

Metal forming processes are classified into sheet forming with plane stress conditions
and bulk metal forming with three dimensional stress conditions. Recently a new class
of forming process called Sheet-Bulk Metal Forming (SBMF) has been introduced by
[9]. SBMF combines three dimensional plastic flow with sheet metal forming operations,
whereby the focus is placed on functional integration. It gains to form local shape elements
normal to the sheet plane with a magnitude similar to the original sheet thickness. This
leads to even higher requirements in regards to shape optimization. Numerical shape
optimization is beneficial to reduce experimental costs, since trail-and-error methods and
subsequent finishing operation steps, respectively, are minimized. In this contribution,
shape optimization is applied by means of an inverse form finding strategy.

According to Chenot et. al. [4], the forming simulation, with quantities prescribed in
the material configuration, is defined as a direct problem. Whereby shape optimization is
referred to an inverse problem, which seeks to determine the optimal workpiece geometry
based on the prescribed forming process and a target geometry.

For this purpose, a parameter-free (node-based), form finding algorithm is introduced
by Landkammer and Steinmann [8]. It includes nodal positions as design variables and
an objective function as minimization criterion. An iterative optimization strategy to
update the workpiece geometry is implemented in a non-invasive fashion. This implicates
independence of the algorithm to the constitutive behavior and the simulation tool. The
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Figure 1: Inverse shape optimization procedure with material configuration, target spatial
configuration and the computed spatial configuration

procedure is realized via subroutines, which translate information between the forming
simulation (direct problem) and the optimization algorithm (indirect problem), see Fig. 1.

Shape optimization suffers from the contradiction to be efficient but accurate in same
time. Due to large deformations within the forming simulation, a fine mesh is required in
order to avoid serve mesh distortions of the finite element (FE) mesh. Adaptive strategies
are required to decrease computational costs and minimize the discretization error. Here,
an h-adaptive strategy is applied to locally refine the mesh during the simulation. It leads
to a refinement of highly exposed regions and an efficient mesh is generated.

The implementation of adaptive remeshing techniques requires detailed investigation
due to the applied node-based optimization strategy. The challenge of the inverse op-
timization process with h-adaptivity is caused by newly emerging nodes and elements
within the model. This issue can be mastered by adjusting the subroutines, which trans-
lates information between the forming simulation (direct problem) and the optimization
algorithm (inverse problem).

Due to the advantages of h-adaptivity, it is possible to optimize more complex geome-
tries and to cope with large plastic strains. It even enables to include penetration of a
sharp edge tool into the forming simulation.

The paper is structured as follows: In the sequel, basics of nonlinear continuum me-
chanics are introduced in Sec. 2 and FE discretization clarification is outlined in Sec. 3.
The detailed algorithm for inverse form finding, formulated as an optimization problem,
follows in Sec. 4. Afterwards, h-adaptive mesh refinement is described in Sec. 5. A exam-
ple in Sec. 6, is presented to demonstrate the application of the mesh adaptivity within
inverse form finding. Finally, Sec. 7 recaps the findings.

2 BASICS OF NONLINEAR CONTINUUM MECHANICS

A general description of nonlinear continuum mechanics is required for a discussion
regarding inverse shape optimization and further the description of the h-adaptive refine-
ment strategy. More detailed description of nonlinear continuum mechanics can be found
in [1] among others.
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2.1 Kinematics

Fig. 2 depicts a continuous setting of the material configuration B0 at time t = 0 and
the spatial configuration Bt at time t > 0. A placement of a physical body into the
Euclidean space E3 with Ei ≡ ei and i = 1, 2, 3 is assumed.

x = ϕ(X, t)

u = x−X

E3 ≡ e3

E2 ≡ e2
E1 ≡ e1

B0 Bt

X x

Figure 2: Kinematics of a nonlinear continuum with the undeformed (material) and the
deformed (spatial) configuration

The deformation map ϕ maps positions X of a material configuration B0 to positions
x of a spatial (deformed) configuration Bt:

x = ϕ(X, t) : B0 → Bt (1)

The displacement field u occurs to the difference of the position vectors at spatial and
material configurations:

u(X, t) = ϕ(X, t)−X (2)

The gradient F of the deformation map with respect to material coordinates renders a
linear map from the material tangent space TB0 to the spatial tangent space TBt:

F =
∂ϕ(X)

∂X
: TB0 → TBt (3)

2.2 Weak Piola formulation

In the following, the body forces are neglected due to its minor influence in contrast
to forming forces.

