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Deep Reinforcement Learning (DRL) has recently revolutionized the resolution of decision-making and
automated control problems. In the context of networking, there is a growing trend in the research com-
munity to apply DRL algorithms to optimization problems such as routing. However, existing proposals
failed to achieve good results, often under-performing traditional routing techniques. We argue that the
reason behind this poor performance is that they use straightforward representations of networks. In
this paper, we propose a DRL-based solution for routing in Optical Transport Networks (OTN). Contrary
to previous works, we propose a more elaborated representation of the network state that reduces the
level of knowledge abstraction required to DRL agents and eases to capture the singularities of network
topologies. Our evaluation results show that using our novel representation, DRL agents achieve better
performance and learn how to route traffic in OTNs significantly faster compared to state-of-the-art repre-
sentations. Additionally, we reverse engineered the routing strategy learned by our DRL agent and, as a
result, we found a routing algorithm that outperforms well-known traditional routing heuristics.
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1. INTRODUCTION

In the last few years, we have witnessed significant advances
in Deep Reinforcement Learning (DRL) that are revolutionizing
the way we can resolve decision-making and automated control
problems [1, 2]. In this context, there is a growing interest in the
computer network community to apply DRL-based solutions
to network optimization problems. All this, with the goal of
building self-driving networks [3].

In this paper, we address the application of DRL to perform
online routing in Optical Transport Networks (OTN). This is
an optimization problem where DRL-based solutions may be
appropriate given their ability to both make fast decisions (i.e.,
routing every traffic demand as it arrives) and devise smart
strategies to save network resources in the long-term. All this,
dealing with the uncertainty in the generation of future traffic,
which has a stochastic nature.

Recent works have already used reinforcement learning to
address related problems such as routing in optical networks [4],
IP routing [5] or QoS provisioning [6]. However, they failed to
achieve good results given their lack of generalization capability.
This means that they are not able to make correct decisions when
facing network scenarios not explored during the training phase.

In DRL algorithms, two main elements must be defined: (i)
the observation space and (ii) the action space. The observation
space describes the state of the environment (i.e., the current
state of the network in our case). The action space, on the other
hand, describes the modifications that the DRL agent makes
over the environment. In our case, the action represents changes
to be applied to the routing configuration. The network state
is typically represented as a matrix containing the per-link uti-
lization [4]. Likewise, existing proposals usually limit the di-
mensionality of the action space by using straightforward rep-
resentations, such as the per-link weights for link-state routing
algorithms (e.g., OSPF) [5, 7]. In contrast, we argue that, in or-
der to outperform existing routing solutions, it is not enough to
leverage recent advances in DRL algorithms as done in previous
works, but it is even more important to carefully design more
elaborated representations of the observation and action spaces
that can better represent the singularities of network topologies
and simplify the learning process to the DRL agent.

In the light of the above, in this paper we propose a represen-
tation that enables to reduce the level of knowledge abstraction
required to the agent and facilitates to better capture the singu-
larities of network topologies. Consequently, it contributes to
achieve better performance. Our approach is to design state and
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action representations that convert the challenging problem of
routing traffic over OTN to an easier problem to resolve. This
makes it easier for the agent to learn the overall utilization and
the dependencies among the end-to-end paths in the network
topology. As a result, this also facilitates the detection of possible
singularities in the network, such as potential bottlenecks.

The remainder of this paper is structured as follows. In Sec-
tion 2, we describe the DRL-based routing problem addressed
in this paper. Section 3 presents a review of state-of-the-art DRL-
based state/action representations for network-related problems
and describes the representation proposed in this paper. Sec-
tion 4 includes a description of the DRL-based solution imple-
mented. In Sections 5, 6 and 7, we make an extensive evaluation
our DRL-based solution in some realistic OTN scenarios. This
includes a systematic hyperparameter evaluation to optimize
the performance of our DRL agent, and a comparison with pre-
vious DRL-based solutions [4, 5, 7] and well-known routing
heuristics in the state-of-the-art. Our evaluation experiments
use specific traffic models that simulate real-world network sce-
narios in a custom-built simulator. Lastly, in Section 8 we re-
verse engineer the routing policy learned by our DRL agent and,
based on this analysis, we find a routing algorithm that out-
performs traditional heuristics. Note that portions of this work
were previously presented at the Optical Fiber Communications
Conference (OFC) [8] and the IEEE International Conference on
Communications (ICC) [9] in 2019. However, this paper includes
a formal description of our DRL-based solution (Section 4), a
considerably more extensive evaluation (in Sections 5, 6 and 7)
and a reverse engineering analysis of the routing policy learned
by the DRL agent (in Section 8).

2. DRL-BASED ROUTING SCENARIO IN OTN

In this section, we describe an OTN scenario where a DRL agent
makes routing decisions at the electrical domain. Although the
scenario was already introduced in an earlier conference ver-
sion of this paper [9], we include it here for completeness as it
provides necessary background to understand the remainder
of this paper. In this scenario, the agent operates over a logi-
cal topology composed by Reconfigurable Optical Add-Drop
Multiplexer (ROADM) nodes and some predefined lightpaths
connecting them (see Fig. 1). Then, the role of the DRL agent is
to route incoming traffic demands through particular sequences
of lightpaths (i.e., end-to-end paths). Since the agent works at
the electrical domain, traffic demands are considered requests
of Optical Data Units (ODUK) signals defined in the ITU-T Rec-
ommendation G.709 [10]. These ODUk signals, that may belong
to different clients, are then multiplexed into Optical Transport
Units (OTUKk), which are data frames including Forward Error
Correction (FEC). The OTUk frames are finally transmitted over
sequences of lightpaths (optical channels) in the OTN. Note that
in this scenario the DRL agent acts oblivious of the mechanisms
related to the optical domain (e.g., physical impairments).

