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Abstract— This paper presents a Model Predictive Control
(MPC) strategy based on Linear Parameter Varying (LPV)
models with varying delays affecting states and inputs. The pro-
posed control approach allows the controller to accommodate
the scheduling parameters and delay change. By computing the
prediction of the state variables and delay along a prediction
time horizon, the system model can be modified according to the
evaluation of the estimated state and delay at each time instant.
Moreover, the solution of the optimization problem associated
with the MPC design is achieved by solving a series of Quadratic
Programming (QP) problem at each time instant. This iterative
approach reduces the computational burden compared to the
solution of a non-linear optimization problem. A pasteurization
plant system is used as a case study to demonstrate the
effectiveness of the proposed approach.

I. INTRODUCTION

In modern times of industrialization, research on advanced
control algorithms for complex dynamic systems is still very
active. Controlling these complex systems is one of the most
important challenges in control engineering. On the other
hand, time delays may arise in the dynamics of real systems,
such as communication systems, chemical processes, and
transportation systems [1]. The effect of time delay in a
process increases the control problem. The delays can affect
the states, inputs or/and outputs, and they can be time-
varying or constant, unknown or known, deterministic or
stochastic depending on the considered system. One of the
main, successful and popular advanced control strategies for
industrial processes is Model Predictive Control (MPC) [2].

MPC based on linear models is typically used in pro-
cess control where the on-line optimization problem can
be formulated as a convex optimization problem by either
linear programming or Quadratic Programming (QP). This
assumption is suitably considered for typical processes.
However, most of the real systems show nonlinear behav-
iors. In order to reduce the conservativeness, the idea of
controlling nonlinear systems considering linear parameter
varying (LPV) models has been widely investigated in the
literature [3]. The main advantage of LPV models is that
the system nonlinearities are embedded into the varying
parameters, which make the nonlinear system become a
linear-like system with varying parameters [4].
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Recently, many researchers focuses on the robust model
predictive control (RMPC) based on the linear model with
constant or varying delays [5], [6]. In [7], a RMPC with
constant state delay by using linear matrix inequalities
(LMIs) term is proposed. The work of [8] proposes an
MPC algorithm for uncertain time varying systems with state
delays. Besides, a synthesis strategy for predictive control
based on LPV models with state delays was provided in
[8]. The results were further extended for the system with
input delayed in [9]. However, there exist only a few MPC
methods that consider time-delayed LPV model [10], [11]. In
[10], authors proposed a parameter-dependent state-feedback
controller based on LPV model with parameter-varying time
delay and proved the stability by using parameter-dependent
Lyapunov functionals. However, there exists a limitation to
apply input constraints which are required when controlling
many practical plants. Also, an RMPC based on LPV model
with state delay was presented in [11] by using a Lyapunov
function augmented with the current state and the time-
delayed states. But, still delay is considered to be constant
in the RMPC.

The main contribution of this paper consists in designing
an improved LPV-based MPC strategy in order to formu-
late an optimization problem that exploits the functional
dependency of scheduling variables and varying delays to
develop a prediction strategy with the numerically suitable
solution. This solution is iteratively forced to an accurate
solution, thereby avoiding the use of non-linear optimization.
In addition, the optimization problem is decomposed into a
series of QP problems that are solved at each time instant.
Finally, the small-scale pasteurization plant that presents
nonlinear behavior with varying delays is used in order to
test the effectiveness of the proposed approach.

The paper is structured as follows. In Section II, the
formulation of MPC based on an LPV model with varying
delays is introduced. Then, the LPV-based MPC approach
for LPV model with varying delay is presented in Section
III. In Section IV, results of applying the proposed control
strategy to the pasteurization system are presented. Finally,
in Section V, the conclusion of this work are drawn.