An equilibrium in the Piola formulation is given by the boundary value problem with
Dirichlet and Neumann boundary conditions (Eq. 5):

DivP = 0 (4)

ϕ = ϕ̄ on ∂Bϕ
0 and P ·N = T on ∂BT

0 (5)

The balance equation (Eq. 4), formulated with the first Piola-Kirchhoff stress P , results
from the balance of linear momentum, including the divergence operator with respect to
material coordinates.
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This system of equations is solved by an application of the principle of virtual work.
Therefore, virtual displacements δϕ are introduced. With corresponding initial condi-
tions, the weak formulation is written as:

∫

B0

P : δFdV =

∫

∂Bt
0

δϕ · TdA ∀δϕ admissible (6)

3 FINITE ELEMENT DISCRETIZATION

Discretization is required to solve the weak formulation in Eq. 6 for a continuum body
B. The body itself and likewise the field values are approximated. Gauss-integration is
typically performed for solving integrals over a finite element. Linearization enables the
use of efficient iterative solution methods for the system of nonlinear equations.

3.1 Discretization of a body into finite elements

The body B is discretized into nelem elements:

B0 ≈ Bh
0 =

nelem⋃
e=1

Be
0 and Bt ≈ Bh

t =

nelem⋃
e=1

Be
t (7)

Accordingly, coordinates of material and spatial configurations are prescribed as dis-
cretized values through:

Xh =

nelem⋃
e=1

Xe and xh =

nelem⋃
e=1

xe (8)

Within the isoparametric concept, all kinematic quantities are approximated by the
same shape functions N i(ξ) for each element node (i = 1 . . . nen), which are defined
on a reference element B� with isoparametric coordinates ξ ∈ [−1, 1]ndim . The element
coordinates Xe and xe depend on the nodal positions X i and xi:

Xe(ξ) =
nen∑
i=1

X iN i(ξ) and xe(ξ) =
nen∑
i=1

xiN i(ξ) (9)

The deformation map and further the deformation gradient follows the discretization with:

xh = ϕ(Xh, t) : Bh
0 → Bh

t and F h =
∂ϕ(Xh)

∂Xh
: TBh

0 → TBh
t (10)

The Jacobians

J e(ξ) =
nen∑
i=1

X i ⊗ ∂N i(ξ)

∂ξ
and je(ξ) =

nen∑
i=1

xi ⊗ ∂N i(ξ)

∂ξ
(11)
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are used for the mapping from the reference element to the element of spatial or material
configuration. The deformation gradient F e yields:

F e(ξ) = je(ξ) · J e(ξ)−1 =

[
nen∑
i=1

xi ⊗ ∂N i(ξ)

∂ξ

]
·

[
nen∑
i=1

X i ⊗ ∂N i(ξ)

∂ξ

]−1

(12)

Relations between an element in material, spatial and reference configuration are depicted
in Fig. 3.

E2

E1

e2

e1
ξ2

ξ1

ϕe(X)

F e(ξ)

Xe(ξ),Je(ξ)
B�

Be
0 Be

t

xe(ξ), je(ξ)
Geometry

Figure 3: Mapping of a reference element to the material and the spatial configuration.

3.2 Discretization and linearization of the weak formulation

Neglecting dynamics, the weak formulation (Eq. 6) contains internal and external vir-
tual work. The prescribed discretization and linearization is required and demonstrated
exemplary for the internal virtual work.