In this paper, we define the routing problem as devising a
certain strategy to route new source-destination traffic demands
with the aim of saving network resources in the long-term. Note
that this is a challenging task for the DRL agent since it should
learn during the training phase some singularities of network
topologies such as potential bottlenecks as well as understand
the underlying dependencies among end-to-end paths. More-
over, this learning process is also hampered by the uncertainty
in the generation of future traffic demands, which is stochastic.

This problem can be modeled as a Markov Decision Process
(MDP). A MDP is defined by the tuple {s,a, T, r,,so}. The State
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Fig. 1. Schematic representation of the DRL agent’s operation
in the OTN routing scenario.

(s) must represent the environment unambiguously according
to the action space defined. In our scenario, it must represent
the current network state and some information about the traffic
demand(s) to be routed. The Action (a) stands for the set of
actions the agent can apply (i.e., the changes to the routing con-
figuration). The Transition distribution (T'(s, 4, s")) defines how
the environment, the network in our case, evolves after applying
an action. In our scenario, the transition function models the
stochastic behavior of changes in the network state as well as
the generation of new traffic demands to be routed. The Reward
(r) is the incentive that the agent obtains after making a decision.
Its purpose is to steer the learning process towards the achieve-
ment of the optimization goal. Then, the objective is to find a
policy 7t(s) mapping input states to actions that maximizes the
discounted cumulative reward R = ZtT:o 7t r(st,at). The actions
can be deterministic or stochastic (i.e., probability distribution
over actions), and the discount factor y € [0,1) defines the im-
portance of the reward obtained in future decisions. Finally, the
initial state (sg) represents an empty network with a first traffic
demand to be routed.

Solving the MDP requires to evaluate all the possible combi-
nations of state-action pairs, and this is computationally very ex-
pensive when the state has high dimensionality. In our scenario,
the number of possible network states is finite and proportional
to the number of lightpaths, their capacity and the granularity
considered for the lightpaths’ utilization (i.e, number of uti-
lization intervals). For standard networks, this is typically an
extremely high number of states. For instance, in the experi-
ments we perform in Sections 5, 6 and 7 the number of possible
network states is above 101%.

An alternative to solve the MDP is using Reinforcement
Learning (RL) together with sophisticated generalization tech-
niques. This makes it possible to extract knowledge from vis-
ited states that can be used for unexplored states. In order to
achieve this level of generalization, recent DRL algorithms pro-
pose the use of Deep Neural Networks (DNN). Thus, with a
proper training, such neural networks are able to model how to
act successfully in regions not explored in advance.

Fig. 1 represents the basic operation of the DRL agent in the
OTN routing scenario. We assume that the DRL agent has access
to telemetry information of the network, which is aligned with
current architectural trends, such as Software-Defined Network-
ing (SDN) [11] or Overlay Networking. Thus, when there is a
new traffic demand to be routed (ODUk signal), this is communi-
cated to the agent (step 1). Then, the agent generates a new state
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Fig. 2. Scheme of the state representation proposed.

representation that will be the input of its decision model (i.e., a
neural network model). This state representation should include
information about the current network state and the new traffic
demand (step 2). With this input, the DRL agent selects an action
that involves making a routing decision for the new demand
(step 3). Lastly, the resulting action is translated into a set of
forwarding rules that are installed in some (ROADM) network
devices (step 4). Additionally, during the training phase the DRL
agent explores different routing strategies and receives a reward
after applying every action. This enables to learn the routing
policy that leads to better cumulative reward in the long-term.

3. PROPOSED REPRESENTATION

In this section, we propose a novel representation to perform
DRL-based online routing in OTNs. The design of this repre-
sentation involves both how to define the network state (i.e.,
the observation space) of the DRL agent and the set of actions
that the agent can apply (i.e., the action space). Note that this
representation was already proposed in [9], hence much of the
content in this section is already included in that paper.

A. State-of-the-art representations

Before describing our representation, we review the brief re-
lated work addressing network routing based on Deep Learning
techniques and the representations they proposed. Some works
like [3, 5, 7], represent the network state directly with a traffic
matrix (i.e., the traffic of every source-destination pair). This
information allows the agent to define a global routing policy
considering the overall traffic demand in the network. Then, the
action of the agent is to select the link weights of an external
algorithm (e.g., softmin routing [5], OSPF-like [7]) that defines
the final routing policy. Although these representations obtain
reasonable performance in simple routing problems (e.g., link-
weight selection), they exhibited poor results when applied to
more complex problems, such as flow-based routing, even in
some cases falling behind more classical routing algorithms.
Other approaches propose making routing decisions for ev-
ery new traffic demand considering the current state of the net-
work. For instance, to the best of our knowledge Deep-RMSA [4]
is the only work addressing DRL-based online routing specifi-
cally for optical networks. To do this, they represent the network
state with the links” utilization. Particularly, they model fiber
links as binary arrays with a number of frequency slots that
can be available (1) or occupied (0). Note that they address the

Routing, Modulation and Spectrum Assignment (RMSA) prob-
lem in Elastic Optical Networks, while in this paper we address
routing at the electrical domain over a logical topology with
lightpaths already provisioned. Alternatively, [12] proposes to
represent the network state with a matrix containing the traffic
demand aggregated in every router for a number of time inter-
vals. Both proposals, Deep-RMSA [4] and [12], define a discrete
action space for the agent where each option represents the se-
lection of a path among a number of candidate paths. The main
drawback of these representations for the problem addressed in
this paper is that the DRL agent must abstract knowledge from
the link-level features represented in the observation space to
the path-level options present in the action space.