II. PROBLEM STATEMENT

Consider the following discrete-time state-space LPV
model with parameter-varying delays in inputs and states:

x(k + 1) =A(θ(k))x(k) +Aτ (θ(k))x(k − τ(θ(k)))

+B(θ(k))u(k) +Bτ (θ(k))u(k − τ(θ(k))),

y(k) =C(θ(k))x(k) + Cτ (θ(k))x(k − τ(θ(k))),

(1)



where x ∈ Rnx , u ∈ Rnu and y ∈ Rny are the
state vector, input vector and output vector, respectively.
Moreover, A(θ(k)) ∈ Rnx×nx , B(θ(k)) ∈ Rnx×nu and
C(θ(k)) ∈ Rny×nx are system matrices with the appropriate
dimensions, which depend affinely on the varying parameter
θ(k) ∈ Θ ∀k ≥ 0 where Θ is a given compact set. Moreover,
τ is a scalar function representing the parameter-varying
delay and satisfies 0 ≤ τm ≤ τ(θ(k)) ≤ τM , where τM
and τm are the upper bound and lower bound of τ(θ(k)).
Throughout this paper, it is assumed that (A(θ), B(θ)) is
stabilizable for all θ ∈ Θ.

The MPC controller design with a quadratic objective
function subject to input and states constraints based on the
LPV model (1) can be formulated as follows:

min
ũ(k)

J(k) =

Np−1∑
i=0

‖x(i|k)‖pw1
+ ‖u(i|k)‖pw2

, (2a)

subject to

x(i+ 1|k) =A(θ(i|k))x(i|k)

+Aτ (θ(i|k))x(i− τ(θ(i|k))|k)

+B(θ(i|k))u(i|k)

+Bτ (θ(i|k))u(i− τ(θ(i|k))|k),

(2b)

u(i|k) ∈U, x(i|k) ∈ X, (2c)
x(0|k) =x(k) θ(0|k) = θ(i|k), (2d)

and for all i ∈ Z[0,Np−1], it is solved online for ũ(k) =
[u(i|k), u(i + 1|k), ..., u(Np − 1|k)]>, where ũ(k) is the
decision sequence of Np predicted control inputs where Np
is number of predication horizon. Moreover, w1 ∈ Rnx×nx
and w2 ∈ Rnu×nu are positive definite weighting matrices
that establish the trade-off between state and the control input
effort, respectively. The super-index p is the squared norm
that is used for this paper. Furthermore, the sets X and U are
defined as

x ∈ X M
={x(k) ∈ Rnx |x ≤ x(k) ≤ x}, ∀k, (3a)

u ∈ U M
={u(k) ∈ Rnu |u ≤ u(k) ≤ u}, ∀k, (3b)

where vectors x ∈ Rnx and x ∈ Rnx determine the
minimum and maximum possible state values of the system,
respectively. Similarly, u ∈ Rnu and u ∈ Rnu determine
the minimum and maximum possible value of manipulated
variables, respectively. The control law is applied in a
receding horizon manner, that is, at time k the optimal
sequence of control input is defined and then, only the first
optimal control input is applied to the system. Then, the
new measurements are applied to update the initial conditions
and then the optimization problem is solved again using the
receding horizon rule. Also, x(i|k) is the predicted state at
time i, with i = 1, ..., Np, obtained by starting from the state
x(0|k) = x(k).

The LPV model can not be evaluated before solving the
optimization problem (2) because the future state sequence
is not known. Indeed x(i|k) depends not only on the future
control inputs u(k), but also on the future scheduling param-
eters θ(k) and delay, where for a general LPV system are

not assumed to be known a priori but only to be measurable
online at current time k. In addition, in the case of a system
with varying delay, the delay varies with the scheduling
variables. Hence, predicting the future states regarding the
dynamic of the system is more difficult. But, for a quasi-LPV
system, where the scheduling parameters θ(k) are defined
by x(k) and u(k), the delay and state trajectory can be
predicted.

III. PROPOSED APPROACH

This section proposes an MPC controller design in order
to solve the optimization problem of an LPV model with
parameter-varying delay where the parameters and delays
change along the prediction horizon. The idea is to find a
solution to the problem (2) by solving an online optimization
problem as a QP problem. The solution for this problem
is based on the estimation the scheduling variables and
subsequently delay into the prediction horizon and using
them to update the system matrices of the model that used
by the MPC controller. In fact, the sequence of the control
input is used to modify the delay and system matrices of
the model used along the prediction horizon. Therefore, the
sequence of states and predicted parameters can be obtained
from the control sequence ũ(k) as

x̃(k) =
[
x(i+ 1|k) x(i+ 2|k) · · · x(Np|k)

]T ∈ RNpnx ,
(4a)

Θ(k) =
[
θ̂(i|k) θ̂(i+ 1|k) · · · θ̂(Np − 1|k)