δW0 int =

∫

B0

[
F T · ∂ δϕ

∂X

]sym
: SdV (13)

≈ δW h
0 int = δϕI

nelem

A
e=1

∫

Be
0

F · S · ∂N
i

∂X
dV e = δϕI · f I

int

Hereby δϕ denotes the virtual displacement, discretized in the same way as the deforma-
tion map (Eq. 9), which is referred to as the Galerkin Method. The same procedure for
external virtual work results in an external force vector:

f I
ext =

nelem

A
e=1

∫

δBe
0

N iT̄ dAe (14)

This leads further to a system of equations which is represented node wise as:

rI = f I
int − f I

ext = 0 ∀I = 1, ..., nnodes (15)

The residuum rI has to be solved for each node I. For a solution, the linearization of this
equation is needed. It consequently follows for one element:

δϕeT ·Ke ·∆ϕe = δϕeT · f e (16)
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4 INVERSE FORM FINDING

A node-based approach is pursued to solve the inverse form finding problem. There-
fore, coordinates of selected design nodes serve as design variables for the optimization
algorithm, introduced by [8].

The objective function

δ(XD,xD
tg) =

ndsgn∑
D=1

δD
(
xD
tg,ϕ(X

D)
)

(17)

summarizing the local squared error

δD =
1

2
dDT · dD (18)

with nodal differences
dD = xD

tg −ϕ(XD) (19)

between the current spatial configuration ϕ(XD) and the prescribed target positions xD
tg

determined at each design node D = 1, . . . , ndsgn. The positions are stored in the column

vectors XD =
[
X1� · · ·Xndsgn�

]�
and xD =

[
x1� · · ·xndsgn�

]�
.

The optimization strategy results in a minimization of the objective function, which is
satisfied at the optimal configuration:

∂δ(XD,xD
tg)

∂XD

∣∣∣∣
XD

opt

!
= 0 (20)

In use of the approximation by Taylor series, Eq. 20 reads:

∂δ
(
XD,xD

tg

)

∂XD
+

∂2δ
(
XD,xD

tg

)

∂XD∂XD
·
[
XD

opt −XD
]

!
= 0 , (21)

The Taylor series is terminated after the first term. This leads to an iteration step as:

XD
k+1 = XD

k −
∂2δ

(
XD,xD

tg

)

∂XD∂XD

−1

·
∂δ

(
XD,xD

tg

)

∂XD
(22)

Motivated by the mentioned node-wise optimization approach, Eq. 22 is written as an
iteration step for each design node as:

XD
k+1 = XD

k − α
∂2δD

(
XD,xh

tg

)

∂XD∂XD

−1

·
∂δD

(
XD,xh

tg

)

∂XD
(23)

This iteration includes a linesearch parameter α, controlled by Armijo-Backtracking [7],
which ensures a suited update without serve mesh distortions. A complete update step is
now written as:

XD
k+1 = XD

k − α F̃
D−1

· dD (24)
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Table 1: The node-based optimization problem for inverse form finding [7].

Objective funct.: δ
(
XD,xD

tg

)
=

∑ndesign

D=1
1
2
‖dD‖22

Design variables: Material positions XD

of the design nodes

State equation: Motion ϕ : XD ∈ Bh
0 → xD ∈ Bh

t

Yet, the earlier introduced discretized deformation gradient in Eq. 10 performs the
mapping of the difference vectors from the spatial to the material configuration as a
smoothed gradient F̃ . Eq. 12 introduces an element-wise deformation gradient which is

evaluated on the integration points. To obtain the smoothed deformation gradient F̃
D

for a certain node, all adjacent elements are evaluated and smoothing techniques are
applied to map quantities from integration points to element nodes. The used recovery
technique is the widespread global Least-Squares (L2−) Smoothing proposed by Hinton
and Campbell [6].

Preprocessing

Solver

Material configuration Bh
0

Forming simulation

Spatial configuration Bh
t

Postprocessing

Initial material configuration

Optimal material configuration

Update procedure

Call FE software Update: Xh

No
YesObjective: δ(XD,xD

tg) < tol.?

Optimization

Exit

F
E
-T
o
ol

M
S
C
.M

A
R
C

O
p
t.
-T
o
ol

M
A
T
L
A
B

Figure 4: The iterative strategy for inverse form finding, separated into forming simulation
(direct problem) and shape optimization (inverse problem) [7].