We claim that, using straightforward representations of the
network state, such as the links’ utilization or the traffic matrix
it is not feasible to achieve high performance in network routing.
For example, these representations do not include information
about the network topology and the interdependencies between
the links that form an end-to-end path, which is critical to rout-
ing. Note that the alternative of including this information as an
adjacency matrix would not solve the problem, as it would be
very difficult for the DRL agent to learn these relationships from
a raw matrix (e.g., the network paths and the links they share).

B. Description of the proposed representation

In contrast to state-of-the-art proposals, our approach is to pro-
pose a more elaborated state/action representation that facili-
tates the agent to learn how to efficiently route the traffic. In
other words, our representation should help the DRL agent to
achieve generalization.

A key aspect to consider in the design of such a represen-
tation is that, in network scenarios, we can provide a simple
estimate of how the network state will change after routing a
new traffic demand. For instance, if we assume that we know the
bandwidth request of an incoming traffic demand (as in the OTN
scenario in Sec. 2), it is easy to estimate the resulting utilization
of the links after allocating that demand to a specific end-to-end
path. This means that we can leverage this information and
provide this knowledge directly to the agent. This considerably
simplifies the problem, because otherwise the agent would have
to learn these relationships from exploration. However, there
is still the challenge of how to choose the best routing policy
considering the uncertainty of future traffic demands, which fol-
low a stochastic generation process. In this context, after proper
training, the DRL agent should acquire some knowledge from
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the network and learn routing strategies that effectively deal
with such uncertainty in the traffic. For instance, it may detect
potentially critical links and try to prevent bottlenecking them.

In the light of the above, we propose the following repre-
sentation for the DRL agent. Instead of considering link-level
statistics as in previous works (e.g., utilization of the links in
the network [4]), we propose the use of statistics at the level
of end-to-end paths. This way, the agent does not need to in-
fer knowledge from the link-level to the path-level. Regarding
the action space, we propose a set of discrete actions where
each action corresponds to the selection of a specific end-to-end
path. Particularly, we consider that, for each new traffic demand
{source, destination, bandwidth}, the agent can select one path
among a list of “k" candidate paths (e.g., “k” shortest paths)
that connect the source and the destination of such demand.
With respect to the state representation, the agent is provided
with some relevant statistics of the “k” candidate paths of all
the source-destination pairs in the network. In Fig. 2, the top
matrix represents a scheme of the current network state. This
matrix contains the current statistics of the “k” end-to-end paths
for each source-destination pair. With this representation, it is
possible to compute all the next states that can be reached after
applying every possible action in the current action set and pro-
vide them to the DRL agent. That is, in each epoch the input of
the DRL agent will be “k” matrices (as shown in the bottom of
Fig. 2), where each matrix represents the estimated path statis-
tics (e.g., available capacity) after allocating the current traffic
demands to each of the “k” candidate paths. In other words, the
proposed representation provides the agent with a set of matri-
ces that describe the consequences of applying every possible
action. Note that the cost to compute the input state is propor-
tional to the number of possible actions considered. However,
limiting the actions to “k” paths allows us to control the dimen-
sionality and the cost to compute the state. Lastly, note that it is
also required to include some information of the current traffic
demand in the state (i.e., source, destination, bandwidth...).

To the best of our knowledge, there are not previous propos-
als that use state representations with statistics of end-to-end
paths to address DRL-based networking problems.

4. DESCRIPTION OF THE DRL-BASED SOLUTION

This section describes the complete DRL solution integrating the
representation proposed in Section 3-B. The DRL agent receives
as input the current network state including a new traffic de-
mand, and the objective is to select a discrete action a(t) € [0..k]
that represents a specific end-to-end path for the demand. Note
that the number of candidate paths (k) and the criteria to se-
lect them (e.g., shortest paths) may have an impact on the final
performance achieved by the agent. Formally, the DRL agent
aims to find a policy 719(s|a) modeled by a Deep Neural Net-
work (DNN) with some weights and biases (6) that are updated
during training to maximize the discounted cumulative reward.
Besides the design of a good state/action representation for
the DRL agent, it is also important the selection of a proper DRL
algorithm that well suits the nature of the problem. This in-
volves for instance the exploration bias of the algorithm, which
controls the trade-off between the performance that can be poten-
tially achieved and the training time to converge to the solution.
The more biased is the exploration, the faster should the agent
converge. However, having high exploration bias may result in
policies whose performance is very far from the optimal solution
of the Markov Decision Process (MDP) problem. Note that the

Input: Initial parameters for policy 7t and value V,,

1 fori=1, 2, 3,... until convergence do

2 - Collect trajectories D; on policy 7r; = 7t(¢;)

3 - Compute advantages AZ4F using the critic estimates V,

4 - Compute the policy gradient g; using AS4E

5 - Compute the KL-divergence Hessian-vector product function:
f(V) = Hp

6 - Apply conjugate gradient method to calculate:

X~ A

7 - Compute the proposed policy update step:

A~ 2y,
! x,THlvxl Xi

8 - Backtracking line search to obtain the final policy update (actor):
01 = 0; + oA

9 - Update the critic neural network (¢;1) using AS4E € D; with
an Adam optimizer

10 end
Algorithm 1: TRPO Actor-critic training process

optimal MDP solution represents an upper-bound of the perfor-
mance that DRL agents can achieve.