]T ∈ RNpnθ .
(4b)

Since the delays depend on the scheduling parameters, the
delays can be estimated based on the sequence of predicted
parameters as

τ̃(k) =
[
τ(i|k) τ(i+ 1|k) · · · τ(Np − 1|k)

]T ∈ RNpnτ .
(5)

Thus, with slight abuse of notation, ψ and φ can be used
as: Θ(k) = ψ([x>(k) x̃>(k)]>, ũ(k)) and τ̃(k) =
φ([x>(k) x̃>(k)]>, ũ(k)), respectively. The vector Θ(k)
includes parameters from time k to k + Np − 1 whilst the
state prediction is accomplished for time k + 1 to k +Np.

Consequently, by using the vectors (4) and (5), the x̃(k)
can be simply formulated as follow

x̃(k) = A(Θ(k))x(k) +Aτ (Θ(k))x(k − τ̃(Θ(k)))

+ B(Θ(k))ũ(k) + Bτ (Θ(k))ũ(k − τ̃(Θ(k))),
(6)

where A and Aτ ∈ Rnx×nx and B and Bτ ∈ Rnx×nu are
given by (7) and (8). By using (6) and augmented block
diagonal weighting matrices w̃1 = diagNp(w1) and w̃2 =
diagNp(w2), the cost function (2a) can be represented in
vector form as

min
ũ(k)

J(k) =
(
x̃(k)>w̃1x̃(k) + ũ(k)>w̃2ũ(k)

)
, (9a)

subject to

u(i|k) ∈U, x(i|k) ∈ X, (9b)
x(0|k) =x(k) θ(0|k) = θ(i|k), (9c)



A(Θ(k)) =


I

A(θ̂(k))

A(θ̂(k + 1))A(θ̂(k))
...

A(θ̂(k +Np − 1))A(θ̂(k +Np − 2)) . . . A(θ̂(k))

 , (7)

and

B(Θ(k)) =


0 0 0 . . . 0

B(θ̂(k)) 0 0 . . . 0

A(θ̂(k + 1))B(θ̂(k)) B(θ̂(k + 1)) 0 . . . 0
...

...
. . . . . .

...
A(θ̂k+Np−1) . . . A(θ̂(k + 1))B(θ̂(k)) A(θ̂k+Np−1) . . . A(θ̂(k + 2))B(θ̂(k + 1)) . . . B(θ̂k+Np−1)) 0

 .
(8)

for all i ∈ Z[0,Np−1]. Since the predicted states x̃(k) in (6)
are linear in control inputs ũ(k), the optimization problem
can be solved as a QP problem, which is significantly easier
than solving a nonlinear optimization problem.

However, the variation of delay at each iteration and inside
the prediction horizon makes difficulty to solve the optimiza-
tion problem considering a specific value of the prediction
horizon length because for solving the optimization problem
as MPC design based on a model with delay, the length of
prediction horizon should include delay. Hence, during solv-
ing the MPC optimization problem the prediction horizon
length should be adapted considering the delay value. Thus,
because of the change of the prediction horizon, the size of
states and inputs vectors should be adapted accordingly. In
order to summarize the proposed method, Algorithm 1 is
introduced.

IV. CASE STUDY APPLICATION

A. Case study description

In order to show the effectiveness of the proposed ap-
proach in the real case study, the pasteurization process that
is described in [12] is chosen as a real case study. The
pasteurization model is represented in terms of behavioral
equations of each subsystem, consisting of holding tube,
power, water pump, heat exchanger and hot water tank. The
non-liner model of the pasteurization system is considered
as

ẋ = f(x, x(t− τ), u, u(t− τ), ω(t)), (10)

where, x = [T1 T2 T2r T4 Tin]> ∈ R5, u = [N1 N2 P ]> ∈
R3 and ω = [Ta] ∈ R1 are states, inputs and disturbance
of the pasteurization system, respectively. In addition, state
equation f : X × U −→ X and X ⊆ R5 is presented in
Appendix. The physical properties, process data and param-
eters related of the pasteurization model in the identification
process are described in Table II and III in Appendix.