5 H-ADAPTIVE FINITE ELEMENT REFINEMENT STRATEGY

The main task of adaptive mesh refinement strategies is to control the discretization
error in sense of minimization and additionally to compensate it over the area of interest.
However, the quantity of the error and the area of the highest gradient is not available
prior and has to be computed during the simulation [13]. Within this obstacle, particular
error estimators have been established ([5], [3]).

After detecting the area of high errors or distorted elements an adaptivity strategy is
applied. Typically h-, p- and r-adaption is available.

As pictured in Fig. 5(c) the r-refinement induces a moving of nodes by which the
mesh density is concentrated to a particular place. Due to the refinement caused by a p-
adaptivity Fig. 5(b), the polynomial degree of the element in the particular place is raised.
One common used r-adaptive method is the Arbitrary-Lagrangian-Eulerian adaptivity [2].
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a b c

Figure 5: H-adaptivity (a) with a level two refinement, p-adaptivity (b) for one element
and a global r-adapted mesh (c)[13]

Besides no occurrence of irregular nodes, a benefit of p- and r-adaptivity is given by no
modification of connectivity during the refinement process.

H-adaption Fig. 5(a) means an adaption of the element size with respect to prescribed
criterion, whereby the problem size rises during the implementation of new element nodes
[13]. Regarding to [10], there are two different kinds of nodes within the adapted grids.
The first one is the regular node which is standard for non adapted grids but also part of
the refinement. The second is the irregular node generated by the refinement. The regular
nodes are corners of the undisturbed elements. Remaining nodes are called irregular. By
definition, all corners being part of a boundary are called regular nodes. As pictured in
Fig. 6, the refinement of the top-right part of the structure causes some irregular nodes.
To ensure a continuity of the solution, despite of the existence of irregular nodes, the
solution is constrained to obtain interpolated values of surrounded regular nodes.

For a geometrical simple refinement depicted in Fig. 6, a mathematical description
is needed, which has been introduced by [5]. Recap Eq. 16, a description between node
displacement values, stiffness matrix, and node force values for one element are prescribed.

a b c

AA B

CC DD

E F

G H

4A

1A

3A

2A

4E 3E

1E
2E

Figure 6: H-refinement of a quadrilateral element set (a) with level one (b) and level
two (c) refinement [5].

During the refinement procedure, a 4-noded quadrilateral element is divided into four
new smaller elements. Nodal values for new element nodes are required. For the newly
irregular node 1E a relation depending on regular nodes is introduced by:

1E =
1

2
[3A + 2A] (25)

In conjunction with regular nodes, the transformation of nodal values is prescribed:

ϕE = P E · ϕ̄E (26)
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1E

2E

3E

4E


 =




1
2

0 0 1
2

0 1 0 0
0 0 1 0
0 0 0 1


 ·



2A

2E

3E

4E


 (27)

Furthermore the variational node values δϕE for one element are transformed with the
same requirement:

δϕE = P E · δϕ̄E (28)

In consideration of Eq. 26 and Eq. 28, Eq. 16 is written as:

δϕ̄T
E · P T

E ·KE · P E · ϕ̄E = δϕ̄T
E · P E · fE (29)

Therefore, a new and again symmetric, stiffness matrix and also an updated force vector
for the E-th element results in:

KE = P T
E ·KE · P E and fE = P E · fE (30)

The same procedure is applied for elements F, G and H. Subsequent, the global stiffness
matrix is routinely assembled. For a second level refinement in element G in Fig. 6(c),
element D and A has to be refined at first, otherwise two irregular nodes appear between
two regular nodes, which is prohibited.