In order to select a DRL algorithm for our agent, we made
some preliminary experiments with different agents implement-
ing the following algorithms: TRPO [13], PPO [14], DDPG [15],
PCL [16], A3C [17] and ACER [18]. To this end, we used
the default implementations of these algorithms in ChainerRL
(v0.3.0) [19]. Lastly, we found that the Trust Region Policy Op-
timization (TRPO) algorithm clearly outperformed the other al-
gorithms in terms of performance and time to converge to the
solution in the OTN routing scenario presented in this paper
(Sec. 2). Note that this does not necessarily mean that the other
algorithms tested may not potentially achieve similar or even
better performance than TRPO after a fine-tuning process.

TRPO is a recent reinforcement learning algorithm based on
the classic Natural Policy Gradient [20] algorithm. Unlike pri-
mary policy gradients (e.g., REINFORCE [21]), TRPO introduces
a number of sophisticated mechanisms that provide stability to
the training and avoids the well-known vanishing or exploding
gradient problems. This algorithm can be applied to both con-
tinuous and discrete action spaces. In our case, we consider that
the agent aims to learn a stochastic policy 7y(s|a) = Plals; 6]
based on the discrete action space proposed in Section 3-B. Ad-
ditionally, the implementation used in this paper includes two
more mechanisms that further contribute to stabilize the training
and, consequently, achieve better performance: (i) it implements
an actor-critic model where the policy and the value estimates
are modeled by separate neural networks, and (ii) it uses the
Generalized Advantage Estimator (GAE) [22] as advantage func-
tion, which enables to reduce the variance of policy gradient
estimates at the expense of some bias.

Algorithm 1 describes the DRL agent’s training process.
Firstly, a number of episodes is executed (line 2) following
the current policy (7r9) modeled by the actor neural network.
Thus, for each timestep in these episodes a tuple (s¢, at, 7+, 5¢11)
is stored in a buffer (D;). Subsequently, advantage estimates are
computed for each timestep sample in D; (line 3) using the Gen-
eralized Advantage Estimator ACAE = y° (A7)'8). Where
A € [0,1] adjusts the bias-variance trade-off of the estimator,
v € [0,1) is the discount factor and ¢} is the temporal differ-
ence error that can be computed with the following expression:
87 =1 +9V(s411) — V(st). At this point, the value estimates
of the critic network Vi (s) are used to compute 5. Then, using
these advantage estimates the actor network (7p) is updated via
the TRPO update algorithm [13] (lines 4-8). Finally, the critic is
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Fig. 3. Hyperparameter evaluation in NSENET. The y-axis represents the avg. bandwidth allocated over 4,000 evaluation episodes.

updated by minimizing the Mean Squared Error (MSE) between
the current value predictions Vj, and the values updated with
the new advantage estimates Vi, + AZGAE. To this end, it uses
an Adam optimizer [23], which is an extension of the classic
Stochastic Gradient Descent (SGD) method that incorporates
adaptive learning rate.

5. SCENARIO AND PARAMETRIZATION

In this section we first describe the scenario where we evaluate
the DRL-based solution described in Section 4, which includes
the state/action representation proposed in Section 3-B, to route
traffic demands in OTNs. Then, we perform an evaluation of
some relevant hyperparameters to optimize the performance
achieved by the DRL agent.

A. Evaluation scenario

The objective of the DRL agent is to efficiently route traffic de-
mands in OTNs. Each traffic demand is defined by the tuple
{source, destination, bandwidth} and must be allocated in an end-
to-end path in the OTN. We assume that the DRL agent man-
ages the routing over a logical topology where the nodes are
ROADM devices and the edges represent lightpaths connecting
the ROADM nodes. Thus, the agent operates at the electrical
domain to allocate ODUk traffic demands to sequences of light-
paths, which form end-to-end paths. For the sake of simplicity,
we consider 5 different types of traffic demands (ODUO to ODU4)
whose bandwidth requirements are expressed in terms of multi-
ples of ODUO signals'. We consider that a demand is properly
allocated if there was enough available capacity in all the light-
paths forming the end-to-end path selected. Traffic demands
do not expire during an episode, hence episodes end when a
demand do not fit into the path selected. Likewise, in order
to maximize the total bandwidth allocated in the network, we
define the immediate reward of the agent as the bandwidth (in
ODUO bandwidth units) of the current traffic demand if it was
properly allocated, otherwise the reward is 0.

In our experiments, we train the DRL agent described in
Section 4. We used two independent fully-connected neural net-
works respectively for the actor and critic models of the agent.
Each network has two hidden layers, each one with 64 units. We
made some experiments increasing the number of layers and
units, but we did not see any relevant performance improve-
ment. Note that the number of units in the input and output
layers varies depending on the size of the observation and ac-
tion spaces in the different experiments we perform. For the
discount factor y € [0,1), we selected a value of y=0.995. Note

! According to the ITU-T Recommendation G.709 [10], we define the bandwitdth
requirements as follows: ODU1=2 ODUO Bandwidth Units (BU), ODU2=8 ODUO
BUs, ODU3=32 ODUO BUs, and ODU4=64 ODUQ BUs.

that 7y represents the importance of the rewards obtained in fu-
ture decisions (Sec. 2). Since the optimization objective in our
scenario represents a long-term planning strategy, v must be
considerably high. For the DRL agent with our representation
(Sec. 3-B), we pre-compute the ‘k” shortest paths (by number of
hops) of all the source-destination pairs in the network. Thus,
each step the action space contains the “k” shortest paths that
connect the source and the destination of the new traffic demand
to be routed. In all the cases, we use vectors with one-hot en-
coding to represent the source, destination and ODUKk type (i.e.,
bandwidth requirement) of traffic demands.