The identification procedure to estimate some unknown
parameters of the nonlinear model is based on [13]. The
idea of the method is to compare, the data obtained from
the real set-up with the data obtained by simulating part of
the continuous time non-linear model of the pasteurization

process. This is formulated as an optimization problem that
allows finding the parameter values that better approximate
the real system in the least squares sense. Due to the lake
of space, this can be only illustrated briefly by estimating
unknown parameters of the hot-water tank temperature. The
identification procedure is based on the knowledge of the
non-linear model of the hot-water tank temperature (13b). It
is assumed to have at access NT2 sets of data P j(k), N j

1 (k)
for the hot-water tank temperature where j = 1, ..., NT2

and k = 1, ...,Kj where Kj is the number of samples of
the j−th set of data. The identification process determines
the minimum of the following objective function over the
unknown parameters α1, α2 and α3:

JT2
=

NT2∑
j=1

Kj∑
k=1

(
T j2 (k)− T̂ j2 (k)

)2

, (11)

where T̂ j2 (k) is the simulation provided by (13b). In the
same manner, the identification procedure is applied based
on the other equation of the nonlinear model for estimating
the remaining unknown parameters. By using the non-linear
embedding approach [14], the state-space LPV model of the
pasteurization plant can be expressed as follows:

A =


a11 0 0 0 0

0 a22 a23 0 0

0 a32 a33 a34 a35

0 a42 a43 a44 a45

0 0 a53 0 a55

 , B =


b11 0 0

0 b22 b23

b31 b32 0

b41 b42 0

b51 0 0



Aτ =


0 aτ,12 aτ,13 aτ,14 aτ,15

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

 , Bd =


bd,11

bd,21

bd,31

bd,41

0

 ,

Bτ =


bτ,11 bτ,12 0

0 0 0

0 0 0

0 0 0

0 0 0

 , C =

[
1 0 0 0 0

0 1 0 0 0

]
, (12)

where the value of matrix parameters are introduced in
Appendix. The most important objective of the pasteurization
procedure is to ensure that the pasteurization temperature is
attained and preserved as close the set-point amount for a



Algorithm 1 LPV-MPC based on LPV models with varying
delay

1: k ←− 0
2: repeat
3: i←− 0
4: if k = 0 then
5: Solve the optimization problem (9) by considering

θ(0|k) ' θ(1|k) ' θ(2|k) ' ... ' θ(Np − 1|k)
6: Calculate Θ(k) and τ̃(k) using x̃(k) and ũ(k)
7: else
8: Determine Θ(k) = {θ̂(i|k)}Np−1i=0 and τ̃(k) =

{τ(i|k)}Np−1i=0 , where θ̂(i|k) = ψ(x(i|k − 1 +
1), u(i|k−1)) and τ(i|k) = φ(x(i|k−1+1), u(i|k−1)

9: Compute the difference value g = τ̃(k)− τ̃(k − 1)
10: if g ≤ 0 then
11: x̃(k) = {x(i|k)}Np−|g|i=0 and ũ(k) =

{u(i|k)}Np−1−|g|i=0

12: else
13: x̃g(k) = (x̃(Np − 1), [1, g])

x̃(k) = {x̃(k), x̃g(k)}
14: end if
15: Solve the optimization problem (9)
16: i←− i+ 1
17: end if
18: Apply the first value of the optimal input sequence to

the system
19: Define Θ0(k + 1) = ψ(x̃1(k), ũ0(k)) and τ̃0(k + 1) =

φ(x̃1(k), ũ0(k))
20: Modify the size of Np, Np > τ
21: k ←− k + 1
22: until end

pre-established time. According to this, the T1 temperature is
the output of the holding tube for monitoring the temperature
of the product after the pasteurization procedure, controlling
T1 to track set-points is one of the main objectives. On the
other hand, the hot-water tank is the thermal energy source
used to heat the product and proper system operation, T2
should always be greater than T1 due to achieve the final
temperature desired. Hence, in order to guarantee the energy
for the process, T2 should be controlled.

B. Results and Discussion

In this section, the proposed algorithm based on the system
with constant delay and varying delay is compared by the
state-of-the-art NMPC approach based on the system with
the same information. The comparison is made both in
terms of closed-loop performance and computational timing
performance. All simulation and computations have been
carried out using a commercial computer with i7 2.40-GHz
Intel core processor with 12 GB of RAM running MATLAB
R2016b. The optimization problems (9) and (2) are solved by
using the linear and nonlinear programming solvers available
in YALMIP (Lofberg, 2004). The solution of (11) is found
by means of fmincon MATLAB function of the Optimization

Toolbox. All tests are applied by same prediction horizon,
parameters and constraints as mentioned in Table I.