6 EXAMPLES

The iterative optimization includes a forming simulation within each step. The notch
stamping process is reduced to a two dimensional and a half notch model, in order to
decrease the computational costs. Symmetry conditions are applied on the right side of
the model, which is depicted in Fig. 9(a). Beside the symmetry boundary condition, the

Figure 7: Workpiece
of a notch stamping
process as in [11]

F

Figure 8: Sketch of
the notch stamping
process [11]

a b

e2

e1

Figure 9: The original discretized material
configurations (a) and the optimized mate-
rial configuration (b)

bottom is fixed in e2-direction. All four sides (width: 50mm) of the rectangle quadratic
solid body are discretized by 9 nodes, which results in 81 nodes and 64 quadrilateral
elements (plane stress) for the whole model. The dual phase steel DP600 with a nonlinear
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isotropic hardening and corresponding parameters, investigated by [14], is used. The notch
is composed by a 12.5mm horizontal line and a 45◦ line connected without a fillet radius.
The resultant sharp edge is of special interest concerning the influence of the h-adaptivity
to the simulation output. The initial gap between notch and solid body prevents an initial
penetration during a further iteration step. A constant velocity is applied to the notch to
reach a fixed solid body penetration of 25mm. A friction factor of 0.07 is specified between
the notch and the solid body. Furthermore, a contact control of the shear arctangent type
is used to represent the contact behavior. This is originated by an investigation of [12] to
improve the material flow during a forming process. The factor represents the application
of the water based non-poisonous lubricant (Beruforge BF 150 DL) with wax particles
and high viscosity. The h-adaptivity is applied with a node in region-option and use two
regions moving along in conjunction with the notch. This constraint ensures a refinement
of every element within this region and therefore includes those elements close to the
notch. The configuration in Fig. 10(a) serves as the material start configuration of the
first iteration.

The target configuration in Fig. 10(d) is defined by a rectangle quadratic box (width:
50mm) that includes an exact shape of the impressed notch. A total number of 18 design
nodes XD enter the objective function δ(XD).

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

[−]

2.0

a b

c d

Max.: 3.5 Max.: 2.0

Max.: 2.8

e2

e1

Design node

Symmetry

BoundaryE
q
u
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a
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p
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st
ic
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Figure 10: Deformed spatial configurations when inputting the globally refined (a), the
optimized coarse (b) and the optimized h-adaptively refined (c) mesh, beside the pre-
scribed target configuration (d)
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Fig. 10 shows three examples of the deformed configuration after forming simulations.
Fig. 10(a) is the simulation result using a refined mesh throughout the whole body with-
out applying adaptive method. Hereby, the imprint of the notch fits proper and an
h-adaptivity would not improve the result in that particular area. However, a major
drawback is the excessive long computational time. The simulation takes six times longer
compared to a simulation with a locally adapted coarse mesh. Consequently, adaptivity
improves computational cost by factor six. Fig. 10(b) shows an optimized spatial con-
figuration of a model without mesh adaptivity. The desired target configuration is not
achieved. Two nodes slide along the sharp edge of the notch. As a consequence the notch
penetrates the element edge. Thus, the computational results are not significant.

Finally, the spatial configuration in Fig. 10(c) belongs to the optimized material con-
figuration depicted in Fig. 9(b). It results by applying h-adaptivity with four iteration
steps. In comparison to the global mesh refinement Fig. 10(a) the adverse time effect is
improved. In addition, compared to the coarse meshed model Fig. 10(b), the mesh is more
accurate. The objective function, including the mean squared error of nodal differences
between computed spatial and the target configuration, is thereby reduced from 5.45 (first
iteration) to 0.3 (fourth iteration). This is an improvement by factor 4.6, compared to
the final optimized coarse meshed model Fig. 10(b) with a mean squared error of 1.39.

7 CONCLUSION

An inverse form finding algorithm with material nodal positions acting as design vari-
ables is prescribed. The iterative procedure determines an optimized deformed (spatial)
configuration. The commonly used h-adaptivity is applied to ensure satisfying numerical
result despite of a sharp edge at the geometry of the contact body. For demonstration
purposes, the shape of a semi-finished workpiece geometry, belonging to a notch stamp-
ing process, is optimized. The minimization criterion, an objective function representing
the differences between the spatial computed and the target configuration, is significantly
reduced. Further research will be pursued regarding mesh adaptivity in conjunction with
the inverse form finding algorithm.

Acknowledgement: This work is part of the collaborative research project Manufacturing

of complex functional components with variants by using a new metal forming process - Sheet-

Bulk Metal Forming (SFB/TR73: www.tr-73.de).
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