B. Hyperparameters evaluation

We perform an evaluation of some relevant hyperparameters
of the DRL implementation to optimize the performance of the
agent specifically for our problem environment. Particularly, we
consider the following three hyperparameters: (i) the number of
paths considered in the action space, (ii) the A parameter used
in the DRL algorithm, and (iii) the update interval of the actor
and critic networks.

We evaluate, with a custom-built simulator, the DRL agent
using our state/action representation in the 14-node NSENET
topology [24], where the topology edges represent lightpaths
with a capacity of 200 ODUO bandwidth units in both directions.
We generate new traffic demands with an uniform distribution
for the source, destination and ODUKk type.

In order to optimize each hyperparameter, we perform in-
dependent parametric evaluations using the following initial
values: (i) Number of candidate paths = 4, (ii) A = 0.97, (iii) Up-
date interval = 5,000 steps. The selection of these initial values is
based on some preliminary experiments we made in a simpler
scenario with a 6-node network topology. Note that despite each
hyperparameter is optimized independently, there may be some
co-dependencies among them. In this process, the selection of
proper initial values is important to avoid large variations on
some parameters during their independent fine-tuning process.

Number of candidate paths

We vary the number of “k” shortest paths considered in the
action space. Intuitively, the more paths available, the more
flexibility has the DRL agent to allocate the traffic. However,
it is important to maintain a reduced number of paths since
more paths involves larger dimensionality in the state, and this
implies more processing cost to update the input state and higher
RAM memory consumption. Also, it may imply a more complex
learning process as there is a larger action space to explore.
Fig. 3a presents the results of this evaluation. The y-axis
shows the average amount of bandwidth allocated (in ODUO
bw units) properly allocated by the agent over 4,000 evaluation
episodes with different seeds to generate the traffic. The x-axis
indicates the number of training episodes of TRPO. Here, we
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can observe that the curves saturate after few training episodes,
which means that the agent converges fast to its best strategy
in all the cases. It is noteworthy that, in this particular case, the
learning process does not necessarily slow down as the number
of candidate paths grows. Based on these results, we consider
that a value of k=4 paths is sufficient, since further increasing
the number of paths implies to enlarge the state (more process-
ing cost) and it does not improve significantly the performance.
Note that the optimal value of “k” may also depend on some
graph-level properties of the topology (e.g., diameter, connectiv-
ity) where the DRL agent operates.

A parameter of TRPO

As mentioned earlier in Section 4, our DRL agent uses the Gen-
eralized Advantage Estimator (GAE) to compute the advantage
estimates for the TRPO policy and value updates. It enables to re-
duce considerably the variance of the gradient estimates, but this
comes at the expense of some bias. To control the trade-off be-
tween bias and variance in the estimates there is a tunable param-
eter A € [0,1] in the GAE calculation AFAE = ¥°  (Ay)!4).
Thus, A=1 provides an unbiased estimate but introduces high
variance. Conversely, A=0 produces much lower variance, but
may induce a lot of bias.

Fig. 3b shows the results of our parametric evaluation of A.
Here, we observe that reducing the A value from 0.97 to 0.7 both
improves the performance and slightly accelerates the learning
process. Likewise, decreasing the value beyond A=0.7 does not
further improve the performance.

Update interval

The update interval defines the number of training steps that
are executed and maintained in memory before the DRL agent
updates the policy and the value functions (i.e., the actor and
critic neural network models). The larger this interval is, the
more data has to be stored until the neural networks are updated.
Consequently, this typically implies higher consume of RAM
memory.

Fig. 3c depicts the evaluation results varying the update inter-
val. From these results, we can infer that the optimal value is an
update interval of 50,000 steps in our case. With this value the
agent achieves the same performance than using higher values
(100,000 and 500,000). However, it learns faster and consumes
less RAM memory.

6. EVALUATION

In this section, we compare the performance of our DRL agent
with respect to other DRL agents using different state/action
representations commonly present in the state-of-the-art [4, 5, 7]
and a traditional Shortest Path routing policy.

A. Evaluation against state-of-the-art representations

We evaluate the agent in two real-world network topologies: the
14-node NSENET (used in Sec. 5-B) and the 17-node German
Backbone Network (GBN) [25]. As in the previous experiments,
we consider that every edge in both topologies represents light-
paths with capacity for 200 ODUO demands on both directions.

In our evaluation, we consider the following state-of-the-art
representations: (i) Links and k-paths: This is the simplest repre-
sentation. It uses the available capacity of the lightpaths (edges
in the logical topology) as the state representation and a discrete
action space with k=4 candidate shortest paths (as in our repre-
sentation). This representation is similar to the one they use in
Deep-RMSA [4], although they address the Routing, Modulation
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Fig. 4. Evaluation against state-of-the-art representations in
NSENET. The y-axis represents the avg. bandwidth allocated
over 4,000 evaluation episodes.

and Spectrum Assignment (RMSA) problem in Elastic Optical
Networks. (ii) Links and weights: This representation uses also
the available capacity of the lightpaths to represent the network,
but the actions consist of defining weights for the lightpaths;
then, the path with lowest weight is selected (as in OSPF). This
second representation uses the same action space as [5, 7].