In order to validate the values obtained by identification,
the simulation of the non-linear model has been compared
by the data obtained from the real system. Figures 1a)
and 1b) present the comparison of the tracking response
results that obtained under the LPV-based MPC approach
and the NMPC controller based on the pasteurization model
with the constant and varying delay during the prediction
horizon, respectively. Moreover, the responses of the control
actions using a controller based on proposed approach and
NMPC controller that considered the model with the constant
and varying delay in the prediction horizon are provided in
Figures 1c) and 2, respectively. The comparison of compu-
tational timing performance of LPV-based MPC and NMPC
is summarized in Table III. Actually, in the pasteurization
process, the delay of the system is depended on the control
action. Therefore, in the constant delay case, the delay of
the system is varied at each time instant k, but during the
prediction horizon are considered as constant delays, where
the value of delay in the next iteration k + 1 is computed
by the first elements of the optimal input. For more clarity
of how the delay is varied in the new proposed approach
during prediction horizon, Figure 3 shows the evolution of
delay when it is considered constant and varying during the
prediction horizon.

According to these results, it can be observed that the
proposed LPV-based MPC controller is tracked and reached
the set-point and the performance of the proposed algorithm
is almost the same as the NMPC one. In terms of the
computational timing performance, there is a quite clear
difference: although the average time proposes that the LPV-
based MPC is on average four times faster than the NMPC,
in fact, the algorithms are only as good as its worst-case
performance, in which case it is clear that the proposed
approach is approximately an order of magnitude faster. To
sum up, the simulation results show that the proposed LPV-
based MPC controller is able to control LPV time-delay
systems while improving the performance of the closed-loop
system and achieving the specified set-point.

V. CONCLUSIONS

This paper focused on the design of a model predictive
control algorithm based on a class of Linear Parameter
Varying (LPV) models with parameter varying delay. The
constrained optimization problem for an LPV model with
parameter varying and constant delay is solved iteratively
by a series of QP problems while the scheduling parameters
and delay are calculated at each time instant. The model
with varying delay is predicted in the horizon by using the
previous sequence of scheduling variable and state of the
model. Based on the variation of the delay, the prediction
horizon length is changed during the simulation. The pro-
posed approach is considered a fast computation time and
appreciably faster than other mentioned approach. For future
research, It would be interesting to implement the proposed
approach on the real benchmark of the pasteurization plant
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Fig. 1: Different assessments. (a) output temperatures (Delay is constant during the prediction horizon). (b) control inputs
(Delay is varied during the prediction horizon). (c) control inputs (Delay is constant during the prediction horizon).

TABLE I: Comparison of each strategies timing performance

Configuration Maximum time Average time Standard deviation r.m.s. error (T1) r.m.s. error (T2)

NMPC constant delay into NP 4.4540 2.0091 0.9071 4.9703 4.3479
LPV-MPC constant delay into NP 0.1640 0.0785 0.0078 5.243 4.425
NMPC varying delay into NP 24.887 6.9558 3.9441 5.117 4.7791
LPV-MPC varying delay into NP 0.8771 0.2480 0.1409 5.402 4.820
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Fig. 2: Evaluation of the control inputs (Delay is varied
during the prediction horizon)
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by considering the uncertainty and sensitivity of disturbance
in the model.

APPENDIX

For obtaining the pasteurization model, physical principle
based fundamental laws such as energy balances and heat
exchanger design are utilized to describe the main processes
of the plant. Therefore, Energy balance and Bernoulli’s law
produces the following set of dynamical equations:

dT1
dt

=
2

M1CP
(−UAT1(t) + T4(t− τ)

2
− Ta)

− F1Cp(T1(t)− T4(t− τ))− dT4(t− τ)

dt

(13a)

dT2
dt

= α1P (t)− F2Cp(T2(t)− T2r(t))− α2T2(t) + α3

(13b)
dT2r
dt

= F1(T4(t)− Tin(t)) + α4F2(T2(t)− T2r(t))