We train the agent in two scenarios with different traffic pro-
files. In the first scenario, we used an uniform distribution for
sources, destinations and ODUKk types (as in Sec. 5-B). This rep-
resents the most challenging case for the DRL agent, given that it
cannot exploit particular characteristics from the traffic to direct
the exploration during training. The second scenario represents
a more realistic traffic distribution similar to the one we can
find in real-world networks. We generate traffic with a bimodal
distribution [26], in which 20% of nodes generate 80% of the
traffic. Also, the distribution of the ODUk requests follows an
elephant-mice distribution [27], where there is a high number of
low bandwidth requests and the bulk of the traffic is generated
by a reduced number of big traffic demands.

Based on the hyperparameters evaluation (Sec. 5-B), we select
a value of A=0.7 and an update interval of 50,000. For those
representations with discrete path-based actions, we use k=4.

Fig. 4 shows the average bandwidth properly allocated w.r.t.
the number of training episodes for the two traffic scenarios
in the NSENET topology. Each figure depicts the performance
achieved by our representation, the two representations based
on the state-of-the-art and the application of a traditional Short-
est Path routing policy. In the scenario with realistic traffic, the
agent achieves slightly higher performance, since there are more
low bandwidth requests, which are easier to be allocated prop-
erly. Likewise, for both traffic distributions, we observe a similar
behavior: (i) the simplest representation (Links and k-paths)
outperforms the shortest path policy but its performance is quite
poor compared to our representation. The proposed representa-
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Fig. 5. Evaluation against state-of-the-art representations in
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tion is able to allocate approximately 26% more bandwidth with
an uniform traffic distribution and 22% with realistic traffic. (ii)
the “Links and weights” representation is able to surpass the
shortest path policy and “Links and k-paths”, but it learns much
slower than using the other representations. For instance, in
the case with realistic traffic, the representation proposed in this
paper needs only 10,000 episodes to reach the same performance
achieved by the weights representation after 450,000 episodes.

Fig. 5 shows the same experiments for the GBN topology. In
this scenario, we can observe a similar behavior for the three
representations, but also an increase in performance compared
to the results obtained by the shortest path policy. This can be
explained by the different distributions of the betweeness cen-
trality of edges (i.e., lightpaths) in both topologies. For example,
in the GBN topology, we observe that some edges are included
in a high number of shortest paths connecting different source-
destination pairs. This makes these edges more prone to become
congested. We further discuss this issue in Section 6-B.

In all the evaluations we performed with link-based state rep-
resentations (i.e., “Links and k-paths” and “Links and weights”),
the agent achieves better performance when it applies actions
to select the weights on the lightpaths (“Links and weights”)
than when it selects directly end-to-end paths (“Links and k-
paths”). This suggests that, when representing the state with
link-level features, it may be more beneficial using also link-level
actions (e.g., links” weights) than applying path-level actions.
Additionally, we observe that the learning process of the agent is
much faster when it uses discrete path-level actions than when it
defines weights at the link-level. In this context, our representa-
tion uses path-level features for both the state and action spaces,
which avoids the agent to abstract knowledge from the link to
the path-level. What is more, the state includes explicit infor-
mation about the resulting states after applying all the possible
actions, which makes the problem less complex for the agent.

Fig. 6. Adverse network topology for shortest path routing.

B. Evaluation in an adverse scenario for Shortest Path routing

In Section 6-A, we discussed that in the GBN scenario the DRL
agent achieves better performance with respect to the shortest
path policy than in the NSENET scenario. In order to further
investigate this issue, in this section we analyze these topologies
from a graph theory perspective and make an evaluation in
a scenario that is specifically adverse to the application of the
shortest path policy.

To this end, we first introduce the concept of betweenness
centrality. This is a metric of centrality used in graph theory
based on the configuration of shortest paths. Particularly, the
betweenness centrality of an edge is the ratio of shortest paths
that pass through that edge with respect to the total number
of node pairs in the graph. Thus, in network topologies using
shortest path routing, edges with high betweenness centrality
are more likely to become saturated if their capacity is not scaled
to that factor. That is the case of the GBN topology in Section 6-A,
where all the lightpaths have the same capacity and some of
them (the top 5) are included in [8.8-14.3%] of all the shortest
paths connecting all the node pairs in the topology. In contrast,
in the NSENET topology, the top 5 lightpaths are within the
range [6.5-8.2%] of betweenness centrality.

To show the ability of our DRL-based solution to adapt to
these adverse scenarios to the shortest path policy, we make
an evaluation in the topology depicted in Fig. 6. This topology
is inspired by widely deployed real-world networks that form
rings to connect some regions (e.g. country-level networks) and
are inter-connected by a central core. Particularly, this topology
contains three identical rings that are connected via a central
node and has some alternative links that permit to offload traffic
through the closest nodes of the other rings (e.g., from node 2
to 7). Note that all the lighpaths have a capacity of 200 ODUO
demands. In this topology, the top 5 lightpaths have a beetween-
ness centrality in the range [9.1-10%].

For the evaluation, we maintain the same hyperparameter
values used in Section 6-A and train the DRL agent in two sce-
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over 4,000 evaluation episodes.
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Fig. 8. Evaluation of the DRL-based solution proposed against the SAP policy with realistic traffic distributions. The y-axis repre-

sents the avg. bandwidth allocated over 4,000 evaluation episodes.

narios with different traffic profiles. In the first scenario, we
generate traffic following an uniform distribution for sources,
destinations and ODUKk types. In the second scenario, we further
exacerbate the effect of lightpaths with high betweenness central-
ity by using a realistic bimodal traffic distribution in which 30%
of node pairs generate 80% of the total traffic volume. In this case,
the set of node pairs generating more traffic contains nodes di-
rectly connected to the top 5 lightpaths with higher betweenness
centrality. This further hampers the possibility of the shortest
path policy to succeed. Particularly, these pairs are (in both direc-
tions): {(1-2), (1-3), (1-7), (1-8), (1-12), (1-13), (2-3), (7-8), (12-13)}.
In this latter scenario, ODUk demands follow an elephant-mice
distribution [27] as in Section 6-A.

Fig. 7 shows the evaluation results. We can observe that, with
uniform traffic the DRL agent achieves ~40% more bandwidth
allocated than the shortest path policy. Likewise, as we expected
the DRL agent further outperforms the shortest path policy in
the scenario with realistic traffic by allocating ~52% more band-
width. In this latter scenario, we analyzed the behavior of the
DRL agent to get some hints of the strategy learned. Thus, we
could observe that in some cases the agent decides to take longer
paths to avoid using those lightpaths with high betweenness
centrality, given that they are more prone to be congested. For
instance, when there is a new traffic demand between nodes 2
and 3, the agent always selects the path [2-4-6-5-3] instead of fol-
lowing the shortest path [2-1-3], which traverses two lightpaths
with higher betweenness centrality. This is a smart strategy
given that the amount of traffic generated among node pairs in
the set {2,4,6,5,3} is considerably lower in this scenario.

7. EVALUATION AGAINST CURRENT SHORTEST AVAIL-
ABLE PATH

In this section, we evaluate the DRL agent using our represen-
tation against the application of a more sophisticated heuristic
we call “current Shortest Available Path” (hereafter SAP). In
particular, it consists of dynamically filtering from the set of “k”
candidate shortest paths those with enough capacity to support
the new traffic demand and select from this subset the path
with lower number of hops. This policy typically represents
a performance very close to the optimal MDP solution in our
OTN routing scenario. Note that it does not necessarily repre-
sents an efficient strategy in other related problems considering
optical-level constraints (e.g., wavelength continuity).

We make the evaluation in the setup described in Sec-
tion 5-A using the same hyperparameter configuration as in
Section 6-A for our DRL-based solution. For a fair compar-
ison, we use the same action set with k=4 candidate short-
est paths for the DRL agent and the SAP policy. The evalua-
tion is made in the three network topologies used previously:

(1) NSENET topology, (ii) GBN topology, and (iii) adverse topol-
ogy for the shortest path policy.

In our experiments, we use realistic traffic distributions. For
the NSFNET and GBN topologies we generate traffic with the
bimodal distribution described in Section 6-A, whereas in the
adverse topology for shortest path routing we use the bimodal
distribution described in Section 6-B. Figs. 8a, 8b and 8c show the
evaluation results respectively in the three different topologies.
As we can observe, the DRL agent achieves similar performance
to SAP in the NSENET topology. However, it clearly allocates
more bandwidth than SAP in the GBN topology (=10%) and the
adverse topology for shortest path (=6%). This evidences that
the DRL agent devised in these cases a smarter strategy than
SAP by exploiting some knowledge acquired from topology
singularities and traffic distributions.

In order to better understand the performance achieved by
the SAP policy, we calculate the optimal solution in a simple
scenario. Particularly, we solve the MDP problem by exploring
all the possible states and compare the performance achieved
with respect to SAP and the DRL agent using our representation.

Since the calculation of the MDP solution is computationally
very expensive, we made the evaluation in a simple scenario
with the 6-node topology used in Deep-RMSA [4]. Here, the
edges correspond to lightpaths with capacity for 3 ODUO de-
mands in both directions. For the traffic generation, we consider
that all the traffic demands are ODUO and the sources and desti-
nations follow an uniform distribution.

Fig. 9 depicts the evaluation results. As we expected, the SAP
policy obtains practically the same performance as the optimal
MDP solution. This figure also evidences that, in this scenario
the DRL agent with our representation achieves a performance
very close to the optimal policy. Likewise, we observe that
the shortest path policy is quite far from the other strategies.
Particularly, it allocates ~50% less bandwidth on average.
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Table 1. Statistics summary of our reverse engineering analysis.

% of actions % of actions

# Statistic Total actions Different actions Description
1 Different actions 59.94% _ %o of the DRL. agent’s actions that differ from the SAP policy (w.r.t. total
number of actions over 10,000 episodes)
> Longer path 56.97% 95.04% % of cases where the DRL agent selects a longer path (in number of hops) than
the selection of SAP
. . o % of cases where the DRL agent selects a path with more available capacity
3 9 46.62%
More available capacity 27.95% than in the selection of SAP
. o % of cases where the DRL agent selects a path with lower maximum weighted
4 9 40.54%
Lower weighted betweenness 24.30% betweenness than in the selection of SAP
o % of cases where the DRL agent selects a path that is longer and has more
5 % 43.47%
Longer path and more av. cap. 26.06% available capacity than in the selection of SAP
o % of cases where the DRL agent selects a path that is longer and has lower
6 % 37.74%
Longer path and lower wgt. btw. 22.62% ’ weighted betweenness than in the selection of SAP
7 . . av.cap o 53.96% % of cases where the DRL agent selects a path whose minimum
Higher min (wa‘if—b”w"e””ess> 32.34% av. cap /wgt. betweeness (over all its links) is higher than in SAP

Note that, in these latter experiments traffic demands follow
an uniform distribution, hence it is not possible to exploit any
meaningful information from the traffic distribution. However,
in the presence of non-uniform distributions (e.g., bimodal) the
optimal MDP solution may achieve better performance with
respect to SAP. We do not provide results for this latter case
given that the computation of the MDP solution turns to be
considerably more costly.