− α5(T2(t)− Ta)− α6 − α7N1(t)

(T4(t)− Tin(t)) + α8N2(t)(T2(t)− T2r(t))
− α9(T4(t)− Tin(t)) + α10(T2(t)− T2r(t))

(13c)
dT4
dt

= −F1(T4(t)− Tin(t)) + α11F2(T2(t)− T2r(t))

− α12 − α13N1(t)(T4(t)− Tin(t))

+ α14N2(t)(T2(t)− T2r(t))
(13d)

dTin
dt

=
α15(N1(t)− α16)(T1(t)− Tin(t))

M2
, (13e)



where F1 = α17(N1(t)−α16), F2 = α18(N2(t)−α19), and
the delay of system is

τ(t) =− α20 − α21(N1(t))3 + α22(N1(t))2

− α23N1(t) + α24.

The value of entries for the state-space matrices for the
controller used in (12) are presented as follows:

a11 =
−UA
M1Cp

− F1Cp

a22 = −F2Cp − α2

a23 = F2Cp

a32 = F2α4 +N2(k)α8 + α10 − α5

a33 = −F2α4 −N2(k)α8 − α10

a34 = −N1(k)α7 + F1 − α9

a35 = N1(k)α7 − F1 + α9

a42 = F2α11 +N2(k)α14

a43 = −F2α11 −N2(k)α14

a44 = −N1(k)α13 − F1

a45 = N1(k)α13 + F1

a53 =
α15(N1(k)− α16)

M2

a55 =
−α15(N1(k)− α16)

M2

b11 = −α17Cp(T1(k)− T4(k − τ))
b22 = −α18Cp(T2(k)− T2r(k))

b23 = α1

b31 = (α17 − α7)(T4(k)− Tin(k))
b32 = (α18α14 + α8)(T2(k)− T2r(k))

b41 = (−α17 − α7)(T4(k)− Tin(k))
b42 = (α18α11 + α14)(T2(k)− T2r(k))

b51 =
α15(T2r(k)− Tin(k))

M2

bd,11 = α25Ta

bd,21 = α3

bd,31 = α5Ta − α6

bd,41 = α12

aτ,12 = −F2α11 −N2(k)α14

aτ,13 = F2α11 +N2(k)α14

aτ,14 =
UA

M1Cp
+ F1Cp + F1 + α13N1(k)

aτ,15 = α13N1(k)− F1

bτ,11 = (α17 + α13)(T4(k − τ)− Tin(k − τ))
bτ,12 = (−α11α18 − α14)(T2(k − τ)− T2r(k − τ))

Moreover, Tables II and III collect the information about
both the model and simulation parameters, respectively.

TABLE II: Physical properties and process data

Parameter Description Value Unit

U constant of convective heat transfer 10 [Wm2/K]
A area of the tank 0.0248 [m2]
Cp specific heat of the hot-water 4.186 [J/g◦C]
M1 mass of liquid inside the tank 82 [g]
M2 mass product inside the regeneration section 24.85 [g]
Ta room temperature 24.5 [◦C]
T1 temperature at the end of holding tube [0,80] [◦C]
T2 temperature inside hot water tank [0,80] [◦C]
T2r returned water temperature from the heat exchanger [0,80] [◦C]
T4 temperature at the exit of heat exchanger [0,80] [◦C]
Tin temperature after regeneration section [0,80] [◦C]
N1 percentage speed of feeding pump [40-80] [%]
N2 percentage speed of hot-water pump [20-80] [%]
P power of the electric resistor [0-1500] [W]

TABLE III: The adjusted parameters

Parameter Value Parameter Value

α1 2.2× 10−4 α14 4× 10−4

α2 1.6× 10−4 α15 3.96× 10−1

α3 3.74× 10−3 α16 16.8154
α4 10−4 α17 6.814× 10−2

α5 3.09× 10−2 α18 2.68× 10−1

α6 1.44× 10−1 α19 16.3567
α7 1.8× 10−3 α20 9.62× 10−4

α8 4.8× 10−4 α21 4
α9 6.54× 10−2 α22 1.87× 10−1

α10 5.18× 10−3 α23 11.81
α11 2.5× 10−3 α24 269.44
α12 22× 10−2 α25 5.8× 10−4

α13 1.16× 10−3
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