8. REVERSE ENGINEERING OF THE ROUTING POLICY
LEARNED BY THE DRL AGENT

Reverse engineering of DRL-based solutions may have two main
advantages: (i) it enables to make more efficient implementa-
tions of the policy learned by DRL agents (e.g., new heuristics),
and (ii) having an implementation with deterministic behav-
ior avoids facing the uncertainty that characterizes machine
learning-based solutions when acting over input states not con-
sidered during training and evaluation.

In this section we aim to gain insight into the policy learned
by our DRL agent. As we could observe in Section 7, there are
some cases where the DRL agent clearly outperformed the SAP
policy, particularly in the GBN scenario and the adverse topol-
ogy for shortest path. In this context, our approach is to focus on
these scenarios and analyze the cases where the actions of our
DRL agent differ from SAP. To this end, we make experiments
in the adverse topology for shortest path and use the DRL agent
already trained for 450,000 episodes in the scenario with realistic
traffic (Fig. 8c).

For the evaluation, we run 10,000 episodes and collect some
relevant statistics considering the cases where the DRL agent
differs from SAP. We mainly focus on analyzing the long-term
strategy of the agent. Accordingly, we only analyze routing sce-
narios where the network is not excessively congested so that
the agent has enough flexibility to allocate the new traffic de-
mand in multiple paths. Otherwise, when the network becomes
considerably congested, decisions are not meaningful to infer
the long-term strategy as there are often very few paths with
enough available capacity. Thus, in our experiments we consider
that episodes begin with an empty network and end when there
is at least one lightpath that cannot support an ODU4 demand

(i.e., minimum available capacity of 64 ODUO bandwidth units).

Table 1 summarizes some statistics we extracted from the ex-
periments. The first remarkable point is that the DRL agent took
on average 59.94% of actions different from SAP. This suggests
that the strategy followed by the agent may not be similar to the
SAP policy. Additionally, we can observe that the DRL agent
selected a longer path (in number of hops) than SAP in 56.97%
of the cases. In other words, 95.04% of the times that the DRL
agent differs from SAP, it selects a longer path (see Table 1, #2).
Considering the significance of this statistic, we further analyze
these cases. We then compute the following combinations of
occurrences: (i) longer path with higher available capacity and
(ii) longer path with lower weighted betweenness?, (see Table 1
#5 and #6). Here, we can observe that in ~40% of the cases the
agent selects a larger path that also has higher available capacity
or lower weighted betweeness.

Based on these results, we compute a more elaborated statis-
tic that considers the ratio between the available capacity and
the weighted betweeness (see Table 1, #7). Then, we can see that
in 53.96% of the cases where the DRL agent differ from SAP, it
takes a path with higher minimum (av. cap/wgt. betweenness)
ratio over all the links of the path. This suggests that the
behavior of the DRL agent may be partially explained by
a policy that selects the path that maximizes the minimum
(av. cap/wgt. betweenness) ratio over the k candidate paths. We
show below an analytic expression describing such policy:

Path = max (min (M>) 1)

P e P \I e P, \wgt. btw (P(I))

Where P is the the set with k candidate paths and / indexes
all the links on the k-th path (P).

Note that this policy implicitly includes a prediction of the po-
tential traffic that may carry each link to compute the weighted
betweenness. An alternative method that does not involve traffic
prediction mechanisms would be to consider instead the classic
(non-weighted) betweenness metric (i.e., considering only the
number of paths that may traverse a link). This would be equiva-
lent to apply the policy in Equation 1 and assume that the traffic

2We define the weighted betweenness of a link as the potential number of
end-to-end paths that traverse such link weighted by the amount of traffic that
may carry all these paths.
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Table 2. Evaluation of the heuristic based on our DRL agent

Avg. bandwidth Adverse topology
allocated (5,000 episodes) | NSENET  GBN to shortest path
Heuristic ‘ 1642.28  1574.52 1536.81

SAP ‘ 1611.71  1368.36 1470.15
Improvement ‘ 1.90% 15.07% 4.53%

is uniformly distributed over all the src-dst pairs in the network.
In order to evaluate the performance of this latter heuristic, we
run 5,000 evaluation episodes in the three topologies used in
previous sections with the realistic traffic distributions. Table 2
shows the average bandwidth allocated (in ODUO units) by the
heuristic and compares it with the performance achieved by the
SAP policy over the same experiments. As we can observe, our
heuristic inspired by the actions of the DRL agent outperforms in
all the cases the SAP policy. The best case is in the GBN topology,
where it allocated 15.07% more bandwidth than SAP.

9. CONCLUSION

In this paper, we address the use of Deep Reinforcement Learn-
ing (DRL) to route traffic demands in Optical Transport Net-
works (OTN). Contrary to the dominant trend in other domains,
where the current approach is to use deeper neural networks
with less elaborated features, we argue that a different approach
is to use a more careful representation of the network state. This
is explained by the complexity of describing link-level inter-
dependencies and the stochastic nature of the network traffic.
Conversely, recent efforts in the field of networking went in
the direction of applying DRL as a black-box using simple rep-
resentations of the observation/action space. We proposed a
DRL-based solution that includes a representation of the net-
work state that still has reasonable dimensionality, but can better
capture the crucial relationships among the lightpaths and paths
in OTN topologies. This more “engineered” representation al-
lows the agent to learn more easily and faster. Our evaluation
results, using different real-world network topologies and traffic
profiles, show that our representation significantly outperforms
previous proposals. Likewise, we made a reverse engineering
analysis of our DRL agent in order to better understand the
routing policy learned. As a result, we implemented a heuristic
based on the actions of the DRL agent that outperforms well-
known routing heuristics.
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